

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Dibenzyl-2-methylbenzimidazolium chloride

Hamid Ennajih,^a Rachid Bouhfid,^a Hafid Zouihri,^b El Mokhtar Essassi^c and Seik Weng Ng^d*

^aInstitute of Nanomaterials and Nanotechnology, Avenue de l'Armée Royale, Madinat El Irfane, 10100 Rabat, Morocco, ^bCNRST Division of UATRS Angle Allal Fassi/FAR, BP 8027 Hay Riad, 10000 Rabat, Morocco, ^cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 January 2010; accepted 20 January 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.124; data-to-parameter ratio = 18.4.

The cation of the title salt, $C_{22}H_{21}N_2^+ \cdot Cl^-$, contains a planar benzimidazolium unit (r.m.s. deviation = 0.02 Å); the phenyl rings of the benzyl substituents form dihedral angles of 68.2 (1) and 79.7 (1) $^{\circ}$ with the plane of the benzimidazolium fragment.

Related literature

For the crystal structure of the monohydrated salt, see: Jian et al. (2003).

organic compounds

Experimental

Crystal data

$C_{22}H_{21}N_2^+ \cdot Cl^-$ $M_r = 348.86$ Triclinic, $P\overline{1}$ $a = 9.2539 (2) \text{ Å}$ $b = 9.4677 (2) \text{ Å}$ $c = 12.0984 (3) \text{ Å}$ $\alpha = 72.139 (1)^{\circ}$ $\beta = 81.376 (1)^{\circ}$	$\gamma = 64.605 (1)^{\circ}$ $V = 911.20 (4) \text{ Å}^{3}$ Z = 2 Mo K α radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.30 \times 0.30 \text{ mm}$
Data collection	
Bruker APEXII diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.938, T_{max} = 0.938$	24459 measured reflections 4175 independent reflections 3336 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.038$ wR(F^2) = 0.124 S = 1.08 4175 reflections	227 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5179).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jian, F.-F., Wang, H.-X., Xiao, H.-L. & Liu, G.-Y. (2003). Chin. J. Struct. Chem. 22, 669-672.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

supporting information

Acta Cryst. (2010). E66, o455 [https://doi.org/10.1107/S1600536810002588]

1,3-Dibenzyl-2-methylbenzimidazolium chloride

Hamid Ennajih, Rachid Bouhfid, Hafid Zouihri, El Mokhtar Essassi and Seik Weng Ng

S1. Experimental

To a solution of 2-methylbenzimidazole (1 g, 7.57 mmol) in DMF (20 ml) was added benzyl chloride (2,66 ml, 22.7 mmol), potassium carbonate (1.25 g, 9.08 mmol) and a catalytic amount of tetra-*n*-butylammonium bromide. The mixture was stirred for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol to afford 1,3-dibenzyl-2-methyl-benzimidazolium chloride as colorless crystals.

S2. Refinement

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of an arbitrary radius.

1,3-Dibenzyl-2-methylbenzimidazolium chloride

Crystal data

 $C_{22}H_{21}N_2^{+}Cl^{-}$ $M_r = 348.86$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.2539 (2) Å b = 9.4677 (2) Å c = 12.0984 (3) Å a = 72.139 (1)° $\beta = 81.376$ (1)° $\gamma = 64.605$ (1)° V = 911.20 (4) Å³

Data collection

Bruker APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.938, \ T_{\max} = 0.938$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.124$	neighbouring sites
S = 1.08	H-atom parameters constrained
4175 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0687P)^2 + 0.1373P]$
227 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Z = 2F(000) = 368

 $D_{\rm x} = 1.271 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.5 - 29.1^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.30 \times 0.30$ mm

24459 measured reflections 4175 independent reflections 3336 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$

T = 293 K

 $R_{\rm int} = 0.028$

 $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8258 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.29429 (4)	0.33126 (4)	0.00802 (3)	0.04507 (14)	
N1	0.77776 (14)	0.02156 (14)	0.14627 (10)	0.0356 (3)	
N2	0.91155 (14)	0.15323 (14)	0.16783 (10)	0.0352 (3)	
C1	0.61460 (19)	0.30695 (19)	0.16123 (16)	0.0498 (4)	
H1A	0.5794	0.3046	0.2403	0.075*	
H1B	0.5340	0.3064	0.1200	0.075*	
H1C	0.6328	0.4036	0.1249	0.075*	
C2	0.76494 (17)	0.16248 (17)	0.15880 (12)	0.0360 (3)	
C3	0.93932 (17)	-0.08252 (17)	0.14577 (12)	0.0349 (3)	
C4	1.0170 (2)	-0.23710 (18)	0.12901 (14)	0.0434 (4)	
H4	0.9608	-0.2928	0.1179	0.052*	
C5	1.1821 (2)	-0.3032 (2)	0.12974 (15)	0.0515 (4)	

Н5	1.2387	-0.4067	0.1194	0.062*
C6	1.2669 (2)	-0.2194 (2)	0.14549 (16)	0.0541 (4)
H6	1.3781	-0.2688	0.1458	0.065*
C7	1.18996 (19)	-0.0654 (2)	0.16059 (14)	0.0454 (4)
H7	1.2462	-0.0092	0.1704	0.054*
C8	1.02401 (17)	0.00110 (17)	0.16028 (12)	0.0350 (3)
С9	0.64487 (18)	-0.02047 (18)	0.13464 (14)	0.0416 (3)
Н9	0.6788	-0.0902	0.0830	0.050*
H9B	0.5545	0.0780	0.1000	0.050*
C10	0.59317 (18)	-0.10561 (18)	0.25015 (14)	0.0411 (3)
C11	0.4779 (2)	-0.0170 (2)	0.3180 (2)	0.0646 (5)
H11	0.4329	0.0959	0.2926	0.078*
C12	0.4288 (3)	-0.0946 (3)	0.4233 (2)	0.0821 (7)
H12	0.3506	-0.0341	0.4682	0.099*
C13	0.4951 (3)	-0.2606 (3)	0.4616 (2)	0.0750 (6)
H13	0.4628	-0.3126	0.5329	0.090*
C14	0.6089 (3)	-0.3505 (3)	0.3951 (2)	0.0668 (5)
H14	0.6539	-0.4633	0.4212	0.080*
C15	0.6566 (2)	-0.2729 (2)	0.28935 (17)	0.0526 (4)
H15	0.7325	-0.3343	0.2438	0.063*
C16	0.95196 (19)	0.28401 (18)	0.17480 (13)	0.0405 (3)
H16	0.8649	0.3876	0.1434	0.049*
H16B	1.0466	0.2809	0.1268	0.049*
C17	0.98260 (18)	0.27339 (17)	0.29640 (13)	0.0380 (3)
C18	0.9089 (2)	0.2087 (2)	0.39402 (15)	0.0533 (4)
H18	0.8402	0.1638	0.3866	0.064*
C19	0.9367 (3)	0.2104 (3)	0.50305 (17)	0.0700 (6)
H19	0.8861	0.1670	0.5682	0.084*
C20	1.0372 (3)	0.2749 (3)	0.5152 (2)	0.0813 (7)
H20	1.0558	0.2754	0.5885	0.098*
C21	1.1109 (3)	0.3392 (3)	0.4191 (2)	0.0821 (7)
H21	1.1794	0.3838	0.4274	0.099*
C22	1.0846 (2)	0.3384 (2)	0.31030 (18)	0.0574 (5)
H22	1.1359	0.3820	0.2457	0.069*

monne aspracement parameters (m	Atomic	displacement	parameters	$(Å^2)$
---------------------------------	--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0415 (2)	0.0398 (2)	0.0544 (2)	-0.01604 (16)	-0.00553 (16)	-0.01205 (16)
N1	0.0346 (6)	0.0361 (6)	0.0407 (6)	-0.0176 (5)	-0.0027 (5)	-0.0109 (5)
N2	0.0371 (6)	0.0385 (6)	0.0354 (6)	-0.0199 (5)	-0.0011 (5)	-0.0107 (5)
C1	0.0415 (9)	0.0420 (8)	0.0686 (11)	-0.0158 (7)	-0.0026 (8)	-0.0196 (8)
C2	0.0385 (7)	0.0371 (7)	0.0366 (7)	-0.0191 (6)	-0.0017 (6)	-0.0098 (6)
C3	0.0364 (7)	0.0378 (7)	0.0309 (7)	-0.0168 (6)	-0.0005(5)	-0.0076 (5)
C4	0.0486 (9)	0.0399 (8)	0.0437 (8)	-0.0196 (7)	0.0023 (7)	-0.0133 (6)
C5	0.0488 (9)	0.0421 (8)	0.0559 (10)	-0.0122 (7)	0.0056 (8)	-0.0155 (7)
C6	0.0362 (8)	0.0562 (10)	0.0601 (10)	-0.0120 (7)	0.0031 (7)	-0.0147 (8)
C7	0.0374 (8)	0.0555 (9)	0.0460 (9)	-0.0224 (7)	-0.0002 (6)	-0.0125 (7)

C8	0.0372 (7)	0.0397 (7)	0.0303 (7)	-0.0181 (6)	-0.0002 (5)	-0.0093 (5)
C9	0.0385 (8)	0.0411 (7)	0.0527 (9)	-0.0201 (6)	-0.0082 (7)	-0.0139 (7)
C10	0.0343 (7)	0.0437 (8)	0.0543 (9)	-0.0211 (6)	-0.0024 (6)	-0.0171 (7)
C11	0.0597 (11)	0.0542 (10)	0.0887 (15)	-0.0312 (9)	0.0230 (10)	-0.0311 (10)
C12	0.0870 (16)	0.0893 (16)	0.0946 (17)	-0.0553 (14)	0.0443 (14)	-0.0511 (14)
C13	0.0851 (16)	0.0911 (16)	0.0633 (13)	-0.0583 (14)	0.0143 (11)	-0.0146 (11)
C14	0.0671 (12)	0.0537 (10)	0.0756 (13)	-0.0304 (10)	-0.0002 (10)	-0.0043 (10)
C15	0.0498 (10)	0.0451 (9)	0.0647 (11)	-0.0213 (8)	0.0049 (8)	-0.0171 (8)
C16	0.0460 (8)	0.0400 (7)	0.0427 (8)	-0.0255 (7)	-0.0023 (6)	-0.0084 (6)
C17	0.0377 (7)	0.0307 (6)	0.0463 (8)	-0.0109 (6)	-0.0046 (6)	-0.0141 (6)
C18	0.0619 (11)	0.0563 (10)	0.0450 (9)	-0.0277 (9)	-0.0002 (8)	-0.0134 (8)
C19	0.0869 (15)	0.0691 (13)	0.0454 (10)	-0.0223 (11)	-0.0005 (10)	-0.0183 (9)
C20	0.1008 (18)	0.0796 (15)	0.0648 (14)	-0.0186 (13)	-0.0261 (13)	-0.0366 (12)
C21	0.0938 (17)	0.0875 (16)	0.0920 (17)	-0.0434 (14)	-0.0242 (14)	-0.0406 (14)
C22	0.0606 (11)	0.0575 (10)	0.0691 (12)	-0.0315 (9)	-0.0070 (9)	-0.0236 (9)

Geometric parameters (Å, °)

N1—C2	1.3416 (18)	C10—C11	1.382 (2)	
N1—C3	1.3941 (18)	C11—C12	1.381 (3)	
N1-C9	1.4821 (18)	C11—H11	0.9300	
N2-C2	1.3406 (18)	C12—C13	1.368 (3)	
N2—C8	1.3902 (18)	C12—H12	0.9300	
N2-C16	1.4664 (18)	C13—C14	1.370 (3)	
C1—C2	1.479 (2)	C13—H13	0.9300	
C1—H1A	0.9600	C14—C15	1.380 (3)	
C1—H1B	0.9600	C14—H14	0.9300	
C1—H1C	0.9600	C15—H15	0.9300	
C3—C8	1.389 (2)	C16—C17	1.505 (2)	
C3—C4	1.391 (2)	C16—H16	0.9700	
C4—C5	1.381 (2)	C16—H16B	0.9700	
C4—H4	0.9300	C17—C22	1.381 (2)	
C5—C6	1.397 (3)	C17—C18	1.381 (2)	
С5—Н5	0.9300	C18—C19	1.387 (3)	
С6—С7	1.378 (2)	C18—H18	0.9300	
С6—Н6	0.9300	C19—C20	1.358 (4)	
С7—С8	1.388 (2)	C19—H19	0.9300	
С7—Н7	0.9300	C20—C21	1.368 (4)	
C9—C10	1.507 (2)	C20—H20	0.9300	
С9—Н9	0.9700	C21—C22	1.377 (3)	
С9—Н9В	0.9700	C21—H21	0.9300	
C10—C15	1.380 (2)	C22—H22	0.9300	
C2—N1—C3	108.77 (12)	C11—C10—C9	120.38 (15)	
C2—N1—C9	126.81 (12)	C10-C11-C12	120.55 (19)	
C3—N1—C9	124.43 (12)	C10-C11-H11	119.7	
C2—N2—C8	108.89 (12)	C12—C11—H11	119.7	
C2—N2—C16	126.78 (13)	C13—C12—C11	120.0 (2)	

C8—N2—C16	124.15 (12)	C13—C12—H12	120.0
C2—C1—H1A	109.5	C11—C12—H12	120.0
C2—C1—H1B	109.5	C14—C13—C12	120.2 (2)
H1A—C1—H1B	109.5	C14—C13—H13	119.9
C2—C1—H1C	109.5	C12—C13—H13	119.9
H1A—C1—H1C	109.5	C13—C14—C15	119.71 (19)
H1B-C1-H1C	109.5	C13—C14—H14	120.1
N2-C2-N1	109.12 (13)	C15—C14—H14	120.1
N2-C2-C1	124.66 (13)	C10—C15—C14	120.95 (18)
N1-C2-C1	126.21 (13)	C10—C15—H15	119.5
C8-C3-C4	121.57 (14)	C14—C15—H15	119.5
C8—C3—N1	106.52(12)	N2-C16-C17	113.56 (12)
C4—C3—N1	131 83 (14)	N2-C16-H16	108.9
$C_{5}-C_{4}-C_{3}$	116 23 (15)	C17 - C16 - H16	108.9
C5-C4-H4	121.9	N2-C16-H16B	108.9
C3—C4—H4	121.9	C17—C16—H16B	108.9
C4-C5-C6	122.05 (16)	H16—C16—H16B	107.7
C4—C5—H5	119.0	C^{22} C^{17} C^{18}	118 45 (16)
C6-C5-H5	119.0	C^{22} C^{17} C^{16}	117 98 (14)
C_{7} C_{6} C_{5}	121 71 (16)	C_{18} C_{17} C_{16}	117.50(14) 123 51 (14)
C7—C6—H6	119.1	C17 - C18 - C19	120.39(18)
C5-C6-H6	119.1	C17 - C18 - H18	119.8
C6-C7-C8	116 38 (15)	C19 - C18 - H18	119.8
C6-C7-H7	121.8	C_{20} C_{19} C_{18}	1204(2)
C8-C7-H7	121.8	C_{20} C_{19} H_{19}	119.8
C7 - C8 - C3	122.05 (14)	C18—C19—H19	119.8
C7 - C8 - N2	122.03(11) 131.20(14)	C19 - C20 - C21	119.68 (19)
C_{3} C_{8} N_{2}	106 69 (12)	C19 - C20 - H20	120.2
N1 - C9 - C10	111.98 (12)	C_{21} C_{20} H_{20}	120.2
N1_C9_H9	109.2	C_{20} C_{21} C_{20} C_{21} C_{22}	120.2 120.6(2)
C10 - C9 - H9	109.2	C_{20} C_{21} C_{22}	110.7
N1_C9_H9B	109.2	$C_{20} = C_{21} = H_{21}$	119.7
C10 - C9 - H9B	109.2	$C_{22} = C_{21} = H_{21}$	119.7 120.4(2)
H9_C9_H9B	107.9	$C_{21} = C_{22} = C_{17}$	110.9
C_{15} C_{10} C_{11}	118 51 (16)	$C_{17} C_{22} H_{22}$	119.8
$C_{15} - C_{10} - C_{9}$	121.09(15)	017-022-1122	119.0
015-010-05	121.09 (15)		
C8—N2—C2—N1	0.33 (16)	C16—N2—C8—C3	-175.22(12)
C16 - N2 - C2 - N1	175.59 (12)	$C_2 - N_1 - C_2 - C_{10}$	-93.34(17)
C8 - N2 - C2 - C1	-179.08(14)	C_{3} N1 – C9 – C10	86.67 (17)
C16 - N2 - C2 - C1	-3.8(2)	N1-C9-C10-C15	-93.28(17)
$C_3 - N_1 - C_2 - N_2$	-0.73(16)	N1-C9-C10-C11	88.23 (18)
C9 - N1 - C2 - N2	179.28 (13)	C15-C10-C11-C12	0.7 (3)
$C_3 = N_1 = C_2 = C_1$	178.67 (14)	C9-C10-C11-C12	179.22 (19)
C9 - N1 - C2 - C1	-1.3 (2)	C10-C11-C12-C13	0.4 (4)
$C_2 = N_1 = C_3 = C_8$	0.84 (15)	$C_{11} - C_{12} - C_{13} - C_{14}$	-0.8(4)
C9 - N1 - C3 - C8	-179.17 (12)	C12-C13-C14-C15	0.0 (4)
$C_{2} = N_{1} = C_{3} = C_{4}$	-175.93(15)	$C_{11} - C_{10} - C_{15} - C_{14}$	-1.5(3)
	1,0.00 (10)		1.5 (5)

C9—N1—C3—C4	4.1 (2)	C9-C10-C15-C14	-179.97 (16)
C8—C3—C4—C5	1.1 (2)	C13-C14-C15-C10	1.1 (3)
N1—C3—C4—C5	177.47 (15)	C2—N2—C16—C17	100.24 (17)
C3—C4—C5—C6	-0.5 (2)	C8—N2—C16—C17	-85.18 (17)
C4—C5—C6—C7	-0.3 (3)	N2-C16-C17-C22	152.21 (15)
C5—C6—C7—C8	0.5 (3)	N2-C16-C17-C18	-30.7 (2)
C6—C7—C8—C3	0.1 (2)	C22-C17-C18-C19	0.4 (3)
C6—C7—C8—N2	-176.73 (15)	C16—C17—C18—C19	-176.69 (16)
C4—C3—C8—C7	-1.0 (2)	C17—C18—C19—C20	-0.3 (3)
N1—C3—C8—C7	-178.13 (13)	C18—C19—C20—C21	0.3 (4)
C4—C3—C8—N2	176.55 (13)	C19—C20—C21—C22	-0.3 (4)
N1—C3—C8—N2	-0.62 (14)	C20-C21-C22-C17	0.3 (3)
C2—N2—C8—C7	177.39 (15)	C18—C17—C22—C21	-0.4 (3)
C16—N2—C8—C7	2.0 (2)	C16—C17—C22—C21	176.83 (18)
C2—N2—C8—C3	0.20 (15)		