

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[N,N'-Bis(4-chlorophenyl)pentane-2,4diiminato]dicarbonylrhodium(I)

T. N. Hill* and G. Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: tania.hill@gmail.com

Received 30 October 2009; accepted 5 January 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.017; wR factor = 0.050; data-to-parameter ratio = 17.1.

The title compound, $[Rh(C_{17}H_{15}Cl_2N_2)(CO)_2]$, is a rhodium(I) derivative of a β -diketiminato moiety. It is an example of a new type of β -diketiminate derivative that has not yet been characterized via solid-state methods. The complex crystallizes with a distorted square-planar geometry about the Rh¹ atom (*m* symmetry). A weak intermolecular $C-H\cdots O$ contact is observed.

Related literature

For related diketiminato complexes, see: Smith et al. (2002, 2006).

Experimental

Crystal data

[Rh(C₁₇H₁₅Cl₂N₂)(CO)₂] $M_r = 477.14$ Monoclinic, $P2_1/m$ a = 9.6726 (3) Å b = 7.5911 (2) Å c = 13.6484 (4) Å $\beta = 107.247 \ (1)^{\circ}$

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer

 $V = 957.08 (5) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 1.19 \text{ mm}^{-1}$ T = 100 K $0.36 \times 0.31 \times 0.30 \ \text{mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.675, T_{\max} = 0.717$ 27556 measured reflections

metal-organic compounds

 $R_{\rm int} = 0.026$

2555 independent reflections 2491 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.017$	H atoms treated by a mixture of
$vR(F^2) = 0.050$	independent and constrained
S = 0.93	refinement
2555 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
49 parameters	$\Delta \rho_{\rm min} = -0.85 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Rh1-C02	1.854 (2)	Rh1-N2	2.0523 (14)
Rh1-C01	1.8741 (19)	O01-C01	1.134 (2)
Rh1-N1	2.0453 (14)	O02-C02	1.137 (3)
C02-Rh1-C01	85.48 (8)	N1-Rh1-N2	89.87 (6)
C02-Rh1-N1	91.89 (7)	O01-C01-Rh1	176.21 (17)
C01-Rh1-N2	92.76 (7)	O02-C02-Rh1	177.45 (18)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C22-H22\cdots O02^{i}$	0.95	2.54	3.1723 (18)	124
Symmetry code: (i) $-x +$	$1. v + \frac{1}{2} - 7 + \frac{1}{2}$	- 1.		

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr. L. Kirsten is acknowledged for the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2073).

References

- Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA,
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2002). Organometallics, 21, 4808-4814.
- Smith, J. M., Sadique, A. R., Cundari, T. R., Rodgers, K. R., Lukat-Rodgers, G., Lachicotte, R. J., Flaschenriem, C. J., Vela, J. & Holland, P. L. (2006). J. Am. Chem. Soc. 128, 756-769.

Acta Cryst. (2010). E**66**, m205 [https://doi.org/10.1107/S1600536810000449]

[N,N'-Bis(4-chlorophenyl)pentane-2,4-diiminato]dicarbonylrhodium(I)

T. N. Hill and G. Steyl

S1. Comment

In literature similar iron complexes have been reported containing tertiary butyl, isopropyl and methyl derivatives (Smith *et al.*, 2002; Smith *et al.*, 2006). Using a comparable ligand system, with electron withdrawing substituents on the phenyl ring, a series of rhodium(I) dicarbonyl complexes were prepared. The title compound (I) is a novel example of a 4-Chlorophenyl derivative. (Figure 1)

Due to the highly symmetrical nature of the complex both the Rh—C and Rh—N bond distances are similar. The carbonyl oxygen bond distances are the same, with the carbonyl's themselves being close to linearity. The mirror plane bisects the complex passing through the metal centre, the ketimine backbone and carbonyl moeities. (Table 1)

A staggared head-to-tail stacking is observed with no Rh—Rh interaction. The closest contact is a weak hydrogen bond between the phenyl ring (C22) of the diketiminato ligand and the adjacent carbonyl oxygen O02 (Table 2).

S2. Experimental

The title complex was synthesized by the addition of *N*,*N*'-bis-(4-chlorophenyl)pentane-2,4-di-imine (167 mg, 0.514 mmol) to an acetone solution of the $[Rh(\mu-Cl)(CO)_2]_2$ (100 mg, 0.257 mmol). On slow evaporation of the solvent; crystals suitable for X-Ray crystallography were obtained. Yield: 147 mg (60%).

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq(parent)}$ of the parent atom with a C—H distance of 0.99 (methyl) and 0.95 (aromatic).

Figure 1

View of (I) (50% probability displacement ellipsoids)

[N,N'-Bis(4-chlorophenyl)pentane-2,4- diiminato]dicarbonylrhodium(I)

Crystal data

```
[Rh(C<sub>17</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>2</sub>)(CO)<sub>2</sub>]

M_r = 477.14

Monoclinic, P2_1/m

Hall symbol: -P 2yb

a = 9.6726 (3) Å

b = 7.5911 (2) Å

c = 13.6484 (4) Å

\beta = 107.247 (1)°

V = 957.08 (5) Å<sup>3</sup>

Z = 2
```

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 512 pixels mm⁻¹ ω and φ scans F(000) = 476 $D_x = 1.656 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7852 reflections $\theta = 2.7-28.3^{\circ}$ $\mu = 1.19 \text{ mm}^{-1}$ T = 100 KCuboid, colourless $0.36 \times 0.31 \times 0.3 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{min} = 0.675$, $T_{max} = 0.717$ 27556 measured reflections 2555 independent reflections 2491 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.2^{\circ}$	$k = -10 \rightarrow 10$
$h = -12 \rightarrow 12$	$l = -18 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.050$ S = 0.93 2555 reflections 149 parameters 0 restraints	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0354P)^2 + 0.5478P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.36 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.85 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Rh1	0.637102 (13)	0.25	0.465229 (9)	0.01730 (6)	
N1	0.70723 (16)	0.25	0.33783 (11)	0.0184 (3)	
N2	0.84799 (16)	0.25	0.55685 (11)	0.0174 (3)	
O01	0.51242 (16)	0.25	0.64255 (11)	0.0306 (3)	
O02	0.32539 (17)	0.25	0.34080 (13)	0.0470 (5)	
Cl11	0.25234 (6)	0.25	-0.06636 (4)	0.04074 (14)	
Cl21	0.87899 (6)	0.25	0.99767 (3)	0.03319 (12)	
C01	0.5641 (2)	0.25	0.57800 (15)	0.0233 (4)	
C1	0.84413 (19)	0.25	0.33584 (13)	0.0183 (3)	
C02	0.4448 (2)	0.25	0.38608 (15)	0.0298 (4)	
C2	0.96380 (18)	0.25	0.42351 (13)	0.0185 (3)	
H2	1.0557	0.25	0.4116	0.022*	
C3	0.96652 (19)	0.25	0.52655 (13)	0.0178 (3)	
C4	0.8736 (2)	0.25	0.23319 (13)	0.0231 (4)	
H4A	0.820 (4)	0.152 (3)	0.1908 (14)	0.035*	0.5
H4B	0.9787 (16)	0.235 (5)	0.2437 (2)	0.035*	0.5
H4C	0.841 (4)	0.363 (3)	0.1977 (13)	0.035*	0.5
C5	1.11412 (19)	0.25	0.60505 (14)	0.0221 (3)	
H5A	1.1388 (9)	0.364 (2)	0.6276 (10)	0.033*	0.5
H5B	1.1816 (12)	0.206 (2)	0.5756 (6)	0.033*	0.5
H5C	1.1122 (5)	0.180 (2)	0.6599 (12)	0.033*	0.5
C11	0.59706 (19)	0.25	0.23963 (13)	0.0206 (3)	
C12	0.54311 (14)	0.09167 (18)	0.19293 (10)	0.0243 (3)	
H12	0.5792	-0.0165	0.2255	0.029*	
C13	0.43608 (14)	0.0908 (2)	0.09835 (10)	0.0278 (3)	
H13	0.3988	-0.0172	0.066	0.033*	
C14	0.3853 (2)	0.25	0.05267 (15)	0.0281 (4)	
C21	0.86559 (18)	0.25	0.66523 (12)	0.0185 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C22	0.86893 (17)	0.40678 (19)	0.71687 (10)	0.0303 (3)
H22	0.8683	0.5151	0.6819	0.036*
C23	0.87317 (17)	0.4078 (2)	0.81978 (10)	0.0322 (3)
H23	0.8749	0.516	0.8552	0.039*
C24	0.8748 (2)	0.25	0.86918 (13)	0.0232 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Rh1	0.01599 (8)	0.02468 (8)	0.01164 (8)	0	0.00473 (5)	0
N1	0.0194 (7)	0.0248 (7)	0.0112 (6)	0	0.0046 (5)	0
N2	0.0191 (7)	0.0228 (7)	0.0102 (6)	0	0.0044 (5)	0
O01	0.0300 (7)	0.0437 (8)	0.0230 (7)	0	0.0154 (6)	0
O02	0.0194 (7)	0.0851 (14)	0.0326 (9)	0	0.0018 (6)	0
Cl11	0.0270 (2)	0.0652 (4)	0.0215 (2)	0	-0.00592 (18)	0
Cl21	0.0342 (2)	0.0550 (3)	0.01086 (19)	0	0.00754 (17)	0
C01	0.0192 (8)	0.0295 (9)	0.0207 (8)	0	0.0052 (7)	0
C1	0.0230 (8)	0.0206 (7)	0.0123 (7)	0	0.0068 (6)	0
C02	0.0240 (9)	0.0461 (12)	0.0206 (9)	0	0.0087 (7)	0
C2	0.0175 (7)	0.0238 (8)	0.0151 (7)	0	0.0063 (6)	0
C3	0.0194 (8)	0.0187 (7)	0.0150 (7)	0	0.0047 (6)	0
C4	0.0241 (9)	0.0332 (9)	0.0138 (8)	0	0.0081 (7)	0
C5	0.0184 (8)	0.0298 (9)	0.0170 (8)	0	0.0038 (6)	0
C11	0.0201 (8)	0.0305 (9)	0.0116 (7)	0	0.0055 (6)	0
C12	0.0253 (6)	0.0302 (6)	0.0170 (5)	-0.0013 (5)	0.0056 (5)	-0.0004(5)
C13	0.0255 (6)	0.0376 (7)	0.0196 (6)	-0.0056 (6)	0.0055 (5)	-0.0053 (5)
C14	0.0186 (8)	0.0500 (13)	0.0136 (7)	0	0.0013 (6)	0
C21	0.0171 (7)	0.0268 (8)	0.0116 (7)	0	0.0044 (6)	0
C22	0.0500 (8)	0.0255 (6)	0.0179 (6)	-0.0132 (6)	0.0140 (6)	-0.0030 (5)
C23	0.0489 (8)	0.0319 (7)	0.0182 (6)	-0.0150 (6)	0.0135 (6)	-0.0094 (5)
C24	0.0203 (8)	0.0391 (10)	0.0098 (7)	0	0.0041 (6)	0

Geometric parameters (Å, °)

Rh1—C02	1.854 (2)	C4—H4C	0.9902
Rh1-C01	1.8741 (19)	C5—H5A	0.9234
Rh1—N1	2.0453 (14)	С5—Н5В	0.9234
Rh1—N2	2.0523 (14)	C5—H5C	0.9234
N1—C1	1.332 (2)	C11—C12	1.3877 (16)
N1-C11	1.444 (2)	C11—C12 ⁱ	1.3877 (16)
N2—C3	1.329 (2)	C12—C13	1.3949 (17)
N2—C21	1.438 (2)	C12—H12	0.95
O01—C01	1.134 (2)	C13—C14	1.3816 (18)
O02—C02	1.137 (3)	С13—Н13	0.95
Cl11—C14	1.748 (2)	C14—C13 ⁱ	1.3816 (18)
Cl21—C24	1.7420 (18)	C21—C22	1.3787 (16)
C1—C2	1.397 (2)	C21—C22 ⁱ	1.3787 (16)
C1—C4	1.510 (2)	C22—C23	1.3929 (17)

C2—C3	1.399 (2)	С22—Н22	0.95
С2—Н2	0.95	C23—C24	1.3727 (17)
C3—C5	1.510(2)	С23—Н23	0.95
C4—H4A	0.9902	C24—C23 ⁱ	1.3727 (17)
C4—H4B	0.9902		
C02—Rh1—C01	85.48 (8)	С3—С5—Н5В	109.5
C02—Rh1—N1	91.89 (7)	H5A—C5—H5B	109.5
C01—Rh1—N1	177.37 (6)	С3—С5—Н5С	109.5
C02—Rh1—N2	178.24 (7)	H5A—C5—H5C	109.5
C01—Rh1—N2	92.76 (7)	H5B—C5—H5C	109.5
N1—Rh1—N2	89.87 (6)	C12-C11-C12 ⁱ	120.01 (16)
C1—N1—C11	116.46 (14)	C12—C11—N1	119.99 (8)
C1—N1—Rh1	126.83 (12)	C12 ⁱ —C11—N1	119.99 (8)
C11—N1—Rh1	116.72 (11)	C11—C12—C13	120.27 (13)
C3—N2—C21	118.04 (14)	C11—C12—H12	119.9
C3—N2—Rh1	127.13 (12)	C13—C12—H12	119.9
C21—N2—Rh1	114.83 (11)	C14—C13—C12	118.70 (14)
O01—C01—Rh1	176.21 (17)	C14—C13—H13	120.7
N1—C1—C2	123.98 (15)	С12—С13—Н13	120.7
N1—C1—C4	118.73 (15)	C13 ⁱ —C14—C13	122.04 (18)
C2—C1—C4	117.29 (16)	C13 ⁱ —C14—C111	118.98 (9)
O02—C02—Rh1	177.45 (18)	C13—C14—C111	118.98 (9)
C1—C2—C3	128.69 (16)	C22—C21—C22 ⁱ	119.37 (16)
C1—C2—H2	115.7	C22—C21—N2	120.24 (8)
С3—С2—Н2	115.7	C22 ⁱ —C21—N2	120.24 (8)
N2—C3—C2	123.51 (15)	C21—C22—C23	120.65 (13)
N2—C3—C5	120.04 (15)	C21—C22—H22	119.7
C2—C3—C5	116.45 (15)	C23—C22—H22	119.7
C1—C4—H4A	109.5	C24—C23—C22	118.87 (14)
C1—C4—H4B	109.5	C24—C23—H23	120.6
H4A—C4—H4B	109.5	C22—C23—H23	120.6
C1—C4—H4C	109.5	$C_{23^{i}}$ C_{24} C_{23}	121.59 (17)
H4A—C4—H4C	109.5	$C_{23^{i}}$ C_{24} C_{121}	119.20 (8)
H4B—C4—H4C	109.5	C_{23} C_{24} C_{121}	119.20 (8)
C3—C5—H5A	109.5	010 011 0111	(0)
	10,00		
C02—Rh1—N1—C1	180	C1—C2—C3—C5	180
N2—Rh1—N1—C1	0	C1—N1—C11—C12	90.64 (14)
C02—Rh1—N1—C11	0	Rh1—N1—C11—C12	-89.36 (14)
N2—Rh1—N1—C11	180	C1-N1-C11-C12 ⁱ	-90.64 (14)
C01—Rh1—N2—C3	180	Rh1—N1—C11—C12 ⁱ	89.36 (14)
N1—Rh1—N2—C3	0	C12 ⁱ —C11—C12—C13	0.9 (3)
C01—Rh1—N2—C21	0	N1—C11—C12—C13	179.63 (13)
N1—Rh1—N2—C21	180	C11—C12—C13—C14	-0.1 (2)
C11—N1—C1—C2	180	C12-C13-C14-C13 ⁱ	-0.8 (3)
Rh1—N1—C1—C2	0	C12—C13—C14—Cl11	179.46 (11)
C11—N1—C1—C4	0	C3—N2—C21—C22	92.31 (15)

Rh1—N1—C1—C4	180	Rh1—N2—C21—C22	-87.69 (15)
N1—C1—C2—C3	0	C3—N2—C21—C22 ⁱ	-92.31 (15)
C4—C1—C2—C3	180	$Rh1-N2-C21-C22^{i}$	87.69 (15)
C21—N2—C3—C2	180	C22 ⁱ —C21—C22—C23	-1.1 (3)
Rh1—N2—C3—C2	0	N2-C21-C22-C23	174.34 (15)
C21—N2—C3—C5	0	C21—C22—C23—C24	0.4 (3)
Rh1—N2—C3—C5	180	C22-C23-C24-C23 ⁱ	0.4 (3)
C1-C2-C3-N2	0	C22—C23—C24—Cl21	-179.62 (13)

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	D····A	<i>D</i> —H··· <i>A</i>
C22—H22…O02 ⁱⁱ	0.95	2.54	3.1723 (18)	124

Symmetry code: (ii) -x+1, y+1/2, -z+1.