

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Diethyl 4-(2,4-dichlorophenyl)-2,6dimethyl-1,4-dihydropyridine-3,5dicarboxylate

### P. Palakshi Reddy,<sup>a</sup> V. Vijayakumar,<sup>a</sup> J. Suresh,<sup>b</sup> T. Narasimhamurthy<sup>c</sup> and P. L. Nilantha Lakshman<sup>d</sup>\*

<sup>a</sup>Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, <sup>b</sup>Department of Physics, The Madura College, Madurai 625 011, India, <sup>c</sup>Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India, and <sup>d</sup>Department of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka

Correspondence e-mail: plakshmannilantha@ymail.com

Received 22 December 2009; accepted 8 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.168; data-to-parameter ratio = 18.5.

In the title compound,  $C_{19}H_{21}Cl_2NO_4$ , the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle =  $89.1 (1)^{\circ}$ ]. An intramolecular C-H···O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the baxis by N−H···O hydrogen bonds

### **Related literature**

The dihydropyridine hetrocyclic ring is a common feature of various bioactive compounds such as vasodilator, antiatherosclerotic, antitumor, geroprotective, heptaprotective and antidiabetic agents, see: Salehi & Guo (2004). For ring puckering parameters, see: Cremer & Pople (1975).



20317 measured reflections

 $R_{\rm int} = 0.034$ 

4491 independent reflections

3230 reflections with  $I > 2\sigma(I)$ 

mixture of

## **Experimental**

#### Crystal data

| $C_{19}H_{21}Cl_2NO_4$          | $V = 1903.8 (15) \text{ Å}^3$             |
|---------------------------------|-------------------------------------------|
| $M_r = 398.27$                  | Z = 4                                     |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation                    |
| a = 15.928 (7) Å                | $\mu = 0.37 \text{ mm}^{-1}$              |
| b = 12.266 (6) Å                | T = 293  K                                |
| c = 10.042 (5) Å                | $0.19 \times 0.16 \times 0.12 \text{ mm}$ |
| $\beta = 103.962 \ (7)^{\circ}$ |                                           |

### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998)  $T_{\min} = 0.933, \ T_{\max} = 0.937$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.061$ | H atoms treated by a mixture o                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.168$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 4491 reflections                | $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$  |
| 243 parameters                  | $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ |

## Table 1

| Hydrogen-bond | geometry | (A, | °) |  |
|---------------|----------|-----|----|--|
|---------------|----------|-----|----|--|

| $D - \mathbf{H} \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1 - H1 \cdots O1^i$                | 0.85 (4) | 2.46 (4)                | 3.298 (4)    | 169 (3)                              |
| $C7 - H7C \cdot \cdot \cdot O2$      | 0.96     | 2.14                    | 2.764 (5)    | 122                                  |

Symmetry code: (i)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$ .

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA-DST programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5001).

#### References

Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Salehi, H. & Guo, Q. X. (2004). Synth. Commun. 34, 4349-4357.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2010). E66, o363 [https://doi.org/10.1107/S1600536810001066]

# Diethyl 4-(2,4-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

## P. Palakshi Reddy, V. Vijayakumar, J. Suresh, T. Narasimhamurthy and P. L. Nilantha Lakshman

## S1. Comment

1,4-Dihydropyridines are identified as an important class of drugs for a longwhile. The dihydropyridine hetrocyclic ring is a common feature of various bioactive compounds such as vasodilator, antiatherosclerotic, antitumor, geroprotective, heptaprotective and antidiabetic agents (Salehi & Guo, 2004).

The molecular structure of the title compound, with the adopted atomic numbering scheme is shown in Fig. 1. The dihydropyridine ring adopts a flattened boat conformation, with atoms N1 and C4 slightly displaced out of the C2/C3/C5/C6 plane by 0.088 (4) and 0.188 (4) Å, respectively. The puckering parameters (Cremer & Pople, 1975) are:  $q_2 = 0.158$  (3) Å,  $q_3 = -0.039$  (3) Å and  $\varphi_2 = 3(1)^\circ$ . The C—C and C—N bond distances of the pyridine ring agree well with expected values. The 2,4-dichlorophenyl ring at C4 is oriented at an angle of 89.1 (1)° with respect to the C2/C3/C5/C6 plane. This near perpendicular orientation of the chlorophenyl ring to the dihydropyridine ring can be ascribed to the greater steric hinderance with the two ethylcarboxylate groups at C3 and C5. Both ethylcarboxylate side chains adopt same orientation with respect to the dihydropyridine ring. An intramolecular C7—H7C···O2 hydrogen bond is observed. In the crystal structure, the molecules are linked into chains along the *b* axis by N—H···O hydrogen bonds (Table 1).

### **S2.** Experimental

Diethyl 2,6-dimethyl-1,4-dihydro-4-2(2,6-dichlorophenyl)-3,5- pyridinedicarboxylate is prepared according to Hantzsch pyridine synthesis. 2,6-Dichlororobenzaldehyde (10 mmol, 1.76 g), ethylacetoacetate (20 mmol, 2.6 ml) and ammonium acetate (10 mmol, 0.8 g) were taken in a 1:2:1 mole ratio along with ethanol as a solvent in a flask and refluxed in steambath until the colour of the solution changed to reddish-orange (approximately an hour) and kept in ice cold condition to get a solid product. The product was extracted using diethyl ether and then excess solvent was distilled off. The purity of the crude product was checked through TLC and recrystallized using a acetone-benzene (3:1) solution. Single crystals of the title compound suitable for X-ray diffraction analysis were grown using a acetone-benzene (3:1) solution over a period of 2 d (yield = 68%, m.p. 413 K).

## **S3. Refinement**

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for CH and CH<sub>2</sub> groups and  $U_{iso}(H) = 1.5U_{eq}(C)$  for CH<sub>3</sub> groups.



Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Diethyl 4-(2,4-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

| Crystal data                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>19</sub> H <sub>21</sub> Cl <sub>2</sub> NO <sub>4</sub><br>$M_r = 398.27$<br>Monoclinic, $P2_1/c$<br>Hall symbol: -P 2ybc<br>a = 15.928 (7) Å<br>b = 12.266 (6) Å<br>c = 10.042 (5) Å<br>$\beta = 103.962$ (7)°<br>V = 1903.8 (15) Å <sup>3</sup><br>Z = 4 | F(000) = 832<br>$D_x = 1.389 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 25 reflections<br>$\theta = 2-28^{\circ}$<br>$\mu = 0.37 \text{ mm}^{-1}$<br>T = 293  K<br>Block, colourless<br>$0.19 \times 0.16 \times 0.12 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                     |
| Bruker SMART APEX CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>ω scans                                                                                                                                           | Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 1998)<br>$T_{min} = 0.933$ , $T_{max} = 0.937$<br>20317 measured reflections<br>4491 independent reflections                                                                                                         |

| 3230 reflections with $I > 2\sigma(I)$                         | $h = -20 \rightarrow 20$                                   |
|----------------------------------------------------------------|------------------------------------------------------------|
| $R_{\rm int} = 0.034$                                          | $k = -16 \rightarrow 15$                                   |
| $\theta_{\rm max} = 28.0^\circ,  \theta_{\rm min} = 2.1^\circ$ | $l = -13 \rightarrow 13$                                   |
| Refinement                                                     |                                                            |
| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                                     | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.061$                                | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.168$                                              | neighbouring sites                                         |
| <i>S</i> = 1.04                                                | H atoms treated by a mixture of independent                |
| 4491 reflections                                               | and constrained refinement                                 |
| 243 parameters                                                 | $w = 1/[\sigma^2(F_o^2) + (0.0754P)^2 + 1.087P]$           |
| 0 restraints                                                   | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant                | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| direct methods                                                 | $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$  |
|                                                                | $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | у             | Z          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|---------------|------------|-----------------------------|--|
| H1   | 0.457 (2)    | -0.188 (3)    | 0.674 (4)  | 0.077 (10)*                 |  |
| C2   | 0.36076 (17) | -0.1934 (2)   | 0.5152 (3) | 0.0498 (6)                  |  |
| C3   | 0.30628 (16) | -0.13017 (19) | 0.4249 (3) | 0.0443 (5)                  |  |
| C4   | 0.30510 (14) | -0.00633 (18) | 0.4398 (2) | 0.0385 (5)                  |  |
| H4   | 0.3047       | 0.0264        | 0.3506     | 0.046*                      |  |
| C5   | 0.38599 (15) | 0.03294 (19)  | 0.5438 (2) | 0.0414 (5)                  |  |
| C6   | 0.43734 (15) | -0.0368 (2)   | 0.6316 (3) | 0.0458 (6)                  |  |
| C7   | 0.3671 (2)   | -0.3158 (2)   | 0.5144 (4) | 0.0724 (9)                  |  |
| H7A  | 0.3368       | -0.3457       | 0.5778     | 0.109*                      |  |
| H7B  | 0.4268       | -0.3370       | 0.5411     | 0.109*                      |  |
| H7C  | 0.3418       | -0.3426       | 0.4238     | 0.109*                      |  |
| C8   | 0.51522 (18) | -0.0086 (3)   | 0.7436 (3) | 0.0615 (7)                  |  |
| H8A  | 0.5467       | 0.0493        | 0.7133     | 0.092*                      |  |
| H8B  | 0.5518       | -0.0715       | 0.7656     | 0.092*                      |  |
| H8C  | 0.4970       | 0.0145        | 0.8236     | 0.092*                      |  |
| C9   | 0.2429 (2)   | -0.1811 (2)   | 0.3105 (3) | 0.0576 (7)                  |  |
| C10  | 0.1394 (2)   | -0.1567 (3)   | 0.1037 (3) | 0.0834 (11)                 |  |
| H10A | 0.1663       | -0.2102       | 0.0562     | 0.100*                      |  |
| H10B | 0.0947       | -0.1929       | 0.1378     | 0.100*                      |  |
| C11  | 0.1024 (4)   | -0.0724 (5)   | 0.0120 (5) | 0.146 (2)                   |  |
| H11A | 0.0756       | -0.0199       | 0.0593     | 0.219*                      |  |
|      |              |               |            |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H11B | 0.0598       | -0.1027       | -0.0631      | 0.219*      |
|------|--------------|---------------|--------------|-------------|
| H11C | 0.1468       | -0.0375       | -0.0224      | 0.219*      |
| C12  | 0.40564 (15) | 0.1502 (2)    | 0.5500 (3)   | 0.0465 (6)  |
| C13  | 0.3635 (2)   | 0.3178 (2)    | 0.4302 (4)   | 0.0708 (9)  |
| H13A | 0.3527       | 0.3407        | 0.3351       | 0.085*      |
| H13B | 0.4207       | 0.3428        | 0.4773       | 0.085*      |
| C14  | 0.2986 (2)   | 0.3668 (3)    | 0.4941 (4)   | 0.0847 (11) |
| H14A | 0.2421       | 0.3411        | 0.4482       | 0.127*      |
| H14B | 0.3006       | 0.4447        | 0.4866       | 0.127*      |
| H14C | 0.3108       | 0.3465        | 0.5892       | 0.127*      |
| C15  | 0.22400 (14) | 0.03096 (17)  | 0.4827 (2)   | 0.0382 (5)  |
| C16  | 0.16297 (16) | 0.10357 (19)  | 0.4097 (3)   | 0.0442 (5)  |
| C17  | 0.09232 (16) | 0.1380 (2)    | 0.4559 (3)   | 0.0529 (7)  |
| H17  | 0.0531       | 0.1877        | 0.4057       | 0.064*      |
| C18  | 0.08165 (16) | 0.0971 (2)    | 0.5769 (3)   | 0.0540 (7)  |
| C19  | 0.13873 (18) | 0.0238 (2)    | 0.6521 (3)   | 0.0554 (7)  |
| H19  | 0.1301       | -0.0040       | 0.7339       | 0.066*      |
| C20  | 0.20941 (16) | -0.0081 (2)   | 0.6045 (3)   | 0.0456 (6)  |
| H20  | 0.2485       | -0.0574       | 0.6559       | 0.055*      |
| N1   | 0.42086 (15) | -0.14648 (18) | 0.6216 (3)   | 0.0549 (6)  |
| O1   | 0.45504 (13) | 0.19882 (16)  | 0.6420 (2)   | 0.0648 (5)  |
| O2   | 0.2248 (3)   | -0.2760 (2)   | 0.3005 (3)   | 0.1241 (13) |
| O3   | 0.20393 (13) | -0.11059 (17) | 0.2178 (2)   | 0.0639 (5)  |
| O4   | 0.36015 (13) | 0.19982 (14)  | 0.4368 (2)   | 0.0577 (5)  |
| C11  | 0.17106 (5)  | 0.15619 (6)   | 0.25211 (7)  | 0.0651 (2)  |
| C12  | -0.00735 (5) | 0.13933 (8)   | 0.63631 (10) | 0.0800 (3)  |
|      |              |               |              |             |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| C2  | 0.0523 (14) | 0.0362 (12) | 0.0598 (16) | 0.0037 (11)  | 0.0118 (12)  | -0.0033 (11)    |
| C3  | 0.0485 (13) | 0.0359 (12) | 0.0476 (13) | 0.0012 (10)  | 0.0099 (11)  | -0.0058 (10)    |
| C4  | 0.0407 (12) | 0.0335 (11) | 0.0393 (12) | 0.0007 (9)   | 0.0056 (9)   | 0.0004 (9)      |
| C5  | 0.0400 (12) | 0.0385 (12) | 0.0454 (13) | 0.0003 (10)  | 0.0098 (10)  | -0.0031 (10)    |
| C6  | 0.0406 (12) | 0.0461 (13) | 0.0486 (14) | 0.0025 (10)  | 0.0066 (10)  | -0.0023 (11)    |
| C7  | 0.076 (2)   | 0.0376 (14) | 0.095 (2)   | 0.0127 (14)  | 0.0044 (18)  | 0.0006 (15)     |
| C8  | 0.0507 (15) | 0.0642 (18) | 0.0604 (17) | 0.0047 (13)  | -0.0048 (13) | -0.0028 (14)    |
| C9  | 0.0729 (18) | 0.0470 (15) | 0.0500 (15) | -0.0009 (13) | 0.0093 (13)  | -0.0108 (12)    |
| C10 | 0.078 (2)   | 0.104 (3)   | 0.0564 (19) | -0.020 (2)   | -0.0069 (16) | -0.0176 (19)    |
| C11 | 0.149 (5)   | 0.130 (4)   | 0.108 (4)   | -0.009 (4)   | -0.069 (3)   | 0.005 (3)       |
| C12 | 0.0417 (13) | 0.0409 (13) | 0.0578 (15) | -0.0012 (10) | 0.0135 (11)  | -0.0022 (11)    |
| C13 | 0.087 (2)   | 0.0406 (15) | 0.086 (2)   | -0.0071 (15) | 0.0233 (18)  | 0.0076 (15)     |
| C14 | 0.079 (2)   | 0.0552 (19) | 0.114 (3)   | 0.0075 (17)  | 0.012 (2)    | -0.0121 (19)    |
| C15 | 0.0391 (11) | 0.0308 (10) | 0.0412 (12) | -0.0013 (9)  | 0.0032 (9)   | -0.0027 (9)     |
| C16 | 0.0448 (13) | 0.0369 (12) | 0.0470 (13) | 0.0020 (10)  | 0.0034 (10)  | 0.0019 (10)     |
| C17 | 0.0440 (13) | 0.0440 (14) | 0.0667 (17) | 0.0065 (11)  | 0.0052 (12)  | -0.0034 (12)    |
| C18 | 0.0414 (13) | 0.0506 (15) | 0.0718 (18) | -0.0042 (11) | 0.0168 (12)  | -0.0209 (13)    |
| C19 | 0.0571 (16) | 0.0606 (17) | 0.0506 (15) | -0.0094 (13) | 0.0170 (12)  | -0.0063 (12)    |

# supporting information

| $C^{20}$ | 0.0457(12)  | 0.0420 (12) | 0.0461(12)  | 0.0005 (10)  | 0.0066 (10)  | 0.0026(10)   |
|----------|-------------|-------------|-------------|--------------|--------------|--------------|
| C20      | 0.0437(13)  | 0.0429(13)  | 0.0401(13)  | 0.0003(10)   | 0.0000 (10)  | 0.0030(10)   |
| NI       | 0.0532 (13) | 0.0411 (12) | 0.0615 (14) | 0.0088 (10)  | -0.0033 (11) | 0.0063 (10)  |
| 01       | 0.0614 (12) | 0.0495 (11) | 0.0764 (14) | -0.0127 (9)  | 0.0026 (10)  | -0.0115 (10) |
| O2       | 0.192 (3)   | 0.0500 (14) | 0.095 (2)   | -0.0218 (17) | -0.035 (2)   | -0.0179 (13) |
| 03       | 0.0652 (12) | 0.0620 (12) | 0.0538 (11) | -0.0057 (10) | -0.0063 (9)  | -0.0078 (9)  |
| 04       | 0.0673 (12) | 0.0372 (9)  | 0.0651 (12) | -0.0024 (8)  | 0.0089 (9)   | 0.0024 (8)   |
| C11      | 0.0712 (5)  | 0.0637 (4)  | 0.0564 (4)  | 0.0147 (4)   | 0.0075 (3)   | 0.0212 (3)   |
| C12      | 0.0531 (4)  | 0.0868 (6)  | 0.1078 (7)  | -0.0043 (4)  | 0.0343 (4)   | -0.0335 (5)  |

Geometric parameters (Å, °)

| 1.341 (4)                | C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.376 (3)                | C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.504 (4)                | C11—H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.473 (4)                | C12—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.216 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.527 (3)                | C12—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.338 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.527 (3)                | C13—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.450 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.528 (3)                | C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.470 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.98                     | C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.353 (3)                | C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.470 (3)                | C14—H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.370 (3)                | C14—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.500 (4)                | C14—H14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.96                     | C15—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.384 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.96                     | C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.390 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.96                     | C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.383 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.96                     | C16—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.743 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.96                     | C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.363 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.96                     | C17—H17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.198 (4)                | C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.368 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.312 (3)                | C18—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.744 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.414 (6)                | C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.382 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.456 (3)                | C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.97                     | C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.97                     | N1—H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.85 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 110.0(2)                 | C10 C11 H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119.9(2)<br>127.4(3)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 127.4(3)<br>112.7(2)     | HIIR CII HIIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 112.7(2)<br>119.5(2)     | $\begin{array}{c} \text{IIIIB} = \text{CI}_{-1} \\ \text{OI}_{-1} \\ \text{CI}_{2} \\ \text{OI}_{-1} \\ \text$ | 109.3<br>122.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119.5(2)<br>122.0(2)     | 01 - C12 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.7(2)<br>127.2(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 122.0(2)<br>118 4 (2)    | 01 - C12 - C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127.2(2)<br>1101(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 110.4(2)                 | 04 - C13 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.1(2)<br>110.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 110.63 (19)              | 04-013-014<br>04-013-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.5 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 110.03(1))<br>110.11(19) | C14 $C13$ $H13A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 108.4                    | O4-C13-H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 108.4                    | C14—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 108.4                    | H13A—C13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | 1.341(4) $1.376(3)$ $1.504(4)$ $1.473(4)$ $1.527(3)$ $1.527(3)$ $1.528(3)$ $0.98$ $1.353(3)$ $1.470(3)$ $1.370(3)$ $1.500(4)$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.96$ $0.97$ $0.97$ $0.97$ $0.97$ $119.9(2)$ $127.4(3)$ $112.7(2)$ $119.5(2)$ $122.0(2)$ $118.4(2)$ $110.91(19)$ $110.63(19)$ $110.11(19)$ $108.4$ $108.4$ $108.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.341(4) $C11-H11A$ $1.376(3)$ $C11-H11B$ $1.504(4)$ $C11-H11C$ $1.473(4)$ $C12-O1$ $1.527(3)$ $C13-O4$ $1.527(3)$ $C13-O4$ $1.527(3)$ $C13-O4$ $1.528(3)$ $C13-H13A$ $1.353(3)$ $C13-H13B$ $1.470(3)$ $C14-H14A$ $1.370(3)$ $C14-H14B$ $1.500(4)$ $C14-H14C$ $0.96$ $C15-C20$ $0.96$ $C15-C16$ $0.96$ $C16-C17$ $0.96$ $C17-C18$ $0.96$ $C17-C18$ $0.96$ $C17-C18$ $0.96$ $C17-C18$ $0.96$ $C17-C18$ $0.96$ $C19-C20$ $1.414(6)$ $C19-C20$ $1.456(3)$ $C19-H19$ $0.97$ $N1-H1$ $119.9(2)$ $C10-C11-H11C$ $127.4(3)$ $H11A-C11-H11C$ $127.4(3)$ $H11A-C11-H11C$ $127.4(3)$ $H11B-C11-H11C$ $119.5(2)$ $O1-C12-C5$ < | 1.341 (4)       C11—H11A       0.96 $1.376$ (3)       C11—H11C       0.96 $1.504$ (4)       C11—H11C       0.96 $1.473$ (4)       C12—O1       1.216 (3) $1.527$ (3)       C12—O4       1.338 (3) $1.527$ (3)       C13—O4       1.450 (3) $1.527$ (3)       C13—O4       1.450 (3) $1.528$ (3)       C13—H13A       0.97 $0.98$ C13—H13B       0.97 $1.470$ (3)       C14—H14A       0.96 $1.370$ (3)       C14—H14A       0.96 $1.500$ (4)       C14—H14C       0.96 $0.96$ C15—C20       1.384 (3) $0.96$ C16—C17       1.383 (4) $0.96$ C16—C17       1.383 (4) $0.96$ C16—C11       1.743 (3) $0.96$ C17—C18       1.363 (4) $0.96$ C18—C12       1.744 (3) $1.414$ (6)       C19—C20       1.382 (4) $1.456$ (3)       C19—H19       0.93 $0.97$ N1—H1       0.85 (4) $1.312$ (3)       H14—C11—H11C       109.5 $1.456$ (3)       C1 |

| C6C5C12       | 120.1 (2) | C13—C14—H14A  | 109.5       |
|---------------|-----------|---------------|-------------|
| C6—C5—C4      | 121.6 (2) | C13—C14—H14B  | 109.5       |
| C12—C5—C4     | 118.2 (2) | H14A—C14—H14B | 109.5       |
| C5—C6—N1      | 119.9 (2) | C13—C14—H14C  | 109.5       |
| C5—C6—C8      | 127.1 (2) | H14A—C14—H14C | 109.5       |
| N1—C6—C8      | 113.0 (2) | H14B—C14—H14C | 109.5       |
| С2—С7—Н7А     | 109.5     | C20—C15—C16   | 116.2 (2)   |
| С2—С7—Н7В     | 109.5     | C20—C15—C4    | 118.6 (2)   |
| H7A—C7—H7B    | 109.5     | C16—C15—C4    | 125.1 (2)   |
| С2—С7—Н7С     | 109.5     | C17—C16—C15   | 122.8 (2)   |
| Н7А—С7—Н7С    | 109.5     | C17—C16—Cl1   | 115.87 (19) |
| H7B—C7—H7C    | 109.5     | C15—C16—Cl1   | 121.4 (2)   |
| C6—C8—H8A     | 109.5     | C18—C17—C16   | 118.3 (2)   |
| C6—C8—H8B     | 109.5     | C18—C17—H17   | 120.9       |
| H8A—C8—H8B    | 109.5     | C16—C17—H17   | 120.9       |
| С6—С8—Н8С     | 109.5     | C17—C18—C19   | 121.6 (2)   |
| H8A—C8—H8C    | 109.5     | C17—C18—Cl2   | 118.8 (2)   |
| H8B—C8—H8C    | 109.5     | C19—C18—Cl2   | 119.6 (2)   |
| O2—C9—O3      | 121.2 (3) | C18—C19—C20   | 118.9 (3)   |
| O2—C9—C3      | 125.7 (3) | C18—C19—H19   | 120.5       |
| O3—C9—C3      | 113.1 (2) | C20—C19—H19   | 120.5       |
| C11—C10—O3    | 109.4 (3) | C19—C20—C15   | 122.2 (2)   |
| C11—C10—H10A  | 109.8     | C19—C20—H20   | 118.9       |
| O3—C10—H10A   | 109.8     | C15—C20—H20   | 118.9       |
| C11—C10—H10B  | 109.8     | C6—N1—C2      | 123.6 (2)   |
| O3—C10—H10B   | 109.8     | C6—N1—H1      | 117 (2)     |
| H10A—C10—H10B | 108.2     | C2—N1—H1      | 118 (2)     |
| C10-C11-H11A  | 109.5     | C9—O3—C10     | 115.2 (3)   |
| C10—C11—H11B  | 109.5     | C12—O4—C13    | 118.3 (2)   |
| H11A—C11—H11B | 109.5     |               |             |

## Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H      | Н…А      | D····A    | <i>D</i> —H··· <i>A</i> |
|-------------------------|----------|----------|-----------|-------------------------|
| N1—H1···O1 <sup>i</sup> | 0.85 (4) | 2.46 (4) | 3.298 (4) | 169 (3)                 |
| C7—H7 <i>C</i> ···O2    | 0.96     | 2.14     | 2.764 (5) | 122                     |

Symmetry code: (i) -x+1, y-1/2, -z+3/2.