Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,1'-Diphenyl-3,3'-(p-phenylenedicarbonyl)dithiourea

Wong W. Hung, Ibrahim N. Hassan, Bohari M. Yamin and Mohammad B. Kassim*

School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia Correspondence e-mail: mbkassim@ukm.my

Received 30 December 2009; accepted 30 December 2009

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.051 ; w R$ factor $=0.113$; data-to-parameter ratio $=13.3$.

The molecule of the title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$, lies across a crystallographic inversion centre. The central benzene ring forms dihedral angles of 29.39 (9) and $79.11(12)^{\circ}$, respectively, with the thiourea unit and the terminal phenyl ring. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate two $S(6)$ ring motifs. In the crystal, molecules are linked into chains along [110] by intermolecular $\mathrm{N}-\mathrm{H} \cdots$. S hydrogen bonds.

Related literature

For general background and crystal structures of thiourea derivatives, see: Dong et al. (2006); Hassan et al. (2008); Yamin \& Hassan (2004). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$	$b=7.919(3) \AA$
$M_{r}=434.52$	$c=11.534(4) \AA$
Triclinic, $P \overline{1}$	$\alpha=75.961(10)^{\circ}$
$a=5.769(2) \AA$	$\beta=87.000(8)^{\circ}$

$\gamma=89.861(8)^{\circ}$
$V=510.5(3) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.29 \mathrm{~mm}^{-1}$
$V=510.5(3) \mathrm{A}^{3}$
$T=273 \mathrm{~K}$
$0.23 \times 0.11 \times 0.05 \mathrm{~mm}$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\text {min }}=0.937, T_{\text {max }}=0.986$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051 \quad 136$ parameters
$w R\left(F^{2}\right)=0.113$
$S=1.13$
1809 reflections

5484 measured reflections 1809 independent reflections 1503 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.86	1.94	$2.644(3)$	138
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.62	$3.446(3)$	160

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Kebangsaan Malaysia for providing facilities and the Ministry of Science, Technology and Innovation for the research fund (grant Nos. UKM-ST-01-FRGS-0016-2006 and UKM-OUP-TK-16-73/2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5010).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, W.-K., Yang, X.-Q. \& Feng, J.-H. (2006). Acta Cryst. E62, o3459-o3460.
Hassan, I. N., Yamin, B. M. \& Kassim, M. B. (2008). Acta Cryst. E64, o1727.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yamin, B. M. \& Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.

supporting information

Acta Cryst. (2010). E66, 0314 [https://doi.org/10.1107/S1600536809055834]
1,1'-Diphenyl-3,3'-(p-phenylenedicarbonyl)dithiourea

Wong W. Hung, Ibrahim N. Hassan, Bohari M. Yamin and Mohammad B. Kassim

S1. Comment

The asymmetric unit of the title compound contains one-half of the molecule the other half being generated by the crystallographic inversion centre (Fig. 1). The thiourea fragment ($\mathrm{S} 1 / \mathrm{O} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$) is planar, with atom C 8 has the maximum deviation of 0.038 (2) \AA from the mean plane. The dihedral angle between the central bridging benzene ring and the thiourea unit is $29.39(9)^{\circ}$ and that between the two benzene rings is 79.11 (12) ${ }^{\circ}$. The carbonyl and $\mathrm{N}-\mathrm{H}$ groups are involved in intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding resulting in the formation of two six-membered rings viz. $\mathrm{C} 7 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{O} 1 / \mathrm{H} 1 \mathrm{~A} / \mathrm{N} 1$ and $\mathrm{C} 7 \mathrm{~A} / \mathrm{N} 2 \mathrm{~A} / \mathrm{C} 8 \mathrm{~A} / \mathrm{O} 1 \mathrm{~A} / \mathrm{H} 1 \mathrm{AA} / \mathrm{N} 1 \mathrm{~A}$. The $\mathrm{C}=\mathrm{O}$ bond length of 1.220 (3) $\AA \AA$ is longer than the average $\mathrm{C}=\mathrm{O}$ bond length (1.200 \AA). These features are similar to those observed in the structure of N-benzoyl- $N^{\prime}-(3-$ pyridyl)thiourea (Dong et al., 2006). Bond lengths are in normal ranges (Allen et al., 1987).

In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 1) link the molecules into a chain along the [1"̄0] (Fig 2).

S2. Experimental

The title compound was synthesized according to a previously reported method (Hassan et al., 2008) with some modification. Terephthaloyl chloride ($1.015 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added to ammonium thiocyanate ($0.770 \mathrm{~g}, 1 \mathrm{mmol}$) in tetrahydrofuran and the contents were stirred for 10 min . The precipitated ammonium chloride was removed by filtration and then aniline $(1.0 \mathrm{ml}, 1 \mathrm{mmol})$ in methanol was added dropwise. The mixture was refluxed for 5 h and the black coloured solution was dried using a evaporator before it was washed with cool methanol. Yellow crystals of the title compound were obtained by recrystallization from DMF.

S3. Refinement

H atoms were positioned geometrically $[\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA]$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with the suffix A are generated by the symmetry operation ($2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$).

Figure 2
Crystal packing of of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

1,1'-Diphenyl-3,3'-(p-phenylenedicarbonyl)dithiourea

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=434.52$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.769$ (2) \AA
$b=7.919(3) \AA$
$c=11.534(4) \AA$
$\alpha=75.961(10)^{\circ}$
$\beta=87.000$ (8$)^{\circ}$
$\gamma=89.861(8)^{\circ}$
$V=510.5(3) \AA^{3}$
$Z=1$
$F(000)=226$
$D_{\mathrm{x}}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1272 reflections
$\theta=1.8-25.0^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Plate, yellow
$0.23 \times 0.11 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.937, T_{\text {max }}=0.986$

> 5484 measured reflections
> 1809 independent reflections
> 1503 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=1.8^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-9 \rightarrow 9$
> $l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.113$
$S=1.13$
1809 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.32753(13)$	$0.52539(9)$	$0.65718(6)$	$0.0563(3)$
N1	$0.2814(3)$	$0.2027(3)$	$0.79479(17)$	$0.0451(5)$
H1A	0.3202	0.0953	0.8057	0.054^{*}
N2	$0.5449(3)$	$0.2421(2)$	$0.63257(16)$	$0.0402(5)$
H2A	0.6037	0.3126	0.5690	0.048^{*}
O1	$0.5453(3)$	$-0.0411(2)$	$0.73721(17)$	$0.0647(6)$
C1	$0.1594(5)$	$0.1854(3)$	$1.0006(2)$	$0.0506(7)$
H1B	0.2946	0.1251	1.0236	0.061^{*}
C2	$-0.0015(5)$	$0.2172(4)$	$1.0865(2)$	$0.0580(8)$
H2B	0.0274	0.1796	1.1672	0.070^{*}
C3	$-0.2010(5)$	$0.3030(4)$	$1.0531(3)$	$0.0570(8)$
H3A	-0.3086	0.3232	1.1111	0.068^{*}
C4	$-0.2439(5)$	$0.3599(4)$	$0.9342(3)$	$0.0582(8)$
H4A	-0.3807	0.4184	0.9119	0.070^{*}
C5	$-0.0854(4)$	$0.3310(3)$	$0.8470(2)$	$0.0504(7)$
H5A	-0.1148	0.3696	0.7664	0.060^{*}

C6	$0.1173(4)$	$0.2439(3)$	$0.8812(2)$	$0.0413(6)$
C7	$0.3798(4)$	$0.3128(3)$	$0.6997(2)$	$0.0392(6)$
C8	$0.6254(4)$	$0.0747(3)$	$0.6550(2)$	$0.0416(6)$
C9	$0.8197(4)$	$0.0410(3)$	$0.5729(2)$	$0.0366(5)$
C10	$0.9840(4)$	$0.1665(3)$	$0.5176(2)$	$0.0424(6)$
H10A	0.9741	0.2781	0.5300	0.051^{*}
C11	$1.1621(4)$	$0.1265(3)$	$0.4442(2)$	$0.0420(6)$
H11A	1.2700	0.2117	0.4063	0.063^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0734(5)$	$0.0418(4)$	$0.0480(4)$	$0.0108(3)$	$0.0225(3)$	$-0.0049(3)$
N1	$0.0520(13)$	$0.0393(11)$	$0.0402(12)$	$0.0059(9)$	$0.0153(10)$	$-0.0063(9)$
N2	$0.0425(11)$	$0.0406(11)$	$0.0337(11)$	$0.0043(9)$	$0.0123(9)$	$-0.0046(9)$
O1	$0.0729(13)$	$0.0485(11)$	$0.0597(12)$	$0.0131(9)$	$0.0335(10)$	$0.0042(10)$
C1	$0.0528(16)$	$0.0529(16)$	$0.0418(15)$	$0.0031(13)$	$0.0062(12)$	$-0.0049(12)$
C2	$0.0677(19)$	$0.0633(19)$	$0.0397(15)$	$-0.0032(15)$	$0.0129(13)$	$-0.0097(13)$
C3	$0.0584(18)$	$0.0592(18)$	$0.0540(18)$	$-0.0055(14)$	$0.0247(14)$	$-0.0205(14)$
C4	$0.0433(16)$	$0.0655(19)$	$0.067(2)$	$0.0032(13)$	$0.0102(14)$	$-0.0221(15)$
C5	$0.0451(15)$	$0.0641(18)$	$0.0419(15)$	$0.0022(13)$	$0.0032(12)$	$-0.0137(13)$
C6	$0.0410(14)$	$0.0391(14)$	$0.0430(14)$	$-0.0015(11)$	$0.0105(11)$	$-0.0110(11)$
C7	$0.0384(13)$	$0.0445(14)$	$0.0346(13)$	$0.0039(11)$	$0.0027(10)$	$-0.0106(11)$
C8	$0.0419(14)$	$0.0419(14)$	$0.0386(14)$	$0.0050(11)$	$0.0056(11)$	$-0.0070(12)$
C9	$0.0368(13)$	$0.0406(13)$	$0.0318(12)$	$0.0052(10)$	$-0.0009(10)$	$-0.0079(10)$
C10	$0.0437(14)$	$0.0376(14)$	$0.0462(15)$	$0.0032(11)$	$0.0040(11)$	$-0.0124(11)$
C11	$0.0391(13)$	$0.0401(14)$	$0.0439(14)$	$-0.0001(10)$	$0.0086(11)$	$-0.0068(11)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

S1-C7	1.667 (2)	C3-C4	1.372 (4)
N1-C7	1.327 (3)	C3-H3A	0.93
N1-C6	1.433 (3)	C4-C5	1.383 (3)
N1-H1A	0.86	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.93
N2-C8	1.373 (3)	C5-C6	1.383 (3)
N2-C7	1.396 (3)	C5-H5A	0.93
N2-H2A	0.86	C8-C9	1.495 (3)
O1-C8	1.220 (3)	C9-C10	1.388 (3)
C1-C6	1.376 (4)	C9-C11 ${ }^{\text {i }}$	1.390 (3)
C1-C2	1.389 (4)	C10-C11	1.382 (3)
C1-H1B	0.93	C10-H10A	0.93
C2-C3	1.361 (4)	C11-C9 ${ }^{\text {i }}$	1.390 (3)
C 2 - H 2 B	0.93	C11-H11A	0.93
C7-N1-C6	126.8 (2)	C4-C5-H5A	120.4
C7-N1-H1A	116.6	C1-C6-C5	120.3 (2)
C6-N1-H1A	116.6	C1-C6-N1	118.3 (2)
C8-N2-C7	128.3 (2)	C5-C6-N1	121.3 (2)

supporting information

$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	115.8	N1-C7-N2	115.9 (2)
C7-N2-H2A	115.8	N1-C7-S1	125.62 (18)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	119.5 (3)	N2-C7-S1	118.42 (17)
C6- $\mathrm{Cl}^{-}-\mathrm{H} 1 \mathrm{~B}$	120.2	O1-C8-N2	122.6 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	120.2	O1-C8-C9	121.2 (2)
C3-C2-C1	120.4 (3)	N2-C8-C9	116.2 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	119.8	C10-C9-C11 ${ }^{\text {i }}$	119.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	119.8	C10-C9-C8	123.1 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	120.1 (2)	C11--C9-C8	117.4 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9	C11-C10-C9	120.3 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.9	C11-C10-H10A	119.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.6 (3)	C9-C10-H10A	119.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.7	C10-C11-C9 ${ }^{\text {i }}$	120.1 (2)
C5-C4-H4A	119.7	C10-C11-H11A	119.9
C6-C5-C4	119.2 (3)	C9 - $\mathrm{C}_{11}-\mathrm{H} 11 \mathrm{~A}$	119.9
C6-C5-H5A	120.4		

Symmetry code: (i) $-x+2,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1$	0.86	1.94	$2.644(3)$	138
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.86	2.62	$3.446(3)$	160

Symmetry code: (ii) $-x+1,-y+1,-z+1$.

