metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methanoldioxido{1-[(2*RS*)-(2-oxidopropyl)iminomethyl]-2-naphtholato}molybdenium(VI)

Monadi Niaz,^a Sheikhshoaie Iran^b* and Rezaeifard Abdolreza^c

^aChemistry Department, Shahid Bahonar University of Kerman, Kerman, Iran, ^bShahid Bahonar University of Kerman, Kerman, Iran, and ^cBirjand University, Birjand, Iran

Correspondence e-mail: i_shoaie@yahoo.com

Received 10 October 2009; accepted 21 January 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.023; wR factor = 0.056; data-to-parameter ratio = 21.7.

Crystals of the title compound, $[Mo(C_{14}H_{13}NO_2)O_2(CH_4O)]$, were obtained by recrystallization from methanol. The Mo^{VI} atom is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate 1-[(2-oxidopropyl)iminomethyl]-2-naphtholate Schiff base ligand. The coordination sphere is completed by the O atom of a methanol molecule, yielding a distorted octahedron. $O-H\cdots O$ hydrogen bonding yields centrosymmetric dimers.

Related literature

For related structures with $O = MO^{VI} = O$ units and for the synthesis, see: Arnaiz *et al.* (2000); Holm *et al.* (1996); Syamal & Maurya (1989). For the prperties of related compounds, see: Arnold *et al.* (2001); Bagherzadeh *et al.* (2009); Bruno *et al.* (2006); Holm (1987); Maurya *et al.* (1997); Schurig & Betschinger (1992); Sheikhshoaie *et al.* (2009).

Experimental

Crystal data $[Mo(C_{14}H_{13}NO_2)O_2(CH_4O)]$ $M_r = 387.24$ Monoclinic, $P2_1/c$

a = 7.9064 (5) Åb = 15.078 (1) Åc = 12.6796 (8) Å

$\beta = 93.959 \ (1)^{\circ}$
V = 1507.96 (17) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

. _ _ _ _ _ _ _

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.849, T_{\max} = 0.870$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.023 & 202 \text{ parameters} \\ wR(F^2) &= 0.056 & H\text{-atom parameters constrained} \\ S &= 1.01 & \Delta\rho_{\text{max}} &= 0.48 \text{ e } \text{ Å}^{-3} \\ 4393 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.65 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5O\cdots O2^{i}$	0.85	1.82	2.6667 (16)	179

 $\mu = 0.89 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.026$

 $0.19 \times 0.16 \times 0.16 \; \mathrm{mm}$

18948 measured reflections

4393 independent reflections 3951 reflections with $I > 2\sigma(I)$

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the Shahid Bahonar University of Kerman for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2095).

References

- Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.
- Arnold, U., Serpa da Cruz, R., Mandelli, D. & Schuchardt, U. (2001). J. Mol. Catal. A, 165, 149-158.
- Bagherzadeh, M., Tahsini, L., Latifi, R. & Woob, L. K. (2009). *Inorg. Chim.* Acta, **362**, 3698–3702.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuhn, F. E. & Goncalves, I. S. (2006). *J. Mol. Catal. A Chem.* 260, 11–18.

Holm, R. H. (1987). Chem. Rev. 87, 1401-1449.

- Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.
- Maurya, R. C., Mishra, D. D., Rao, S. N., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect. A, 36, 599–601.

Schurig, V. & Betschinger, F. (1992). Chem. Rev. 92, 873-888.

- Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). *Polyhedron*, **28**, 733-738.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.

supporting information

Acta Cryst. (2010). E66, m202 [https://doi.org/10.1107/S160053681000262X] Methanoldioxido{1-[(2RS)-(2-oxidopropyl)iminomethyl]-2-naphtholato}molybdenium(VI)

Monadi Niaz, Sheikhshoaie Iran and Rezaeifard Abdolreza

S1. Comment

Transition metal oxo compounds containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya *et al.*, 1997), effective catalysts for epoxidation (Bagherzadeh *et al.*, 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold *et al.*, 2001). The success of molybdenum(VI) complexes in reactions to produce racemic epoxides led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno *et al.*, 2006), and oxidation catalysis (Sheikhshoaie *et al.*, 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.

The molecular structure of the title complex is illustrated in Figure 1. The Mo^{VI} ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).

S2. Experimental

To a solution of 0.229 mg (1 mmol) of tridentate Schiff base ligand 1-((E)-(2-hydroxypropylimino)methyl)naphthalen-2ol) in 15 ml dry methanol was added a solution of 0.327 mg (1 mmol) of MoO2(acac)2 in 10 ml dry methanol, and $refluxed for an additional 2 h. {[(1-amino-2-hydroxypropane)nitilomethylidyne-(2-naphthalato)]$ $dioxidomolybdenum(VI)(Methanol)} was obtained as a yellow microcrystalline precipitate. The precipitate was filtered$ off, washed with 5 ml absolute ethanol. Small yellow crystals formed upon recrystallisation from methanol.

S3. Refinement

The hydrogen atoms of OH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model, the Uiso(H) parameters were fixed to 1.2 Ueq(Ci), for methyl groups to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded

The molecular structure of the title compound. Thermal ellispoids at the 50% probability level.

Figure 2

The hydrogen bonding pattern in the title compound yielding centrosymmetric dimers. H bonds indicated by dashed lines. Moiety to the left generated by (i) 1-x, -y, 1-z.

Methanoldioxido{1-[(2RS)-(2-oxidopropyl)iminomethyl]-2- naphtholato}molybdenium(VI)

Crystal data

 $[Mo(C_{14}H_{13}NO_2)O_2(CH_4O)]$ M_r = 387.24

Monoclinic, *P*2₁/*c* Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 3-30^{\circ}$

T = 100 K

 $\mu = 0.89 \text{ mm}^{-1}$

Prism, pale yellow

 $0.19 \times 0.16 \times 0.16$ mm

Cell parameters from 211 reflections

a = 7.9064 (5) Å b = 15.078 (1) Å c = 12.6796 (8) Å $\beta = 93.959 (1)^{\circ}$ $V = 1507.96 (17) \text{ Å}^{3}$ Z = 4 F(000) = 784 $D_{x} = 1.706 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII CCD area-detector diffractometer	18948 measured reflections 4393 independent reflections
Radiation source: fine-focus sealed tube	3951 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -21 \rightarrow 21$
$T_{\min} = 0.849, \ T_{\max} = 0.870$	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: structure-
Least-squares matrix: full	invariant direct methods
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.056$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
4393 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0248P)^2 + 1.35P]$
202 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.008$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mo1	0.530764 (16)	0.118564 (9)	0.344992 (10)	0.01228 (4)
01	0.58279 (14)	0.07661 (8)	0.20452 (9)	0.0154 (2)
O2	0.58637 (14)	0.12750 (7)	0.49712 (9)	0.0149 (2)
03	0.51942 (15)	0.22791 (8)	0.31257 (10)	0.0203 (2)
O4	0.32656 (14)	0.08304 (9)	0.35495 (10)	0.0197 (2)
05	0.60141 (16)	-0.02912 (8)	0.38095 (10)	0.0191 (2)
H5O	0.5424	-0.0612	0.4195	0.029 (6)*
N1	0.81591 (16)	0.11919 (9)	0.36213 (10)	0.0132 (2)
C1	0.86943 (19)	0.12061 (10)	0.17666 (12)	0.0122 (3)

C2	0.70542 (19)	0.09463 (10)	0.14066 (12)	0.0129 (3)
C3	0.6632 (2)	0.08250 (11)	0.03095 (13)	0.0157 (3)
H3A	0.5510	0.0660	0.0072	0.019*
C4	0.7821 (2)	0.09422 (11)	-0.04064 (13)	0.0178 (3)
H4A	0.7531	0.0827	-0.1133	0.021*
C5	1.0683 (2)	0.14082 (12)	-0.08389 (13)	0.0197 (3)
H5A	1.0391	0.1293	-0.1565	0.024*
C6	1.2258 (2)	0.17414 (12)	-0.05370 (14)	0.0219 (3)
H6A	1.3049	0.1859	-0.1051	0.026*
C7	1.2691 (2)	0.19074 (11)	0.05381 (14)	0.0191 (3)
H7A	1.3777	0.2143	0.0748	0.023*
C8	1.15642 (19)	0.17334 (11)	0.12916 (13)	0.0156 (3)
H8A	1.1883	0.1850	0.2014	0.019*
C9	0.9488 (2)	0.12333 (11)	-0.00845 (12)	0.0152 (3)
C10	0.99294 (19)	0.13813 (10)	0.10045 (12)	0.0126 (3)
C11	0.91962 (19)	0.12357 (10)	0.28859 (12)	0.0138 (3)
H11A	1.0370	0.1291	0.3090	0.017*
C12	0.8805 (2)	0.11752 (12)	0.47316 (12)	0.0180 (3)
H12A	0.9898	0.1496	0.4824	0.022*
H12B	0.8983	0.0556	0.4975	0.022*
C13	0.7473 (2)	0.16280 (11)	0.53555 (13)	0.0171 (3)
H13A	0.7493	0.2280	0.5215	0.021*
C14	0.7770 (2)	0.14687 (12)	0.65327 (13)	0.0207 (3)
H14A	0.6881	0.1765	0.6904	0.031*
H14B	0.8879	0.1707	0.6782	0.031*
H14C	0.7741	0.0830	0.6675	0.031*
C15	0.6958 (2)	-0.08893 (12)	0.32155 (16)	0.0254 (4)
H15A	0.7596	-0.1296	0.3697	0.038*
H15B	0.7749	-0.0555	0.2805	0.038*
H15C	0.6182	-0.1230	0.2735	0.038*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.00938 (6)	0.01464 (7)	0.01329 (7)	0.00158 (5)	0.00413 (4)	0.00367 (5)
01	0.0115 (5)	0.0216 (6)	0.0134 (5)	-0.0023 (4)	0.0032 (4)	0.0024 (4)
O2	0.0145 (5)	0.0171 (5)	0.0139 (5)	-0.0004(4)	0.0057 (4)	0.0014 (4)
03	0.0199 (6)	0.0187 (6)	0.0232 (6)	0.0048 (5)	0.0084 (5)	0.0080 (5)
O4	0.0122 (5)	0.0270 (6)	0.0203 (6)	-0.0003(5)	0.0038 (4)	0.0053 (5)
O5	0.0249 (6)	0.0135 (5)	0.0205 (6)	0.0016 (5)	0.0130 (5)	0.0023 (4)
N1	0.0117 (6)	0.0159 (6)	0.0121 (6)	0.0016 (5)	0.0018 (4)	0.0015 (5)
C1	0.0120 (6)	0.0139 (7)	0.0110 (6)	0.0004 (5)	0.0033 (5)	0.0007 (5)
C2	0.0122 (6)	0.0129 (7)	0.0138 (7)	0.0002 (5)	0.0040 (5)	0.0010 (5)
C3	0.0150 (7)	0.0166 (7)	0.0155 (7)	-0.0029 (6)	0.0014 (5)	-0.0012 (6)
C4	0.0195 (8)	0.0217 (8)	0.0125 (7)	-0.0011 (6)	0.0024 (6)	-0.0024 (6)
C5	0.0208 (8)	0.0255 (8)	0.0137 (7)	0.0009 (6)	0.0073 (6)	0.0007 (6)
C6	0.0201 (8)	0.0260 (9)	0.0212 (8)	-0.0014 (7)	0.0118 (6)	0.0013 (7)
C7	0.0136 (7)	0.0208 (8)	0.0238 (8)	-0.0018 (6)	0.0074 (6)	0.0007 (6)

supporting information

C8	0.0127 (7)	0.0180 (7)	0.0164 (7)	-0.0005 (5)	0.0032 (6)	0.0007 (6)
C9	0.0159 (7)	0.0169 (7)	0.0133 (7)	0.0008 (6)	0.0048 (5)	0.0001 (5)
C10	0.0129 (6)	0.0120 (7)	0.0132 (7)	0.0006 (5)	0.0043 (5)	0.0015 (5)
C11	0.0117 (6)	0.0159 (7)	0.0139 (7)	0.0003 (5)	0.0016 (5)	0.0010 (5)
C12	0.0143 (7)	0.0290 (8)	0.0109 (7)	0.0033 (6)	0.0019 (5)	-0.0001 (6)
C13	0.0181 (7)	0.0171 (8)	0.0165 (7)	-0.0018 (6)	0.0044 (6)	-0.0002 (6)
C14	0.0238 (8)	0.0252 (8)	0.0135 (7)	-0.0032 (7)	0.0038 (6)	-0.0015 (6)
C15	0.0293 (9)	0.0179 (8)	0.0310 (10)	0.0028 (7)	0.0161 (8)	-0.0015 (7)

Geometric parameters (Å, °)

Mo1—O3	1.7001 (12)	С5—С9	1.415 (2)	
Mo1—O4	1.7140 (12)	С5—Н5А	0.9500	
Mo1-02	1.9533 (11)	C6—C7	1.405 (3)	
Mo1-01	1.9604 (11)	С6—Н6А	0.9500	
Mo1—N1	2.2500 (13)	C7—C8	1.376 (2)	
Mo1-05	2.3331 (12)	C7—H7A	0.9500	
O1—C2	1.3334 (18)	C8—C10	1.421 (2)	
O2—C13	1.433 (2)	C8—H8A	0.9500	
O5—C15	1.420 (2)	C9—C10	1.418 (2)	
O5—H5O	0.8499	C11—H11A	0.9500	
N1-C11	1.2852 (19)	C12—C13	1.522 (2)	
N1-C12	1.464 (2)	C12—H12A	0.9900	
C1—C2	1.401 (2)	C12—H12B	0.9900	
C1-C10	1.445 (2)	C13—C14	1.514 (2)	
C1-C11	1.448 (2)	C13—H13A	1.0000	
С2—С3	1.420 (2)	C14—H14A	0.9800	
C3—C4	1.362 (2)	C14—H14B	0.9800	
С3—НЗА	0.9500	C14—H14C	0.9800	
С4—С9	1.422 (2)	C15—H15A	0.9800	
C4—H4A	0.9500	C15—H15B	0.9800	
C5—C6	1.373 (2)	C15—H15C	0.9800	
O3—Mo1—O4	106.65 (6)	С7—С6—Н6А	120.3	
O3—Mo1—O2	100.16 (6)	C8—C7—C6	120.91 (16)	
O4—Mo1—O2	95.61 (5)	С8—С7—Н7А	119.5	
O3—Mo1—O1	95.98 (5)	С6—С7—Н7А	119.5	
O4-Mo1-O1	102.94 (5)	C7—C8—C10	120.96 (15)	
O2-Mo1-O1	150.75 (5)	C7—C8—H8A	119.5	
O3—Mo1—N1	93.16 (5)	C10—C8—H8A	119.5	
O4—Mo1—N1	159.54 (5)	C5—C9—C10	119.88 (15)	
O2-Mo1-N1	75.44 (5)	C5—C9—C4	120.82 (15)	
O1-Mo1-N1	79.48 (5)	C10—C9—C4	119.25 (14)	
O3—Mo1—O5	168.75 (5)	C9—C10—C8	117.79 (13)	
O4—Mo1—O5	84.34 (5)	C9—C10—C1	119.36 (14)	
O2—Mo1—O5	80.69 (4)	C8—C10—C1	122.80 (14)	
01—Mo1—O5	78.88 (4)	N1—C11—C1	124.35 (14)	
N1—Mo1—O5	76.13 (5)	N1-C11-H11A	117.8	

C2—O1—Mo1	133.87 (10)	C1—C11—H11A	117.8
C13—O2—Mo1	119.69 (9)	N1—C12—C13	106.52 (13)
C15—O5—Mo1	129.06 (10)	N1—C12—H12A	110.4
С15—О5—Н5О	105.9	C13—C12—H12A	110.4
Mo1-05-H50	121.4	N1—C12—H12B	110.4
C11—N1—C12	120.05 (13)	C13—C12—H12B	110.4
C11—N1—Mo1	127.98 (11)	H12A—C12—H12B	108.6
C12—N1—Mo1	111.93 (9)	O2—C13—C14	110.47 (13)
C2—C1—C10	119.11 (14)	O2—C13—C12	106.65 (13)
C2-C1-C11	120.87 (13)	C14—C13—C12	112.07 (14)
C10-C1-C11	119.86 (13)	02—C13—H13A	109.2
01	123.69 (14)	C14—C13—H13A	109.2
01-C2-C3	115 93 (14)	C12—C13—H13A	109.2
C1-C2-C3	120.34 (14)	C13—C14—H14A	109.5
C4-C3-C2	120.66 (15)	C13—C14—H14B	109.5
C4—C3—H3A	119 7	H14A—C14—H14B	109.5
$C^2 - C^3 - H^3 A$	119.7	C13 - C14 - H14C	109.5
$C_2 = C_3 = C_4 = C_9$	121 14 (15)	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
$C_3 - C_4 - H_4 \Delta$	110 4	H_{14B} C_{14} H_{14C}	109.5
C_{9} C_{4} H_{4A}	110.4	05 C15 H15A	109.5
$C_{2} = C_{1} = H_{1}$	119.4	05 C15 H15B	109.5
C6 C5 H5A	110 5	H15A C15 H15B	109.5
$C_0 = C_5 = H_5 \Lambda$	119.5	05 C15 H15C	109.5
C5 C6 C7	119.3		109.5
$C_{5} = C_{6} = U_{6}$	119.45 (15)	H15A - C15 - H15C	109.5
С5—С6—Н6А	120.3	HI3B-CI3-HI3C	109.5
O3—Mo1—O1—C2	57.22 (14)	O1—C2—C3—C4	-176.28 (15)
O4—Mo1—O1—C2	165.86 (14)	C1—C2—C3—C4	1.3 (2)
O2—Mo1—O1—C2	-66.15 (18)	C2—C3—C4—C9	-3.3 (3)
N1—Mo1—O1—C2	-34.90 (14)	C9—C5—C6—C7	0.3 (3)
O5—Mo1—O1—C2	-112.66 (14)	C5—C6—C7—C8	0.6 (3)
O3—Mo1—O2—C13	-66.97 (11)	C6-C7-C8-C10	0.0 (3)
O4—Mo1—O2—C13	-175.04(11)	C6—C5—C9—C10	-1.6(3)
Q1—Mo1—Q2—C13	55.48 (15)	C6-C5-C9-C4	175.93 (17)
N1-M01-O2-C13	23.68 (11)	C3-C4-C9-C5	-175.91 (16)
O5—Mo1—O2—C13	101.65 (11)	C3-C4-C9-C10	1.6 (2)
O3—Mo1—O5—C15	-43.8 (3)	C5-C9-C10-C8	2.1 (2)
04-M01-05-C15	124.28 (15)	C4-C9-C10-C8	-175.50(15)
02-M01-05-C15	-139.07(15)	C5-C9-C10-C1	179.57 (15)
$01 - M_01 - 05 - C15$	19.88 (15)	C4-C9-C10-C1	2,0(2)
N1 - M01 - 05 - C15	-61.89(15)	C7-C8-C10-C9	-13(2)
$M_{\rm M} = M_{\rm M} = 0.5 - 0.13$	-7274(14)	C7-C8-C10-C1	-17868(15)
04—Mo1—N1—C11	121.60(18)	C_{2} C_{1} C_{10} C_{9}	-39(2)
Ω^2 —Mo1—N1—C11			J. J (4)
	-17243(14)	$C_{11} = C_{12} = C_{10} = C_{9}$	171 46 (14)
$01 - M_01 - N1 - C11$	-172.43(14) 22.76(13)	C11—C1—C10—C9 C2—C1—C10—C9	171.46 (14)
01—Mo1—N1—C11 05—Mo1—N1—C11	-172.43 (14) 22.76 (13) 103.77 (14)	$\begin{array}{c} C11-C1-C10-C9\\ C2-C1-C10-C8\\ C11-C1-C10-C8\\ \end{array}$	171.46 (14) 173.43 (15) -11.2 (2)
O1—Mo1—N1—C11 O5—Mo1—N1—C11 O3—Mo1—N1—C12	-172.43 (14) 22.76 (13) 103.77 (14) 104.86 (11)	C11—C1—C10—C9 C2—C1—C10—C9 C11—C1—C10—C8 C11—C1—C10—C8	171.46 (14) 173.43 (15) -11.2 (2) 176.40 (15)
01—Mo1—N1—C11 05—Mo1—N1—C11 03—Mo1—N1—C12 04 Mo1 N1 C12	-172.43 (14) 22.76 (13) 103.77 (14) 104.86 (11) -60.8 (2)	C11-C1-C10-C9 C2-C1-C10-C9 C11-C1-C10-C8 C11-C1-C10-C8 C12-N1-C11-C1	171.46 (14) 173.43 (15) -11.2 (2) 176.40 (15) -6.2 (2)

supporting information

O2—Mo1—N1—C12	5.18 (10)	C2-C1-C11-N1	-13.1 (2)
O1—Mo1—N1—C12	-159.63 (11)	C10-C1-C11-N1	171.56 (15)
O5—Mo1—N1—C12	-78.62 (11)	C11—N1—C12—C13	148.93 (15)
Mo1-01-C2-C1	29.3 (2)	Mo1—N1—C12—C13	-28.89 (15)
Mo1-01-C2-C3	-153.24 (12)	Mo1-02-C13-C14	-168.83 (10)
C10-C1-C2-O1	179.71 (14)	Mo1-02-C13-C12	-46.80 (15)
C11—C1—C2—O1	4.4 (2)	N1-C12-C13-O2	45.45 (16)
C10—C1—C2—C3	2.3 (2)	N1-C12-C13-C14	166.45 (13)
C11—C1—C2—C3	-173.00 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O5—H5 <i>O</i> ···O2 ⁱ	0.85	1.82	2.6667 (16)	179

Symmetry code: (i) -x+1, -y, -z+1.