organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-5-(3,5-Dimethylphenyl)-N-[4-(methylsulfanyl)benzylidene]-1,3,4thiadiazol-2-amine

Jun Hu,^a Jin-xiu Ji,^b Ying Zhou,^c Ji-kui Wang^d and Yan-hua Xu^a*

^aDepartment of Safety Engineering, College of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, ^bResearch & Development Center, Sinochem Jiangsu Corporation, Longpan Road, Nanjing, Nanjing 210002, People's Republic of China, ^cDepartment of Environmental Engineering, College of the Environment, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^dDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: yhxu2008@163.com

Received 6 January 2010; accepted 13 January 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.065; wR factor = 0.208; data-to-parameter ratio = 14.8.

The title compound, C₁₈H₁₇N₃S₂, was synthesized by the reaction of 5-(3,5-dimethylphenyl)-1,3,4-thiadiazol-2-amine and 4-(methylsulfanyl)benzaldehyde. An intramolecular C- $H \cdots S$ hydrogen bond results in the formation of a planar (r.m.s. deviation = 0.003 Å) five-membered ring. In the crystal structure, intermolecular C-H···N hydrogen bonds link the molecules to form layers parallel to (011).

Related literature

For the broad spectrum biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental

Crystal data C18H17N3S2 $M_r = 339.47$

Triclinic, $P\overline{1}$ a = 8.5640 (17) Å

b = 9.3370 (19) Å	Z = 2
c = 11.570 (2) Å	Mo $K\alpha$ radiation
$\alpha = 90.98 (3)^{\circ}$	$\mu = 0.31 \text{ mm}^{-1}$
$\beta = 110.03 \ (3)^{\circ}$	T = 298 K
$\gamma = 99.66 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
V = 854.1 (3) Å ³	
Data collection	
Enraf–Nonius CAD-4	3098 independent reflections
diffractometer	2286 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.031$
(North et al., 1968)	3 standard reflections every 200
$T_{\rm min} = 0.912, \ T_{\rm max} = 0.969$	reflections
3324 measured reflections	intensity decay: 1%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.065$	209 parameters
$wR(F^2) = 0.208$	H-atom parameters constrained

$R[F > 2\sigma(F)] = 0.065$	209 parameters
$wR(F^2) = 0.208$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
3098 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - \mathbf{H} \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $C7 - H7A \cdot \cdot \cdot N2^{i}$ 0.93 2.58 3.223 (6) 126 $C8-H8A\cdots S2$ 0.93 2 59 3.041 (5) 110

Symmetry code: (i) x + 1, y, z.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the diffractometer for this research project. This work was supported by the National High Technology Research and Development (863 Program) of China (No. 2007AA06A402) and the Key Projects in the National Water Pollution Control and Management Pillar Program (No. 2008ZX07101-003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5165).

References

Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.

supporting information

Acta Cryst. (2010). E66, o410 [https://doi.org/10.1107/S1600536810001558]

(*E*)-5-(3,5-Dimethylphenyl)-*N*-[4-(methylsulfanyl)benzylidene]-1,3,4-thiadiazol-2-amine

Jun Hu, Jin-xiu Ji, Ying Zhou, Ji-kui Wang and Yan-hua Xu

S1. Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang *et al.*, 1999). The molecule (Fig. 1) is almost planar (r.m.s. deviation for all non-H atoms 0.149Å). An intramolecular C—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules to form layers parallel to the (0 1 1) plane (Fig. 2).

S2. Experimental

5-(3,5-dimethylphenyl)-1,3,4-thiadiazol-2-amine(5 mmol) and 4-methylthio benzaldehyde(5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 408 K).Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

S3. Refinement

All H atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding model approximation with $U_{iso}(H) = 1.2_{eq}$ of the carrier atom (1.5 for methyl groups).

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

(E)-5-(3,5-Dimethylphenyl)-N-[4-(methylsulfanyl)benzylidene]- 1,3,4-thiadiazol-2-amine

Crystal data

C₁₈H₁₇N₃S₂ $M_r = 339.47$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5640 (17) Å b = 9.3370 (19) Å c = 11.570 (2) Å $a = 90.98 (3)^{\circ}$ $\beta = 110.03 (3)^{\circ}$ $\gamma = 99.66 (3)^{\circ}$ $V = 854.1 (3) \text{ Å}^{3}$

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.912, T_{\max} = 0.969$ 3324 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.208$ S = 1.00 Z = 2 F(000) = 356 $D_x = 1.320 \text{ Mg m}^{-3}$ Melting point: 408 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

3098 independent reflections 2286 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = 0 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -13 \rightarrow 13$ 3 standard reflections every 200 reflections intensity decay: 1%

3098 reflections209 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{ m max} < 0.001$
map	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
neighbouring sites	Extinction correction: SHELXL97 (Sheldrick,
H-atom parameters constrained	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 1.550P]$	Extinction coefficient: 0.017 (4)
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.62029 (16)	1.18993 (14)	-0.40284 (12)	0.0614 (4)
S2	0.10286 (13)	0.70508 (13)	0.07048 (10)	0.0522 (4)
N1	0.0950 (5)	0.8908 (4)	-0.1158 (3)	0.0502 (9)
N2	-0.1485 (5)	0.8040 (5)	-0.0728 (4)	0.0692 (12)
N3	-0.2085 (5)	0.7183 (5)	0.0023 (4)	0.0685 (12)
C1	0.7907 (6)	1.0978 (6)	-0.3883 (5)	0.0723 (15)
H1B	0.8553	1.1424	-0.4359	0.108*
H1C	0.7470	0.9974	-0.4181	0.108*
H1D	0.8620	1.1039	-0.3031	0.108*
C2	0.5192 (5)	1.0955 (4)	-0.3116 (4)	0.0445 (9)
C3	0.3640 (6)	1.1315 (5)	-0.3168 (4)	0.0533 (11)
H3B	0.3206	1.2023	-0.3674	0.064*
C4	0.2770 (5)	1.0636 (5)	-0.2484 (4)	0.0524 (11)
H4A	0.1754	1.0897	-0.2519	0.063*
C5	0.3370 (5)	0.9560 (4)	-0.1734 (4)	0.0442 (9)
C6	0.4919 (5)	0.9225 (5)	-0.1672 (4)	0.0487 (10)
H6A	0.5357	0.8527	-0.1155	0.058*
C7	0.5814 (5)	0.9899 (4)	-0.2356 (4)	0.0473 (10)
H7A	0.6838	0.9646	-0.2309	0.057*
C8	0.2444 (5)	0.8767 (5)	-0.1040 (4)	0.0480 (10)
H8A	0.2960	0.8130	-0.0488	0.058*
C9	0.0130 (5)	0.8098 (4)	-0.0484 (4)	0.0447 (9)
C10	-0.0942 (5)	0.6600 (4)	0.0806 (4)	0.0453 (10)
C11	-0.1302 (5)	0.5649 (4)	0.1713 (4)	0.0443 (9)
C12	-0.2857 (5)	0.5491 (5)	0.1857 (4)	0.0491 (10)
H12A	-0.3676	0.5975	0.1361	0.059*
C13	-0.3218 (6)	0.4629 (5)	0.2724 (4)	0.0543 (11)
C14	-0.2009 (6)	0.3892 (5)	0.3429 (4)	0.0580 (12)
H14A	-0.2254	0.3293	0.4003	0.070*

C15	-0.0418 (6)	0.4016 (5)	0.3309 (4)	0.0521 (11)	
C16	-0.0071 (5)	0.4910 (5)	0.2446 (4)	0.0484 (10)	
H16A	0.0979	0.5018	0.2356	0.058*	
C17	-0.4903 (7)	0.4480 (6)	0.2888 (6)	0.0737 (15)	
H17A	-0.4931	0.3842	0.3525	0.111*	
H17B	-0.5785	0.4083	0.2128	0.111*	
H17C	-0.5070	0.5421	0.3116	0.111*	
C18	0.0868 (7)	0.3170 (6)	0.4057 (5)	0.0736 (15)	
H18A	0.1873	0.3396	0.3853	0.110*	
H18B	0.0416	0.2146	0.3877	0.110*	
H18C	0.1137	0.3426	0.4919	0.110*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0633 (8)	0.0675 (8)	0.0680 (8)	0.0195 (6)	0.0371 (6)	0.0291 (6)
S2	0.0423 (6)	0.0626 (7)	0.0570 (7)	0.0146 (5)	0.0209 (5)	0.0229 (5)
N1	0.059 (2)	0.049 (2)	0.052 (2)	0.0151 (17)	0.0275 (17)	0.0160 (16)
N2	0.056 (2)	0.087 (3)	0.079 (3)	0.031 (2)	0.032 (2)	0.048 (2)
N3	0.050 (2)	0.088 (3)	0.080 (3)	0.030(2)	0.029 (2)	0.045 (2)
C1	0.064 (3)	0.099 (4)	0.074 (3)	0.026 (3)	0.043 (3)	0.021 (3)
C2	0.044 (2)	0.044 (2)	0.049 (2)	0.0095 (17)	0.0200 (18)	0.0111 (18)
C3	0.056 (3)	0.056 (3)	0.059 (3)	0.026 (2)	0.026 (2)	0.028 (2)
C4	0.045 (2)	0.053 (3)	0.067 (3)	0.020 (2)	0.024 (2)	0.017 (2)
C5	0.043 (2)	0.042 (2)	0.051 (2)	0.0098 (17)	0.0194 (18)	0.0093 (18)
C6	0.049 (2)	0.047 (2)	0.054 (2)	0.0168 (19)	0.0191 (19)	0.0185 (19)
C7	0.041 (2)	0.048 (2)	0.059 (3)	0.0137 (18)	0.0221 (19)	0.017 (2)
C8	0.049 (2)	0.050 (2)	0.048 (2)	0.0151 (19)	0.0191 (19)	0.0134 (19)
C9	0.040(2)	0.047 (2)	0.052 (2)	0.0128 (17)	0.0206 (18)	0.0145 (19)
C10	0.047 (2)	0.045 (2)	0.049 (2)	0.0142 (18)	0.0204 (19)	0.0084 (18)
C11	0.045 (2)	0.041 (2)	0.051 (2)	0.0073 (17)	0.0222 (19)	0.0070 (18)
C12	0.046 (2)	0.047 (2)	0.061 (3)	0.0122 (18)	0.025 (2)	0.012 (2)
C13	0.055 (3)	0.049 (2)	0.066 (3)	0.006 (2)	0.032 (2)	0.007 (2)
C14	0.066 (3)	0.051 (3)	0.062 (3)	0.010 (2)	0.029 (2)	0.018 (2)
C15	0.056 (3)	0.049 (2)	0.052 (2)	0.010 (2)	0.020 (2)	0.012 (2)
C16	0.044 (2)	0.049 (2)	0.054 (2)	0.0114 (18)	0.0170 (19)	0.0092 (19)
C17	0.070 (3)	0.073 (3)	0.096 (4)	0.009 (3)	0.053 (3)	0.015 (3)
C18	0.084 (4)	0.075 (3)	0.067 (3)	0.033 (3)	0.023 (3)	0.031 (3)

Geometric parameters (Å, °)

S1—C2	1.745 (4)	С6—Н6А	0.9300	
S1—C1	1.777 (5)	C7—H7A	0.9300	
S2—C10	1.714 (4)	C8—H8A	0.9300	
S2—C9	1.736 (4)	C10—C11	1.465 (6)	
N1-C8	1.269 (5)	C11—C12	1.382 (6)	
N1-C9	1.376 (5)	C11—C16	1.399 (6)	
N2—C9	1.305 (5)	C12—C13	1.380 (6)	

N2—N3	1 360 (5)	C12—H12A	0 9300
N3—C10	1 290 (5)	C13—C14	1 375 (6)
C1—H1B	0.9600	C13 - C17	1.573 (6)
C1—H1C	0.9600	C14 - C15	1.303 (6)
C1_H1D	0.9600	C14 - H14A	0.9300
$C_2 C_7$	1 384 (6)	$C_{14} = M_{14}$	1 380 (6)
$C_2 = C_1$	1.307(6)	$C_{15} = C_{10}$	1.509 (0)
$C_2 = C_3$	1.407 (0)	C16_H16A	0.0300
$C_3 = U_4$	0.0300	C17 H17A	0.9500
C4 C5	1 297 (6)	C17_H17P	0.9000
C4 - C3	1.307 (0)	С17—Н17В	0.9000
C4—H4A	0.9300	C_{1} H_{1} C_{1}	0.9600
C_{2}	1.392 (5)		0.9600
	1.442 (5)	CI8—HI8B	0.9600
C6C/	1.3/1 (6)	C18—H18C	0.9600
C2—S1—C1	103.0 (2)	N1—C9—S2	126.2 (3)
C10—S2—C9	86.66 (19)	N3—C10—C11	122.6 (4)
C8—N1—C9	119.2 (4)	N3—C10—S2	114.3 (3)
C9—N2—N3	112.4 (4)	C11—C10—S2	123.1 (3)
C10—N3—N2	113.2 (4)	C12—C11—C16	119.6 (4)
S1—C1—H1B	109.5	C12— $C11$ — $C10$	120.0 (4)
S1—C1—H1C	109.5	C16-C11-C10	120.3 (4)
H1B-C1-H1C	109.5	C13 - C12 - C11	120.3(1) 121.3(4)
SI_CI_HID	109.5	C13 - C12 - H12A	119.4
HIB_C1_HID	109.5	C_{11} C_{12} H_{12A}	119.4
HIC_C1_HID	109.5	C14 - C13 - C12	119.7 118.7(4)
C7 C2 C3	118.8(A)	C14 $C13$ $C12$	120.4(4)
C7 - C2 - C3	124.6 (3)	C12 - C13 - C17	120.4(4) 120.9(4)
$C_{1}^{2} = C_{2}^{2} = S_{1}^{2}$	124.0(3)	$C_{12} = C_{13} = C_{17}$	120.9(4) 121.0(4)
$C_{3} = C_{2} = C_{3}$	110.0(3) 120.5(4)	$C_{13} = C_{14} = C_{15}$	121.9 (4)
C4 = C3 = C2	120.3 (4)	C15 - C14 - III4A	119.1
$C_4 = C_5 = H_2 B$	119.0	C15 - C14 - H14A	119.1
$C_2 = C_3 = C_5$	119.8	C16 - C15 - C14	110.3(4)
$C_3 = C_4 = U_4$	121.1 (4)	C10 - C13 - C18	120.2(4)
C_{3} — C_{4} — H_{4} A	119.4	C14 - C15 - C18	121.3(4)
$C_3 = C_4 = H_4 A$	119.4		120.0 (4)
C4 - C5 - C6	118.1(4)	C13 - C16 - H16A	120.0
C4 - C5 - C8	122.7 (4)	C11—C16—H16A	120.0
	119.2 (4)	C13 - C17 - H17A	109.5
C/	121.5 (4)	C13—C1/—H1/B	109.5
С/—С6—Н6А	119.2	H1/A—C1/—H1/B	109.5
С5—С6—Н6А	119.2	C13—C17—H17C	109.5
C6—C7—C2	120.0 (4)	H17A—C17—H17C	109.5
С6—С7—Н7А	120.0	H17B—C17—H17C	109.5
С2—С7—Н7А	120.0	C15—C18—H18A	109.5
N1—C8—C5	122.3 (4)	C15—C18—H18B	109.5
N1—C8—H8A	118.9	H18A—C18—H18B	109.5
C5—C8—H8A	118.9	C15—C18—H18C	109.5
N2C9N1	120.4 (4)	H18A—C18—H18C	109.5

supporting information

N2—C9—S2	113.3 (3)	H18B—C18—H18C	109.5
C9—N2—N3—C10	-0.7 (7)	C10—S2—C9—N1	-179.3 (4)
C1—S1—C2—C7	8.1 (5)	N2—N3—C10—C11	179.3 (4)
C1—S1—C2—C3	-172.1 (4)	N2—N3—C10—S2	0.1 (6)
C7—C2—C3—C4	0.0 (7)	C9—S2—C10—N3	0.3 (4)
S1—C2—C3—C4	-179.8 (4)	C9—S2—C10—C11	-178.9 (4)
C2—C3—C4—C5	-1.0 (7)	N3-C10-C11-C12	-8.1 (7)
C3—C4—C5—C6	1.9 (7)	S2-C10-C11-C12	171.1 (3)
C3—C4—C5—C8	-177.0 (4)	N3-C10-C11-C16	172.7 (4)
C4—C5—C6—C7	-1.9 (7)	S2-C10-C11-C16	-8.2 (6)
C8—C5—C6—C7	177.0 (4)	C16—C11—C12—C13	0.8 (7)
C5—C6—C7—C2	1.0 (7)	C10-C11-C12-C13	-178.5 (4)
C3—C2—C7—C6	0.0 (7)	C11—C12—C13—C14	-1.6 (7)
S1—C2—C7—C6	179.8 (3)	C11—C12—C13—C17	179.1 (4)
C9—N1—C8—C5	178.8 (4)	C12—C13—C14—C15	1.3 (7)
C4—C5—C8—N1	6.6 (7)	C17—C13—C14—C15	-179.4 (4)
C6C5C8N1	-172.3 (4)	C13—C14—C15—C16	-0.2 (7)
N3—N2—C9—N1	179.6 (4)	C13—C14—C15—C18	-178.1 (5)
N3—N2—C9—S2	0.9 (6)	C14—C15—C16—C11	-0.7 (7)
C8—N1—C9—N2	-168.9 (4)	C18—C15—C16—C11	177.2 (4)
C8—N1—C9—S2	9.7 (6)	C12—C11—C16—C15	0.4 (6)
C10—S2—C9—N2	-0.7 (4)	C10-C11-C16-C15	179.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	D····A	D—H··· A
C7—H7 A ···N2 ⁱ	0.93	2.58	3.223 (6)	126
C8—H8A…S2	0.93	2.59	3.041 (5)	110

Symmetry code: (i) x+1, y, z.