Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-[(Cyclopenta-1,3-dien-2-yl)diphenyl-methyl]-1-methyl-1H-imidazole

Qi Sun, \ddagger Wanli Nie and Maxim V. Borzov*

Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, The North-West University of Xi'an, Tai Bai Bei avenue 229, Xi'an 710069, Shaanxi Province, People's Republic of China
Correspondence e-mail: maxborzov@mail.ru

Received 13 December 2009; accepted 28 December 2009

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.040 ; w R$ factor $=0.120$; data-to-parameter ratio $=8.8$.

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}$, (Ib), forms along with 2-[(cyclopenta-1,3-dien-1-yl)diphenylmethyl]-1-methyl-1 H imidazole, ($\mathrm{I} a$), which differs with respect to the position of the double-bonds in the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring, in an approximately 3:7 ratio ($\mathrm{I} a: \mathrm{I} b$; NMR spectroscopy data). However, in a single crystal, only compound ($\mathrm{I} b$) is present. H atoms of the CH_{2} group $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right.$ ring) were found from the difference Fourier synthesis and refined isotropically using the riding model. Hypothesis on possible presence of the ($\mathrm{I} a$) isomer in crystal lattice (model with a $\mathrm{C}_{5} \mathrm{H}_{5}$ ring disordered between two positions) was especially checked and rejected due to its inconsistency. In the crystal structure, no significant hydrogenbonding interactions between the CH_{2} groups of the $\mathrm{C}_{5} \mathrm{H}_{5}$ rings and nonsubstituted N -atoms of the imidazole rings were observed. Despite the fact that the chemically achiral compound (I) crystallizes in a chiral space group $P 2_{1} 2_{1} 2_{1}$, neither the absolute structure determination nor assignment of the inversion twinning was possible in the absence of a heavy atom.

Related literature

For the structural parameters of mono-alkyl substituted cyclopentadienes (organic structures only), see: Tacke et al. (2001); Liebling \& Marsh (1965); Haumann et al.(1996); Deck et al. (2004); Malpass et al. (2004); Cheung et al. (2005); Bauer et al. (2001); Huerlander et al. (2002); Millelr \& Bercaw (2004); Li et al. (2005); Brunner et al. (2004); Otero et al. (2007); Hutton et al. (2008). For the structural parameters of 1,2-dialkyl-1H-imidazoles (organic structures only, not bi- or oligocyclic, non-ionic), see: Bruijnincx et al. (2005); Aakeroy et al. (2006); Zhang et al. (2007); Upadhyaya et al. (1997); Braussaud et al. (2001); Peters et al. (2005); Laus et al. (2008).

[^0]For the structural parameters of Li, Ti, and Zr complexes derived from $1 H$-imidazol(in)-2-yl side-chain-functionalized cyclopentadienes, see: Krut'ko et al. (2006); Nie et al. (2008); Wang et al. (2009). For a description of the Cambridge Structural database, see: Allen (2002).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=312.40$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.563$ (5) A
$b=10.603$ (5) \AA
$c=15.185$ (7) \AA
$V=1700.6(14) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.20 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEXII
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.986, T_{\text {max }}=0.996$

8785 measured reflections 1922 independent reflections 1543 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
5 restraints
$w R\left(F^{2}\right)=0.120$
festrais
$S=1.04$
H -atom parameters constrained
1922 reflections
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
218 parameters

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and OLEX2.

Financial support from the National Natural Science Foundation of China (project No. 20702041), Shaanxi Provincial Department of Education (grants Nos. 09 J K733 and 07 J K393), Shaanxi Administration of Foreign Expert Affairs (grant No. 20096100097), and Shaanxi Provincial Department of Science and Technology (grant No. 2007B05) is gratefully acknowledged. The authors are thankful to Mr Sun Wei for his help in measuring the NMR spectra. MVB is especially grateful to his former co-author and old friend, Dr Andrei V. Churakov, for his invaluable advice during the preparation of this contribution.

[^1]
organic compounds

References

Aakeroy, C. B., Salmon, D. J., Smith, M. M. \& Desper, J. (2006). Cryst. Growth Des. 6, 1033-1042
Allen, F. H. (2002). Acta Cryst. B58, 380-388
Bauer, A., Hilbig, H., Hiller, W., Hinterschwepfinger, E., Kohler, F. H. \& Neumayer, M. (2001). Synthesis, pp. 778-782.
Braussaud, N., Ruther, T., Kavell, K. J., Skelton, B. W. \& White, A. H. (2001). Synthesis, pp. 626-632.
Bruijnincx, P. C. A., Lutz, M., Spek, A. L., van Faassen, E. E., Weckhuysen, B. M., van Koten, G. \& Gebbink, R. J. M. K. (2005). Eur. J. Inorg. Chem. pp. 779-781.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Brunner, H., Kollnberger, A., Mehmood, A., Tsuno, T. \& Zabel, M. (2004). J. Organomet. Chem. 689, 4244-4262.
Cheung, M., Chan, H. \& Xie, Z. (2005). Dalton Trans. pp. 2375-2381.
Deck, P. A., Konate, M. M., Kelly, B. V. \& Slebodnik, C. (2004). Organometallics, 23, 1089-1097.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Haumann, T., Benet-Buchholz, J. \& Boese, R. (1996). J. Mol. Struct. 374, 299304.

Huerlander, D., Frohlich, R. \& Erker, G. (2002). J. Chem. Soc. Dalton Trans. pp. 1513-1520.
Hutton, B. W., Macintosh, F., Ellis, D., Herisse, F., Macgregor, S. A., McKey, D., Petrie-Armstrong, V., Rosair, G. M., Perekalin, D. S., Tricas, H. \& Welch, A. J. (2008). Chem. Commun. pp. 5345-5347.

Krut’ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. \& Lemenovskii, D. A. (2006). Russ. Chem. Bull. 55, 1574-1580.

Laus, G., Schwarzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., Kristeva, E., Schutz, J., Kopacka, H., Kreutz, C., Bonn, G., Andriyko, Y., Nauer, G. \& Schottenberger, H. (2008). Z. Naturforsch. Teil B, 63, 447-464.
Li, B., Wang, B., Xu, S. \& Zhou, X. (2005). J. Organomet. Chem. 690, 53095317.

Liebling, G. \& Marsh, R. E. (1965). Acta Cryst. 19, 202-205.
Malpass, J. R., Skerry, P. S. \& Rimmington, S. L. (2004). Heterocycles, 62, 679 691.

Millelr, S. A. \& Bercaw, J. E. (2004). Organometallics, 23, 1777-1789.
Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut'ko, D. P., Churakov, A. V., Howard, J. A. K. \& Lemenovskii, D. A. (2008). J. Organomet. Chem. 693, 2355-2368.
Otero, A., Fernandez-Baeza, J., Antinolo, A., Tejeda, J., Lara-Sanchez, A., Sanchez-Barba, L. F., Sanchez-Molina, M. \& Rodriguez, A. M. (2007). Organometallics, 26, 4310-4320.
Peters, L., Hubner, E. \& Burzlaff, N. (2005). J. Organomet. Chem. 690, 20092016.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tacke, M., Dunne, J. P., Fox, S., Linti, G. \& Teuber, R. (2001). J. Mol. Struct. 570, 197-202.
Upadhyaya, S. P., Davis, F. S., Lee, J. J., Zaw, K., Bauer, R. \& Heimer, N. E. (1997). J. Heterocycl. Chem. 34, 1607-1620.

Wang, X., Nie, W., Ge, F. \& Borzov, M. V. (2009). Acta Cryst. C65, m255-m259.
Zhang, D., Aihara, H., Watanabe, T., Matsuo, T. \& Kawaguchi, H. (2007). J. Organomet. Chem. 692, 234-242.

supporting information

2-[(Cyclopenta-1,3-dien-2-yl)diphenylmethyl]-1-methyl-1H-imidazole

Qi Sun, Wanli Nie and Maxim V. Borzov

S1. Comment

1H-Imidazol(in)-2-yl side-chain functionalized cyclopentadienes were introduced as ligands into the organometallic chemistry, and, particularly into that of the Group 4 transition metals, not long ago (Krut'ko et al., 2006; Nie et al., 2008; Wang et al., 2009). This contribution reports the first structural characterization of a ligand of question in its CH-acid form.

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2},(\mathbf{I})$, presents a mixture of two isomers on the substituent position in respect to the double bond system in the $\mathrm{C}_{5} \mathrm{H}_{5}$-ring, 2-[(cyclopenta-1,3-dien-1-yl]diphenylmethyl]-1-methyl-1H-imidazole, (Ia), and 2-[(cyclo-penta-1,3-dien-2-yl]diphenylmethyl]-1-methyl-1 H -imidazole, ($\mathrm{I} b$), what are formed in an approximately 3: 7 ratio. However, in a single-crystal, only compound ($\mathrm{I} b$) is present. H-atoms of the CH_{2}-group $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right.$-ring $)$ were found from the difference Fourier synthesis and refined isotropically using the riding model. Hypothesis on possible presence of the ($\mathrm{I} a$) isomer in crystal lattice (model with a $\mathrm{C}_{5} \mathrm{H}_{5}$-ring disordered between two positions) was especially checked and rejected due to its inconsistency. The Cp-ring is planar within $0.004 \AA$, with the bridging carbon C5 deviating from the r.m.s. C11 through C15 plane by 0.084 (4) \AA. As for the rest of the molecule, all the bond lengths and angles are within normal ranges (see Related literature section). Both phenyl rings C21 through C26 and C31 through C36 are planar within 0.02 \AA. The imidazole moiety $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 2 /$ is planar within $0.005 \AA$, with atoms C 4 (1-methyl group) and C 5 (bridging carbon atom) deviating from the imidazole ring plane by 0.091 (5) and 0.021 (4) \AA, respectively. No special intermolecular contacts in the crystal lattice were observed. Despite the fact that a chemically achiral compound (I) crystallizes in a chiral space group $P 2_{1} 2_{1} 2_{1}$, neither the absolute structure determination nor approval of the inversion twinning was possible due to evident reasons (Mo-K α radiation with no atoms heavier than nitrogen).

S2. Experimental

All operations were performed on an Ar-vacuum line using the conventional Schlenk technique. - NMR spectra were recorded on Varian INOVA-400 instrument in CDCl_{3} at 298 K . For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra, the TMS resonances $\left(\delta_{\mathrm{H}}=0.0\right.$ and $\delta_{\mathrm{C}}=0.0$) were used as internal reference standards. - Chromato-mass spectrum was measured on Agilent 6890 Series GC system equipped with HP 5973 mass-selective detector. - The elemental analysis was performed on the Vario ELIII CHNOS automated analyzer.
To a solution of 1-methyl- $1 H$-imidazole ($1.23 \mathrm{~g}, 15.0 \mathrm{mmol}$) in tetrahydrofuran (THF; 60 ml), a solution of n - BuLi in hexane ($8.3 \mathrm{ml}, 1.82 \mathrm{M}, 15.1 \mathrm{mmol}$) was added under stirring at 195 K (acetone bath) during 30 min . The reaction mixture was stirred at the same temperature for additional 45 min , that gave a bright-yellow solution. To this slurry, a solution of 6,6-diphenylfulvene ($3.45 \mathrm{~g}, 15.0 \mathrm{mmol}$) in THF (45 ml) was added dropwise during 30 min . The color of the reaction mixture turned brown. The reaction mixture was allowed to warm up gradually up to ambient temperature and the stirring was continued for the next 12 h . The mixture was quenched with water (50 ml ; ice-bath cooling), the organic phase was separated, the water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$, and the combined extracts were dried with
$\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentrating of the organic extracts on a rotary evaporator gave crude (I) as a brown solid. Crude (I) was refluxed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ cooled down to room temperature and the filtered-off solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}$ mixture (1.8: 10) that gave pure (I) as yellowish crystals. Yield $1.6 \mathrm{~g},(34 \%)$. - ${ }^{1} \mathrm{H} \mathrm{NMR}: \delta=2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$, a), $2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}, b\right), 3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in $\left.\mathrm{Cp}, b\right), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in $\left.\mathrm{Cp}, a\right), 5.91,6.05,6.27,6.28,6.37,6.38$ (all m , all 1 H in respective ratios, CH in Cp, a, b), $6.84,7.07$ (both $\mathrm{d}, 1 \mathrm{H}+1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=1.22 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$ in imidazole, b), $6.85,7.06$ (both d, $1 \mathrm{H}+1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=1.22 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}$ in imidazole, a), $7.21-7.32(\mathrm{~m}, 10 \mathrm{H}$ in respect to the sum of the relative integral intensities for a and b, CH in $\mathrm{Ph}, a, b)$. Molar ratio $a: b$ equals to 3: 7. - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta=34.75$ $\left(\mathrm{NCH}_{3}, b\right), 34.90\left(\mathrm{NCH}_{3}, a\right), 40.32\left(\mathrm{CH}_{2}\right.$ in $\left.\mathrm{Cp}, b\right), 43.85\left(\mathrm{CH}_{2}\right.$ in $\left.\mathrm{Cp}, a\right), 57.14\left(\mathrm{CPh}_{2}, b\right), 58.02\left(\mathrm{CPh}_{2}, a\right), 122.31,126.63$ $(\mathrm{CH}=\mathrm{CH}$ in imidazole, $a, b), 126.43(p-\mathrm{CH}$ in $\mathrm{Ph}, a), 126.51(p-\mathrm{CH}$ in $\mathrm{Ph}, b), 127.73,129.38$ ($o-$ and $m-\mathrm{CH}$ in Ph, b), 127.79, 129.16 (o - and $m-\mathrm{CH}$ in Ph, a), 128.76, 131.98, 135.94 (CH in Cp, b), 130.58, 130.91, 134.00 (CH in Cp, a), 142.67 (ipso- C in $\mathrm{Ph}, b), 143.32$ (ipso- C in $\mathrm{Ph}, a), 150.14(\mathrm{~N}-\mathrm{C}=\mathrm{N}, b), 150.67(\mathrm{~N}-\mathrm{C}=\mathrm{N}, a), 150.60(\mathrm{C}$ in $\mathrm{Cp}, b)$, 153.13 (C in Cp, a) . — EI MS (70 eV) m/z (\%): 312 (100) [M], 311 (66) [$M-\mathrm{H}], 297$ (3) [M- $\left.\mathrm{CH}_{3}\right]$, 285 (34) [MHCN], 247 (9) [$\left.M-\mathrm{C}_{5} \mathrm{H}_{5}\right], 235$ (72) [$\left.M-\mathrm{Ph}\right]$.-Anal. Found: C, 83.81; H, 6.35; N, 8.76\%. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}$ Calc.: C, 84.58; H, 6.45 ; N, 8.97%. Single crystal of (I) suitable for X-ray diffraction analysis was obtained by crystallization of (I) from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ mixture (1: 6 vol.)

S3. Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.96\left(\mathrm{CH}_{3}\right), 0.97$ $\left(\mathrm{CH}_{2}\right), 0.93 \AA\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right)$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C}), 1.2 U_{\mathrm{eq}}(\mathrm{C})$, and $1.2 U_{\mathrm{eq}}(\mathrm{C})$, respectively. The components of the anisotropic displacement parameters (ADP-s) for C 12 through C 15 -atoms of the $\mathrm{C}_{5} \mathrm{H}_{4}$-group along 1,2- and 1,3directions were restrained to be the same with su of $0.002 \AA^{2}$ (DELU instruction). Despite the fact that an achiral compound (I) crystallizes in a chiral space group $P 2_{1} 2_{1} 2_{1}$, neither the absolute structure determination nor approval of the inversion twinning was possible due to evident reasons (Mo-K radiation with no atoms heavier than nitrogen). Thus, the Friedel opposites were merged and treated as equivalents.

Figure 1
A view of the molecule of compound (I). Displacement ellipsoids are shown at the 50% probability level. All H-atoms except of those in the $\mathrm{C}_{5} \mathrm{H}_{5}$-ring are omitted for clarity.

Figure 2
Isomers (Ia) and (Ib).

2-[(Cyclopenta-1,3-dien-2-yl)diphenylmethyl]-1-methyl-1H-imidazole

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=312.40$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=10.563$ (5) \AA
$b=10.603$ (5) \AA
$c=15.185$ (7) \AA
$V=1700.6(14) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.333 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.986, T_{\text {max }}=0.996$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
1922 reflections
218 parameters
5 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=664 \\
& D_{\mathrm{x}}=1.220 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 5639 \text { reflections } \\
& \theta=2.3-28.0^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.20 \times 0.05 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

8785 measured reflections
1922 independent reflections
1543 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-12 \rightarrow 13$
$k=-13 \rightarrow 13$
$l=-10 \rightarrow 18$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0736 P)^{2}+0.110 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.11 \mathrm{e} \AA^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.1464(2)$	$0.6352(2)$	$0.49551(13)$	$0.0578(6)$
N2	$0.2989(2)$	$0.73895(18)$	$0.56444(14)$	$0.0588(6)$
C1	$0.2381(2)$	$0.6304(2)$	$0.55926(15)$	$0.0460(5)$
C2	$0.1512(3)$	$0.7552(3)$	$0.4606(2)$	$0.0725(8)$

H2	0.0996	0.7876	0.4164	0.087*
C3	0.2442 (3)	0.8160 (3)	0.5025 (2)	0.0756 (9)
H3	0.2685	0.8987	0.4914	0.091*
C4	0.0623 (3)	0.5371 (3)	0.4627 (2)	0.0785 (9)
H4C	0.0274	0.4912	0.5115	0.118*
H4A	0.1091	0.4805	0.4256	0.118*
H4B	-0.0050	0.5749	0.4294	0.118*
C5	0.2651 (2)	0.5151 (2)	0.61653 (14)	0.0412 (5)
C11	0.3890 (2)	0.5365 (2)	0.66661 (15)	0.0457 (5)
C12	0.4947 (2)	0.4661 (3)	0.66347 (17)	0.0561 (6)
H12	0.5063	0.3969	0.6267	0.067*
C13	0.5894 (3)	0.5134 (3)	0.7259 (2)	0.0778 (8)
H13A	0.6656	0.5395	0.6954	0.093*
H13B	0.6113	0.4489	0.7686	0.093*
C14	0.5283 (3)	0.6217 (3)	0.76939 (19)	0.0790 (8)
H14	0.5641	0.6719	0.8130	0.095*
C15	0.4055 (3)	0.6363 (2)	0.73309 (18)	0.0616 (6)
H15	0.3464	0.6974	0.7484	0.074*
C21	0.1592 (2)	0.4951 (2)	0.68599 (14)	0.0443 (5)
C22	0.0450 (2)	0.5593 (3)	0.68353 (18)	0.0580 (7)
H22	0.0312	0.6208	0.6409	0.070*
C23	-0.0488 (3)	0.5321 (3)	0.7443 (2)	0.0754 (9)
H23	-0.1253	0.5754	0.7420	0.090*
C24	-0.0307 (3)	0.4438 (3)	0.8067 (2)	0.0807 (10)
H24	-0.0959	0.4237	0.8453	0.097*
C25	0.0844 (3)	0.3828 (3)	0.81354 (18)	0.0688 (8)
H25	0.0980	0.3246	0.8584	0.083*
C26	0.1786 (3)	0.4083 (2)	0.75399 (16)	0.0562 (6)
H26	0.2562	0.3675	0.7589	0.067*
C31	0.2772 (2)	0.3977 (2)	0.55630 (14)	0.0430 (5)
C32	0.3568 (2)	0.4048 (2)	0.48296 (16)	0.0537 (6)
H32	0.4036	0.4777	0.4728	0.064*
C33	0.3665 (3)	0.3046 (3)	0.42553 (18)	0.0650 (7)
H33	0.4188	0.3112	0.3765	0.078*
C34	0.3004 (3)	0.1959 (3)	0.4395 (2)	0.0713 (8)
H34	0.3082	0.1288	0.4004	0.086*
C35	0.2234 (3)	0.1862 (3)	0.5106 (2)	0.0707 (8)
H35	0.1785	0.1120	0.5204	0.085*
C36	0.2110 (2)	0.2860 (2)	0.56874 (17)	0.0536 (6)
H36	0.1575	0.2780	0.6170	0.064*

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0615(14)$	$0.0586(12)$	$0.0533(11)$	$0.0116(11)$	$-0.0076(11)$	$0.0052(11)$
N2	$0.0645(14)$	$0.0426(10)$	$0.0692(13)$	$-0.0012(10)$	$0.0033(12)$	$0.0092(10)$
C1	$0.0457(13)$	$0.0445(12)$	$0.0479(11)$	$0.0063(11)$	$0.0039(10)$	$0.0027(10)$
C2	$0.085(2)$	$0.0667(17)$	$0.0661(16)$	$0.0255(17)$	$-0.0024(17)$	$0.0166(16)$

supporting information

C3	$0.090(2)$	$0.0497(14)$	$0.087(2)$	$0.0101(16)$	$0.0023(19)$	$0.0205(15)$
C4	$0.073(2)$	$0.082(2)$	$0.0800(19)$	$0.0081(17)$	$-0.0301(17)$	$-0.0082(18)$
C5	$0.0389(11)$	$0.0402(11)$	$0.0445(11)$	$0.0008(10)$	$0.0002(9)$	$0.0015(9)$
C11	$0.0440(12)$	$0.0439(12)$	$0.0491(12)$	$-0.0060(10)$	$0.0033(10)$	$0.0054(11)$
C12	$0.0452(13)$	$0.0594(14)$	$0.0638(14)$	$0.0000(12)$	$-0.0020(11)$	$-0.0009(12)$
C13	$0.0457(13)$	$0.103(2)$	$0.0843(19)$	$-0.0100(13)$	$-0.0138(13)$	$0.0156(17)$
C14	$0.0928(19)$	$0.0814(18)$	$0.0630(16)$	$-0.0413(15)$	$-0.0177(15)$	$0.0016(14)$
C15	$0.0736(15)$	$0.0530(13)$	$0.0584(14)$	$-0.0067(13)$	$0.0016(13)$	$-0.0091(14)$
C21	$0.0438(12)$	$0.0425(11)$	$0.0467(11)$	$-0.0046(10)$	$0.0029(10)$	$-0.0078(11)$
C22	$0.0454(13)$	$0.0666(16)$	$0.0621(15)$	$0.0010(12)$	$0.0014(12)$	$-0.0066(15)$
C23	$0.0467(14)$	$0.095(2)$	$0.085(2)$	$-0.0048(15)$	$0.0135(15)$	$-0.017(2)$
C24	$0.073(2)$	$0.092(2)$	$0.077(2)$	$-0.0333(19)$	$0.0245(18)$	$-0.0198(19)$
C25	$0.083(2)$	$0.0648(17)$	$0.0583(15)$	$-0.0207(16)$	$0.0146(15)$	$0.0004(14)$
C26	$0.0612(15)$	$0.0536(13)$	$0.0539(13)$	$-0.0056(12)$	$0.0048(12)$	$-0.0029(12)$
C31	$0.0394(11)$	$0.0423(11)$	$0.0474(11)$	$0.0039(10)$	$-0.0033(10)$	$-0.0012(9)$
C32	$0.0508(14)$	$0.0553(13)$	$0.0552(13)$	$0.0013(12)$	$0.0043(12)$	$-0.0002(12)$
C33	$0.0619(16)$	$0.0782(18)$	$0.0550(14)$	$0.0102(15)$	$0.0035(13)$	$-0.0121(15)$
C34	$0.0768(19)$	$0.0639(17)$	$0.0734(18)$	$0.0084(16)$	$-0.0021(16)$	$-0.0177(16)$
C35	$0.081(2)$	$0.0531(14)$	$0.0779(18)$	$-0.0053(15)$	$-0.0032(18)$	$-0.0113(14)$
C36	$0.0538(14)$	$0.0488(13)$	$0.0583(14)$	$-0.0027(11)$	$0.0019(13)$	$-0.0059(11)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C1	1.370 (3)	C15-H15	0.9300
N1-C2	1.380 (3)	C21-C22	1.386 (3)
N1-C4	1.456 (4)	C21-C26	1.398 (3)
N2-C1	1.321 (3)	C22-C23	1.384 (4)
N2-C3	1.373 (3)	C22-H22	0.9300
C1-C5	1.527 (3)	C23-C24	1.346 (5)
C2-C3	1.336 (4)	C23-H23	0.9300
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	C24-C25	1.381 (5)
C3-H3	0.9300	C24-H24	0.9300
C4-H4C	0.9600	C25-C26	1.372 (4)
C4-H4A	0.9600	C25-H25	0.9300
C4—H4B	0.9600	C26-H26	0.9300
C5-C11	1.530 (3)	C31-C36	1.388 (3)
C5-C31	1.550 (3)	C31-C32	1.398 (3)
C5-C21	1.552 (3)	C32-C33	1.378 (3)
C11-C12	1.344 (3)	C32-H32	0.9300
C11-C15	1.473 (3)	C33-C34	1.364 (4)
C12-C13	1.466 (4)	C33-H33	0.9300
C12-H12	0.9300	C34-C35	1.357 (4)
C13-C14	1.474 (5)	C34-H34	0.9300
C13-H13A	0.9700	C35-C36	1.384 (4)
C13-H13B	0.9700	C35-H35	0.9300
C14-C15	1.417 (4)	C36-H36	0.9300
C14-H14	0.9300		

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	106.3 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	130.2 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	123.4 (2)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	105.8 (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	110.7 (2)
N2-C1-C5	124.9 (2)
N1-C1-C5	124.4 (2)
C3-C2-N1	106.8 (3)
C3-C2-H2	126.6
N1-C2-H2	126.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	110.5 (3)
C2-C3-H3	124.8
N2-C3-H3	124.8
N1-C4-H4C	109.5
N1-C4-H4A	109.5
H4C-C4-H4A	109.5
N1-C4-H4B	109.5
$\mathrm{H} 4 \mathrm{C}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
H4A-C4-H4B	109.5
C1-C5-C11	108.92 (18)
C1-C5-C31	108.80 (16)
C11-C5-C31	110.03 (17)
C1-C5-C21	111.18 (18)
C11-C5-C21	107.37 (17)
C31-C5-C21	110.53 (17)
C12-C11-C15	108.9 (2)
C12-C11-C5	127.6 (2)
C15-C11-C5	123.3 (2)
C11-C12-C13	110.7 (3)
C11-C12-H12	124.6
C13-C12-H12	124.6
C12-C13-C14	104.9 (2)
C12-C13-H13A	110.8
C14-C13-H13A	110.8
C12-C13-H13B	110.8
C14-C13-H13B	110.8
H13A-C13-H13B	108.8
C15-C14-C13	108.1 (2)
C15-C14-H14	125.9
C13-C14-H14	125.9
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	0.3 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5$	-179.4 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-0.8 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	175.5 (3)
C2-N1-C1-C5	178.9 (2)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	-4.8(4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	0.9 (3)

C14-C15-C11	107.3 (3)
C14-C15-H15	126.4
C11-C15-H15	126.4
C22-C21-C26	118.1 (2)
C22-C21-C5	122.9 (2)
C26-C21-C5	119.1 (2)
C23-C22-C21	120.2 (3)
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	119.9
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	119.9
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$	120.8 (3)
C24-C23-H23	119.6
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	119.6
C23-C24-C25	120.3 (3)
C23-C24-H24	119.8
C25-C24-H24	119.8
C26-C25-C24	119.8 (3)
C26-C25-H25	120.1
C24-C25-H25	120.1
C25-C26-C21	120.7 (3)
C25-C26-H26	119.7
C21-C26-H26	119.7
C36-C31-C32	117.2 (2)
C36-C31-C5	124.3 (2)
C32-C31-C5	118.42 (19)
C33-C32-C31	120.4 (2)
C33-C32-H32	119.8
C31-C32-H32	119.8
C34-C33-C32	121.0 (3)
C34-C33-H33	119.5
C32-C33-H33	119.5
C35-C34-C33	119.7 (3)
C35-C34-H34	120.2
C33-C34-H34	120.2
C34-C35-C36	120.4 (3)
C34-C35-H35	119.8
C36-C35-H35	119.8
C35-C36-C31	121.2 (2)
C35-C36-H36	119.4
C31-C36-H36	119.4
C1-C5-C21-C22	11.7 (3)
C11-C5-C21-C22	130.7 (2)
C31-C5-C21-C22	-109.2 (2)
C1-C5-C21-C26	-168.7 (2)
C11-C5-C21-C26	-49.7 (2)
C31-C5-C21-C26	70.3 (2)
C26-C21-C22-C23	-3.4 (4)

supporting information

$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-175.7(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$-0.7(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$0.2(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 11$	$-11.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 11$	$169.1(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 31$	$-131.2(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 31$	$49.2(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 21$	$106.9(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 21$	$-72.8(2)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 12$	$-120.6(3)$
$\mathrm{C} 31-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 12$	$-1.5(3)$
$\mathrm{C} 21-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 12$	$118.9(3)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 15$	$-176.32(19)$
$\mathrm{C} 31-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 15$	$-56.0(3)$
$\mathrm{C} 21-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 15$	$-0.6(3)$
$\mathrm{C} 15-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-176.1(2)$
$\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.7(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.5(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$0.1(3)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 11$	$0.3(3)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 15-\mathrm{C} 14$	$176.0(2)$
$\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 15-\mathrm{C} 14$	

$\mathrm{C} 5-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$176.2(2)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$0.2(4)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$3.0(5)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-3.0(4)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$-0.3(4)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$3.5(3)$
$\mathrm{C} 5-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$-176.1(2)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 36$	$-128.3(2)$
$\mathrm{C} 11-\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 36$	$112.4(2)$
$\mathrm{C} 21-\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 36$	$-6.0(3)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 32$	$49.8(3)$
$\mathrm{C} 11-\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 32$	$-69.5(2)$
$\mathrm{C} 21-\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 32$	$172.10(19)$
$\mathrm{C} 36-\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$	$0.9(3)$
$\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$	$-177.3(2)$
$\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34$	$-1.0(4)$
$\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 35$	$0.4(5)$
$\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 35-\mathrm{C} 36$	$0.3(5)$
$\mathrm{C} 34-\mathrm{C} 35-\mathrm{C} 36-\mathrm{C} 31$	$-0.4(4)$
$\mathrm{C} 32-\mathrm{C} 31-\mathrm{C} 36-\mathrm{C} 35$	$-0.2(4)$
$\mathrm{C} 5-\mathrm{C} 31-\mathrm{C} 36-\mathrm{C} 35$	$177.9(2)$

[^0]: \ddagger Part of Masters degree thesis, The North-West University, Xi'an 2010 People's Republic of China.

[^1]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2523).

