Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,6-Dimethoxy-2-(methylsulfanyl)pyrimidinium chloride

Madhukar Hemamalini and Hoong-Kun Fun* \ddagger

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 30 December 2009; accepted 30 December 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.027 ; w R$ factor $=0.078 ;$ data-to-parameter ratio $=17.0$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-}$, the 4,6-dimethoxy-2-(methylsulfanyl)pyrimidinium cation is essentially planar (r.m.s. deviation $=0.043 \AA$). In the crystal, the anions and cations are connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming a two-dimensional network parallel to (011). Adjacent networks are cross-linked via $\pi-\pi$ interactions involving the pyrimidinium ring [centroidcentroid distance $=3.5501$ (8) Å].

Related literature

For general background to substituted pyrimidines, see: Salas et al. (1995); Holy et al. (1974); Hunt et al. (1980); Baker \& Santi (1965); Balasubramani \& Fun (2009); For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-} & b=8.4713(2) \AA \\
M_{r}=222.69 & c=8.8123(2) \AA \\
\text { Triclinic, } P \overline{1} & \alpha=79.774(1)^{\circ} \\
a=6.6934(2) \AA & \beta=87.294(1)^{\circ}
\end{array}
$$

$\gamma=84.494(1)^{\circ}$
$\begin{aligned} & \mu=0.57 \mathrm{~mm}^{-1} \\ &\end{aligned}$
$V=489.24(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\text {min }}=0.836, T_{\text {max }}=0.922$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.078$
$S=1.03$
2126 reflections
125 parameters
$T=100 \mathrm{~K}$
$0.32 \times 0.22 \times 0.14 \mathrm{~mm}$

9438 measured reflections
2126 independent reflections
1889 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$ H atoms treated by a mixture of
independent and constrained refinement
$\Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {i }}$	0.96 (3)	2.00 (3)	2.9606 (13)	172 (2)
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Cl1}{ }^{\text {ii }}$	0.96	2.77	3.4896 (16)	132
C6-H6B . . Cl 1	0.96	2.80	3.7002 (15)	157
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{Cl} 1^{\text {iii }}$	0.96	2.76	3.5524 (15)	141

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x,-y,-z+1$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5011).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baker, B. R. \& Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
Balasubramani, K. \& Fun, H.-K. (2009). Acta Cryst. E65, o1895.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Holy, A., Votruba, I. \& Jost, K. (1974). Collect. Czech. Chem. Commun. 39, 634-646.
Hunt, W. E., Schwalbe, C. H., Bird, K. \& Mallinson, P. D. (1980). Biochem. J. 187, 533-536.
Salas, J. M., Romero, M. A. \& Faure, R. (1995). Acta Cryst. C51, 2532-2534.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[^0]
supporting information

4,6-Dimethoxy-2-(methylsulfanyl)pyrimidinium chloride

Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al. 1980; Baker \& Santi, 1965). We have recently reported the crystal structure of 4,6-dimethoxy-2(methylsulfanyl)pyrimidine (Balasubramani \& Fun, 2009). In continuation of our studies of pyrimidinium derivatives, the crystal structure determination of the title compound has been undertaken.
The asymmetric unit of the title compound (Fig. 1) consists of a chloride anion and a 4,6-dimethoxy-2(methylsulfanyl)pyridinium cation. Protonation of the pyrimidine base on the N 2 site is reflected in a change in the bond angle.
The $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$ angle at unprotonated atom N 1 is $116.84(13 \AA$, whereas for protonated atom N 2 the $\mathrm{C} 4 — \mathrm{~N} 2-\mathrm{C} 3$ angle is 120.03 (13) \AA. The bond lengths and angles are normal (Allen et al. 1987).
In the crystal packing (Fig. 2), atoms $\mathrm{N} 2, \mathrm{C} 7$ and C 6 act as donors for intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds with symmetry related chloride anions (Table 1), forming a two-dimensional network parallel to the (011). Adjacent networks are cross-linked via $\pi-\pi$ interactions involving the pyrimidinium ring with centroid \cdots centroid distance $=3.5501$ (8) \AA (symmetry code -x, $1-y, 1-z$).

S2. Experimental

To a hot methanol solution (20 ml) of 4,6-dimethoxy-2-(methylsulfanyl)pyrimidine (46 mg , Aldrich) was added a few drops of hydrochloric acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

S3. Refinement

Atom H 2 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA]$ and were refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$. A rotating group model was applied to the methyl groups.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The crystal packing of the title compound, viewed along the a axis.

4,6-Dimethoxy-2-(methylsulfanyl)pyrimidinium chloride

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=222.69$
Triclinic, $P 1$
Hall symbol: -P 1
$a=6.6934$ (2) Å
$b=8.4713(2) \AA$
$c=8.8123(2) \AA$
$\alpha=79.774(1)^{\circ}$
$\beta=87.294(1)^{\circ}$
$\gamma=84.494(1)^{\circ}$
$V=489.24(2) \AA^{3}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans
$Z=2$
$F(000)=232$
$D_{\mathrm{x}}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6382 reflections
$\theta=2.4-30.1^{\circ}$
$\mu=0.57 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.32 \times 0.22 \times 0.14 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.836, T_{\text {max }}=0.922$
9438 measured reflections
2126 independent reflections
1889 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\min }=2.4^{\circ}$
$h=-7 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.078$
$S=1.03$
2126 reflections
125 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$k=-9 \rightarrow 10$
$l=-11 \rightarrow 11$
$l=-11 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0453 P)^{2}+0.2271 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.41$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
S1	$-0.25972(5)$	$0.07775(4)$	$0.60806(4)$	$0.01603(11)$
O1	$0.34406(15)$	$0.34047(13)$	$0.69667(11)$	$0.0171(2)$
O2	$0.07854(16)$	$0.42350(13)$	$0.19722(11)$	$0.0174(2)$
N1	$0.06343(18)$	$0.22322(15)$	$0.65196(14)$	$0.0143(3)$
N2	$-0.05961(19)$	$0.27213(15)$	$0.40095(14)$	$0.0145(3)$
C1	$0.2115(2)$	$0.31501(18)$	$0.59794(17)$	$0.0146(3)$
C2	$0.2360(2)$	$0.38881(18)$	$0.44398(17)$	$0.0154(3)$
H2A	0.3426	0.4501	0.4099	0.018^{*}
C3	$0.0918(2)$	$0.36459(17)$	$0.34645(16)$	$0.0144(3)$
C4	$-0.0672(2)$	$0.20134(17)$	$0.55095(16)$	$0.0140(3)$
C5	$0.3256(2)$	$0.2515(2)$	$0.85378(17)$	$0.0187(3)$
H5A	0.4342	0.2717	0.9131	0.028^{*}
H5B	0.3305	0.1384	0.8513	0.028^{*}
H5C	0.2001	0.2860	0.9002	0.028^{*}
C6	$0.2314(2)$	$0.52752(19)$	$0.12795(18)$	$0.0192(3)$
H6A	0.2041	0.5656	0.0211	0.029^{*}
H6B	0.3610	0.4679	0.1365	0.029^{*}
H6C	0.2299	0.6176	0.1806	0.029^{*}
C7	$-0.1949(2)$	$0.0026(2)$	$0.80670(17)$	$0.0189(3)$

H7A	-0.2778	-0.0817	0.8498	0.028^{*}
H7B	-0.2161	0.0886	0.8650	0.028^{*}
H7C	-0.0563	-0.0391	0.8106	0.028^{*}
C11	$0.63752(5)$	$0.19691(4)$	$0.19642(4)$	$0.01942(12)$
H2	$-0.160(4)$	$0.258(3)$	$0.331(3)$	$0.047(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0151(2)$	$0.0185(2)$	$0.01466(19)$	$-0.00449(14)$	$-0.00315(13)$	$-0.00105(14)$
O1	$0.0169(5)$	$0.0222(6)$	$0.0127(5)$	$-0.0044(4)$	$-0.0054(4)$	$-0.0020(4)$
O2	$0.0207(6)$	$0.0205(6)$	$0.0106(5)$	$-0.0057(4)$	$-0.0044(4)$	$0.0016(4)$
N1	$0.0147(6)$	$0.0160(6)$	$0.0125(6)$	$-0.0012(5)$	$-0.0023(5)$	$-0.0030(5)$
N2	$0.0153(6)$	$0.0164(6)$	$0.0123(6)$	$-0.0027(5)$	$-0.0045(5)$	$-0.0018(5)$
C1	$0.0148(7)$	$0.0156(7)$	$0.0141(7)$	$0.0013(6)$	$-0.0044(5)$	$-0.0048(5)$
C2	$0.0155(7)$	$0.0171(7)$	$0.0136(7)$	$-0.0037(6)$	$-0.0020(5)$	$-0.0016(6)$
C3	$0.0166(7)$	$0.0140(7)$	$0.0123(7)$	$0.0000(6)$	$-0.0018(5)$	$-0.0019(5)$
C4	$0.0139(7)$	$0.0144(7)$	$0.0136(7)$	$0.0007(5)$	$-0.0026(5)$	$-0.0029(5)$
C5	$0.0201(8)$	$0.0244(8)$	$0.0115(7)$	$-0.0044(6)$	$-0.0058(6)$	$-0.0001(6)$
C6	$0.0225(8)$	$0.0189(8)$	$0.0157(7)$	$-0.0048(6)$	$-0.0003(6)$	$0.0002(6)$
C7	$0.0208(8)$	$0.0216(8)$	$0.0137(7)$	$-0.0049(6)$	$-0.0026(6)$	$0.0007(6)$
C11	$0.0191(2)$	$0.0229(2)$	$0.01680(19)$	$-0.00531(15)$	$-0.00808(14)$	$-0.00133(14)$

Geometric parameters (\AA, ${ }^{\circ}$)

S1-C4	1.7380 (16)	C2-C3	1.375 (2)
S1-C7	1.8113 (15)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.93
O1-C1	1.3292 (17)	C5-H5A	0.96
O1-C5	1.4598 (18)	C5-H5B	0.96
O2-C3	1.3251 (17)	C5-H5C	0.96
O2-C6	1.4556 (19)	C6-H6A	0.96
N1-C4	1.3244 (18)	C6-H6B	0.96
N1-C1	1.336 (2)	C6-H6C	0.96
N2-C4	1.3519 (19)	C7-H7A	0.96
N2-C3	1.358 (2)	C7-H7B	0.96
N2-H2	0.97 (3)	C7-H7C	0.96
C1-C2	1.399 (2)		
C4-S1-C7	99.97 (7)	O1-C5-H5A	109.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5$	116.16 (12)	O1-C5-H5B	109.5
C3-O2-C6	116.90 (12)	H5A-C5-H5B	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	116.84 (13)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3$	120.03 (13)	H5A-C5-H5C	109.5
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$	121.1 (14)	H5B-C5-H5C	109.5
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	118.8 (14)	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	118.30 (13)	O2-C6-H6B	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.18 (13)	H6A-C6-H6B	109.5
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	124.51 (13)	O2-C6-H6C	109.5

C3-C2-C1	115.49 (14)	H6A-C6-H6C	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	122.3	H6B-C6-H6C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	122.3	S1-C7-H7A	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 2$	112.49 (12)	S1-C7-H7B	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	127.29 (14)	H7A-C7-H7B	109.5
N2-C3-C2	120.22 (13)	S1-C7-H7C	109.5
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	122.85 (14)	H7A-C7-H7C	109.5
N1-C4-S1	120.43 (11)	H7B-C7-H7C	109.5
N2-C4-S1	116.73 (11)		
C5-O1-C1-N1	5.85 (19)	C4-N2-C3-C2	-1.1 (2)
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-175.01 (13)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	178.56 (14)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	179.41 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	-1.0 (2)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	0.3 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	-2.6 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-177.67 (13)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{S} 1$	177.53 (10)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	1.4 (2)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1$	3.0 (2)
C6-O2-C3-N2	178.64 (12)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{S} 1$	-177.09 (10)
C6-O2-C3-C2	-0.9 (2)	$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 4-\mathrm{N} 1$	-4.31 (13)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3-\mathrm{O} 2$	179.30 (12)	C7-S1-C4-N2	175.82 (11)

Hydrogen-bond geometry ($\dot{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.96(3)$	$2.00(3)$	$2.9606(13)$	$172(2)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	0.96	2.77	$3.4896(16)$	132
$\mathrm{C} 6 — \mathrm{H} 6 B \cdots \mathrm{Cl1}$	0.96	2.80	$3.7002(15)$	157
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	0.96	2.76	$3.5524(15)$	141

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x,-y,-z+1$.

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.

