organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Bromo-1-[2-(2-oxo-1,3-oxazolidin-3yl)ethyl]-1H-imidazo[4,5-b]pyridin-2(3H)-one

H. Bel-Ghacham,^a Y. Kandri Rodi,^a Natalie Saffon,^b El Mokhtar Essassi^c and Seik Weng Ng^d*

^aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, ^bService Commun Rayons-X FR2599, Université Paul Sabatier Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, ^cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 20 January 2010; accepted 21 January 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.077; data-to-parameter ratio = 12.6.

The title compound, C₁₁H₁₁BrN₄O₃, features an ethane fragment substituted with an almost planar (r.m.s. deviation = 0.019 Å) imidazo[4,5-b]pyridone ring system and an envelope-shaped oxazolidine unit on separate C atoms. The N-CH₂-CH₂-N torsion angle is 52.5 (4)°. In the crystal, pairs of molecules are linked by N-H···O hydrogen bonds into centrosymmetric dimers.

Related literature

For the medicinal properties of imidazo[4,5-b]pyridines, see: Barraclough et al. (1990); Bianchi et al. (1983); Clark et al. (1978); Janssens et al. (1985); Temple et al. (1987).

Experimental

Crystal data C₁₁H₁₁BrN₄O₃ $M_r = 327.15$

Monoclinic, C2/c a = 27.0174 (11) Å b = 6.0141 (2) Å c = 16.6121 (6) Å $\beta = 110.343 \ (2)^{\circ}$ V = 2530.87 (16) Å³ Z = 8

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.356, T_{\max} = 0.854$ 9174 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.077$	independent and constrained
S = 1.02	refinement
2224 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D-{\rm H}$ $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N3 - H3 \cdot \cdot \cdot O3^i$ 0.86(1)1.94(1)2.781 (4) 167 (3) Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Mo $K\alpha$ radiation $\mu = 3.26 \text{ mm}^-$

 $0.40 \times 0.20 \times 0.05 \text{ mm}$

Standard reflections: 0

2224 independent reflections

1633 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.062$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5180).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Barraclough, P., Black, J. W., Cambridge, D., Collard, D., Firmin, D., Gerskowitch, V. P., Glen, R. C., Giles, H., Hill, A. P., Hull, R. A. D., Iyer, R., King, W. R., Kneen, C. O., Lindon, J. C., Nobbs, M. S., Randall, P., Shah, G. P., Smith, S., Vine, S. J., Whiting, M. V. & Williams, J. M. (1990). J. Med. Chem. 33, 2231-2239
- Bianchi, M., Butti, A., Rossi, S., Barzaghi, F. & Marcaria, V. (1983). Eur. J. Med. Chem. Chim. Ther. 18, 501-506.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clark, R. L., Pessolano, A. A., Shen, T.-Y., Jocobus, D. P., Jones, H., Lotti, V. J. & Flataker, L. M. (1978). J. Med. Chem. 21, 965-978
- Janssens, F., Torremans, J., Janssen, M., Stokbroekx, R. A., Luyckx, M. & Janssen, P. A. J. (1985). J. Med. Chem. 28, 1943-1947.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Temple, C., Rose, J. D., Comber, R. N. & Rener, G. A. (1987). J. Med. Chem. 30. 1746-1751
- Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E**66**, o456 [https://doi.org/10.1107/S1600536810002679]

6-Bromo-1-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-1*H*-imidazo[4,5*b*]pyridin-2(3*H*)-one

H. Bel-Ghacham, Y. Kandri Rodi, Natalie Saffon, El Mokhtar Essassi and Seik Weng Ng

S1. Experimental

To 6-bromo-1,3-dihydro-imidazo[4,5-*b*]pyridin-2-one (1 mmol), potassium carbonate (4 mmol), and tetra-*n*-butylammonium bromide (0.1 mmol) in DMF (30 ml) was added bis(2-chloroethyl)amine hydrochloride (2.5 mmol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic material salt was filtered and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel by using (ethylacetate/hexane: 2/1) as eluent to furnish colorless crystals.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.94-0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; its displacement parameter was refined isotropically.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{11}H_{11}BrN_4O_3$ at the 70% probability level; hydrogen atoms are drawn as spheres of an arbitrary radius.

6-Bromo-1-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-1H- imidazo[4,5-b]pyridin-2(3H)-one

Crystal data	
C ₁₁ H ₁₁ BrN ₄ O ₃ $M_r = 327.15$ Monoclinic, C2/c Hall symbol: -C 2yc a = 27.0174 (11) Å b = 6.0141 (2) Å c = 16.6121 (6) Å $\beta = 110.343$ (2)° V = 2530.87 (16) Å ³ Z = 8	F(000) = 1312 $D_x = 1.717 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1559 reflections $\theta = 2.6-22.4^{\circ}$ $\mu = 3.26 \text{ mm}^{-1}$ T = 173 K Plate, colorless $0.40 \times 0.20 \times 0.05 \text{ mm}$
Data collection Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	9174 measured reflections 2224 independent reflections 1633 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$
φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.356, T_{\max} = 0.854$	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$ $h = -26 \rightarrow 32$ $k = -7 \rightarrow 7$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.077$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
2224 reflections	and constrained refinement
176 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0269P)^2 + 1.8498P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.36 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Br1	0.030317 (17)	1.14052 (7)	0.39869 (3)	0.03436 (15)
01	0.07133 (11)	0.4365 (4)	0.17338 (18)	0.0398 (8)
O2	0.14847 (12)	0.2803 (5)	0.25167 (18)	0.0447 (8)
O3	0.26482 (10)	0.4281 (4)	0.42343 (15)	0.0266 (6)
N1	0.14287 (12)	0.6468 (5)	0.21101 (17)	0.0236 (7)
N2	0.20224 (12)	0.7116 (5)	0.38942 (18)	0.0197 (7)
N3	0.19871 (12)	0.4599 (5)	0.48386 (18)	0.0225 (7)
H3	0.2052 (13)	0.339 (3)	0.5132 (18)	0.022 (10)*
N4	0.12421 (12)	0.6066 (5)	0.51587 (18)	0.0242 (7)
C1	0.12398 (18)	0.4418 (7)	0.2151 (2)	0.0307 (10)
C2	0.05337 (18)	0.6589 (7)	0.1444 (3)	0.0565 (14)
H2A	0.0354	0.7266	0.1812	0.068*
H2B	0.0286	0.6568	0.0843	0.068*
C3	0.10292 (17)	0.7865 (6)	0.1514 (3)	0.0366 (11)
H3A	0.1079	0.7975	0.0953	0.044*
H3B	0.1026	0.9376	0.1749	0.044*
C4	0.19838 (15)	0.6905 (6)	0.2399 (2)	0.0261 (9)
H4A	0.2065	0.7762	0.1951	0.031*
H4B	0.2176	0.5474	0.2474	0.031*
C5	0.21827 (15)	0.8193 (6)	0.3239 (2)	0.0221 (9)
H5A	0.2573	0.8290	0.3439	0.027*
H5B	0.2040	0.9725	0.3143	0.027*
C6	0.22613 (15)	0.5212 (6)	0.4313 (2)	0.0220 (9)
C7	0.15790 (14)	0.6070 (6)	0.4745 (2)	0.0198 (8)
C8	0.08786 (15)	0.7701 (6)	0.4925 (2)	0.0268 (9)
H8	0.0624	0.7777	0.5201	0.032*
C9	0.08554 (15)	0.9282 (6)	0.4302 (2)	0.0227 (9)
C10	0.12232 (15)	0.9304 (6)	0.3887 (2)	0.0220 (9)
H10	0.1218	1.0386	0.3468	0.026*
C11	0.15928 (14)	0.7649 (6)	0.4130 (2)	0.0183 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.0348 (3)	0.0294 (3)	0.0412 (2)	0.0106 (2)	0.01603 (19)	0.0026 (2)
01	0.0332 (19)	0.0294 (17)	0.0488 (19)	-0.0102 (14)	0.0042 (15)	-0.0006 (14)
O2	0.055 (2)	0.0231 (17)	0.0475 (19)	0.0033 (15)	0.0068 (16)	0.0151 (14)
O3	0.0277 (17)	0.0288 (16)	0.0264 (14)	0.0084 (13)	0.0134 (13)	0.0087 (11)
N1	0.029 (2)	0.0179 (18)	0.0216 (16)	-0.0027 (16)	0.0057 (14)	0.0021 (14)
N2	0.0232 (18)	0.0189 (17)	0.0178 (15)	-0.0005 (14)	0.0081 (14)	0.0051 (13)
N3	0.030(2)	0.0186 (19)	0.0194 (17)	0.0056 (15)	0.0091 (15)	0.0093 (14)
N4	0.0270 (19)	0.0258 (19)	0.0222 (16)	0.0046 (15)	0.0116 (15)	0.0050 (14)
C1	0.042 (3)	0.024 (2)	0.026 (2)	-0.005 (2)	0.010 (2)	-0.0023 (18)
C2	0.043 (3)	0.035 (3)	0.072 (3)	0.003 (3)	-0.005 (3)	0.003 (3)
C3	0.047 (3)	0.021 (2)	0.033 (2)	0.006 (2)	0.003 (2)	0.0018 (18)
C4	0.031 (2)	0.029 (2)	0.025 (2)	-0.0018 (18)	0.0185 (19)	0.0000 (17)
C5	0.023 (2)	0.023 (2)	0.0200 (19)	-0.0004 (17)	0.0075 (16)	0.0040 (16)
C6	0.025 (2)	0.022 (2)	0.0183 (19)	-0.0003 (18)	0.0070 (18)	0.0022 (16)
C7	0.021 (2)	0.018 (2)	0.0183 (18)	0.0015 (17)	0.0048 (16)	0.0007 (16)
C8	0.026 (2)	0.031 (2)	0.027 (2)	-0.0008 (19)	0.0140 (19)	-0.0025 (18)
C9	0.024 (2)	0.019 (2)	0.025 (2)	0.0039 (16)	0.0088 (18)	-0.0012 (16)
C10	0.029 (2)	0.018 (2)	0.0182 (19)	0.0031 (17)	0.0066 (17)	0.0022 (15)
C11	0.022 (2)	0.019 (2)	0.0143 (18)	-0.0030 (17)	0.0064 (17)	-0.0032 (16)
	(_)	(-)				

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C9	1.894 (4)	C2—C3	1.512 (6)
O1—C1	1.349 (5)	C2—H2A	0.9900
O1—C2	1.447 (5)	C2—H2B	0.9900
O2—C1	1.213 (4)	С3—НЗА	0.9900
O3—C6	1.232 (4)	С3—Н3В	0.9900
N1C1	1.345 (5)	C4—C5	1.521 (5)
N1—C4	1.431 (4)	C4—H4A	0.9900
N1—C3	1.452 (5)	C4—H4B	0.9900
N2—C6	1.378 (4)	C5—H5A	0.9900
N2	1.385 (4)	С5—Н5В	0.9900
N2—C5	1.457 (4)	C7—C11	1.405 (5)
N3—C6	1.377 (4)	C8—C9	1.390 (5)
N3—C7	1.380 (4)	C8—H8	0.9500
N3—H3	0.859 (10)	C9—C10	1.393 (5)
N4—C7	1.318 (4)	C10—C11	1.368 (5)
N4—C8	1.348 (4)	C10—H10	0.9500
C1—O1—C2	108.7 (3)	C5—C4—H4A	108.9
C1—N1—C4	121.6 (3)	N1—C4—H4B	108.9
C1—N1—C3	111.1 (3)	C5—C4—H4B	108.9
C4—N1—C3	124.5 (3)	H4A—C4—H4B	107.7
C6—N2—C11	109.9 (3)	N2—C5—C4	110.9 (3)
C6—N2—C5	122.6 (3)	N2—C5—H5A	109.5

C11 N2 C5	1272(2)	C4 C5 H5A	100.5
$C_{11} = N_2 = C_3$	127.2(3) 110.0(3)	N2 C5 H5B	109.5
C6 N3 H3	110.0(3)	C_{4} C_{5} H_{5} H_{5}	109.5
C7 N2 H2	123(2) 127(2)		109.5
C7 N4 C9	127(2) 1145(2)	$H_{JA} = C_{J} = H_{JB}$	100.0 127.5(2)
C = N4 = C8	114.3(3)	$O_3 = C_0 = N_3$	127.3(3)
02-CI-NI	127.5 (4)	03-06-N2	126.1(3)
02-01-01	122.2 (4)	N3-C6-N2	106.4 (3)
NI-CI-OI	110.3 (3)	N4—C7—N3	127.6 (3)
O1—C2—C3	104.9 (3)	N4—C7—C11	125.3 (3)
O1—C2—H2A	110.8	N3—C7—C11	107.1 (3)
C3—C2—H2A	110.8	N4—C8—C9	123.6 (3)
O1—C2—H2B	110.8	N4—C8—H8	118.2
C3—C2—H2B	110.8	С9—С8—Н8	118.2
H2A—C2—H2B	108.8	C8—C9—C10	121.3 (3)
N1—C3—C2	100.8 (3)	C8—C9—Br1	119.6 (3)
N1—C3—H3A	111.6	C10—C9—Br1	119.1 (3)
С2—С3—НЗА	111.6	C11—C10—C9	114.9 (3)
N1—C3—H3B	111.6	C11—C10—H10	122.6
С2—С3—Н3В	111.6	С9—С10—Н10	122.6
НЗА—СЗ—НЗВ	109.4	C10-C11-N2	133.1 (3)
N1—C4—C5	113.3 (3)	C10—C11—C7	120.3 (3)
N1—C4—H4A	108.9	N2—C11—C7	106.6 (3)
C4—N1—C1—O2	10.3 (6)	C5—N2—C6—N3	-176.1 (3)
C3—N1—C1—O2	171.9 (4)	C8—N4—C7—N3	-179.2 (3)
C4—N1—C1—O1	-171.3 (3)	C8—N4—C7—C11	2.5 (5)
C3—N1—C1—O1	-9.7 (4)	C6—N3—C7—N4	-177.8 (3)
C2-01-C1-02	174.3 (4)	C6—N3—C7—C11	0.8 (4)
C2-01-C1-N1	-4.2 (4)	C7—N4—C8—C9	-0.2 (5)
C1—O1—C2—C3	15.5 (5)	N4—C8—C9—C10	-1.6 (6)
C1—N1—C3—C2	18.3 (4)	N4—C8—C9—Br1	176.7 (3)
C4-N1-C3-C2	179.3 (3)	C8-C9-C10-C11	1.2 (5)
01-C2-C3-N1	-19.6(4)	Br1—C9—C10—C11	-177.2(3)
C1 - N1 - C4 - C5	-1073(4)	C9-C10-C11-N2	-1785(4)
$C_{3}-N_{1}-C_{4}-C_{5}$	93 6 (4)	C9-C10-C11-C7	0.9(5)
C6-N2-C5-C4	75 4 (4)	C6 = N2 = C11 = C10	-1780(4)
C11 - N2 - C5 - C4	-975(4)	C_{5} N2 C_{11} C_{10}	-43(6)
N1 - C4 - C5 - N2	52 5 (4)	C6-N2-C11-C7	26(4)
C7 N3 C6 O3	1700(4)	$C_{0} = N_{2} = C_{11} = C_{7}$	2.0(4)
C7 N3 C6 N2	1/9.9(4)	$N_{1} = 0.0000000000000000000000000000000000$	-20(6)
$C_1 = \frac{1}{10} = 1$	1788(A)	$N_{2} = C_{7} = C_{11} = C_{10}$	2.7(0) 178 5 (3)
$C_{11} = N_2 = C_0 = 0.5$	1/0.0 (4)	NJ = C / = C I I = C I U	170.3(3)
$C_{11} = N_{2} = C_{11} = 0$	+.0(0)	IN4 - U / - U I I - IN2 $NI2 - C7 - C I I - NI2$	1/0.0(3)
U_{11} N_2 U_0 N_3	-2.1 (4)	$N_{J} = U / = U I I = N Z$	-2.0 (4)

Hydrogen-bond geometry (Å, °)

supporting information

N3—H3···O3 ⁱ	0.86 (1)	1.94 (1)	2.781 (4)	167 (3)	

Symmetry code: (i) -x+1/2, -y+1/2, -z+1.