

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-2-[(4-Fluorophenyl)iminomethyl]-5-methoxyphenol

Çiğdem Albayrak,^a* Arzu Özek,^b Başak Koşar,^a Mustafa Odabaşoğlu^c and Orhan Büyükgüngör^b

^aFaculty of Education, Sinop University, Sinop, Turkey, ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^cChemistry Programme, Denizli Higher Vocational School, Pamukkale University, TR-20159 Denizli, Turkey Correspondence e-mail: calbayrak@sinop.edu.tr

Received 4 January 2010; accepted 5 January 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.104; data-to-parameter ratio = 8.3.

In the molecule of the title compound, $C_{14}H_{12}FNO_2$, the aromatic rings are oriented at a dihedral angle of 48.17 (1)°. An intramolecular O-H···N hydrogen bond results in the formation of a six-membered ring. The title molecule is a phenol-imine tautomer, as evidenced by the C-O [1.351 (3) Å], C-N [1.282 (3) Å], and C-C [1.416 (3)-1.445 (3) Å] bond lengths. In the crystal, molecules are linked by intermolecular C-H··· π interactions.

Related literature

The present work is part of a structural study of Schiff bases, see: Özek *et al.* (2007); Odabaşoğlu *et al.* (2007); Albayrak *et al.* (2005). For related structures, see: Özek *et al.* (2007, 2009).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{12}\text{FNO}_2\\ M_r = 245.25\\ \text{Monoclinic, }Pc\\ a = 13.1806 \ (7) \ \text{\AA}\\ b = 7.1785 \ (5) \ \text{\AA}\\ c = 6.4297 \ (3) \ \text{\AA}\\ \beta = 97.967 \ (4)^\circ \end{array}$

 $V = 602.49 (6) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.68 \times 0.48 \times 0.17 \text{ mm}$

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.932, T_{max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.104$ S = 1.091399 reflections 168 parameters 3 restraints 6287 measured reflections 1399 independent reflections 1273 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.20\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.11\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of C1-C6 and C9-C14 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} \text{O1-H1}\cdots\text{N1} \\ \text{C6-H6}\cdots\text{Cg1}^{\text{i}} \\ \text{C11-H11}\cdots\text{Cg2}^{\text{ii}} \\ \text{C14-H14}\cdots\text{Cg2}^{\text{iii}} \end{array}$	0.82 (2)	1.87 (2)	2.615 (3)	150 (3)
	0.93	2.73	3.4363	133
	0.93	2.93	3.6414	134
	0.93	2.91	3.6076	133

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$; (iii) $x, -y, z - \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5163).

References

- Albayrak, Ç., Odabasoglu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, 0423–0424.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijeshi, A. M. & Yathirajan, H. S. (2007). *Acta Cryst.* E**63**, o1916–o1918.
- Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2153.
- Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, 0177–0180.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2010). E66, o315 [https://doi.org/10.1107/S1600536810000474]

(E)-2-[(4-Fluorophenyl)iminomethyl]-5-methoxyphenol

Çiğdem Albayrak, Arzu Özek, Başak Koşar, Mustafa Odabaşoğlu and Orhan Büyükgüngör

S1. Comment

The present work is part of a structural study of Schiff bases (Özek *et al.*, 2009; Özek *et al.*, 2007) and we report here the structure of (E)-2-(4-Fluorophenylimino)methyl-5-methoxyphenol, (I).

The *ortho*-hydroxy Schiff Bases that show tautomerism by the intramolecular proton transfer from an oxygen atom to the neighboring nitrogen atom are important compounds. These compounds can exist in three different structures as enol, keto or zwitterionic forms in the solid state. The title compound (I) consists of two aromatic rings (C1 to C6 and C9 to C14), and an imino frame (C9—N1—C8—C1). In (*E*)-2-(4-Fluorophenylimino)methyl- 5-methoxyphenol which adopts an E configuration about the C=N double bond, dihedral angle between the aromatic rings is 48.17 (1) °. The H atom in title compound (I) is located on atom O1, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C2—O1, C8—N1, C1—C8 and C1—C2 bond lengths (Fig. 1 and Table 2). The O1—C2 bond length of 1.351 (2) Å indicates single-bond character, whereas the N1—C8 bond length of 1.283 (2) Å indicates double-bond character. A similar work was observed for X-ray crystal and computational structural study of (*E*)-2-[(4-bromophenyl)-iminomethyl] -4-methoxyphenol [C—O=1.358 (4) Å, C—N= 1.287 (4) Å, Özek *et al.*, 2007].

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or nonplanarity of the molecule, respectively. Therefore, one can expect photochromic properties in (I) caused by non-planarity of the molecules; the dihedral angle between rings A(C1—C6) and B ring (C9—C14) is 48.17 (1) °. The intramolecular O —H···N hydrogen bond (Table 1) results in the formation of six-membered ring and it generates an S(6) ring motif. The O1···N1 distance of 2.614 (2) Å is comparable to those observed for analogous hydrogen bonds in "Three (*E*)-2-[(bromophenyl)iminomethyl]-4-methoxyphenols" [2.603 (2) Å, 2.638 (7) Å, 2.577 (4) Å; Özek *et al.*, 2007]. In the crystal structure, C—H··· π interactions exist (Table 1) (Fig. 2).

S2. Experimental

The compound (*E*)-2-(4-Fluorophenylimino)methyl-5-methoxyphenol was prepared by reflux a mixture of a solution containing 4-methoxysalicylaldehyde (0.5 g 3.3 mmol) in 20 ml e thanol and a solution containing 4-fluoroaniline (0.37 g 3.3 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (*E*)-2-(4-Fluorophenyl-imino)methyl-5-methoxyphenol suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield % 82; m.p. 368–369 K).

S3. Refinement

All H atoms except the hydroxyl H atom (which was freely refined) were refined using riding model with C—H distances of 0.96 Å for the methyl group and 0.93 Å for other H atoms. The displacement parameters of these H atoms were fixed at 1.2 U_{eq} of their parent carbon atom or 1.5 U_{eq} for the methyl group. The absolute structure could not be determined, and 1150 Friedel pairs were averaged before the last refinement.

Figure 1

A view of (I), with the atom-numbering scheme. Dashed line indicates intramolecular hydrogen bond.

Figure 2

A partial packing diagram for (I), with C—H···Cg bonds shown as dashed lines. Cg1 and Cg2 are the centroids of C1— C6 and C9—C14 rings, respectively. Symmetry codes: (i) x, -y, z + 1/2; (ii) x, -y + 1, z + 1/2; (iii) x, -y, z - 1/2.

(E)-2-[(4-Fluorophenyl)iminomethyl]-5-methoxyphenol

Crystal data

C₁₄H₁₂FNO₂ $M_r = 245.25$ Monoclinic, *Pc* Hall symbol: P -2yc a = 13.1806 (7) Å b = 7.1785 (5) Å c = 6.4297 (3) Å $\beta = 97.967$ (4)° V = 602.49 (6) Å³ Z = 2 F(000) = 256 $D_x = 1.352 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11108 reflections $\theta = 1.6-28.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KPlate, yellow $0.68 \times 0.48 \times 0.17 \text{ mm}$ Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator Detector resolution: 6.67 pixels mm ⁻¹ ω -scan rotation method Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002) $T_{\min} = 0.932, T_{\max} = 0.985$	6287 measured reflections 1399 independent reflections 1273 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -17 \rightarrow 17$ $k = -9 \rightarrow 9$ $l = -8 \rightarrow 8$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.104$ S = 1.09 1399 reflections 168 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0672P)^2 + 0.0142P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å ⁻³ $\Delta\rho_{min} = -0.11$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.022 (7)

Special details

Experimental. 237 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.67815 (17)	0.7844 (3)	0.5679 (3)	0.0430 (5)	
C2	0.68722 (16)	0.7118 (3)	0.3666 (3)	0.0452 (5)	
C3	0.78232 (18)	0.6912 (3)	0.3009 (4)	0.0473 (5)	
Н3	0.7878	0.6379	0.1711	0.057*	
C4	0.86907 (16)	0.7504 (3)	0.4299 (3)	0.0448 (5)	
C5	0.86142 (16)	0.8247 (3)	0.6292 (3)	0.0482 (5)	
Н5	0.9199	0.8648	0.7153	0.058*	
C6	0.76785 (16)	0.8378 (3)	0.6958 (3)	0.0472 (5)	
H6	0.7637	0.8834	0.8297	0.057*	
C7	0.9809 (2)	0.6644 (5)	0.1854 (5)	0.0735 (7)	
H7A	0.9579	0.5374	0.1792	0.088*	
H7B	1.0525	0.6683	0.1720	0.088*	
H7C	0.9429	0.7339	0.0730	0.088*	

C8	0.58033 (17)	0.7980(3)	0.6444 (3)	0.0465 (5)	
H8	0.5785	0.8356	0.7822	0.056*	
C9	0.40316 (17)	0.7582 (3)	0.6157 (4)	0.0456 (5)	
C10	0.39603 (19)	0.6839 (3)	0.8123 (4)	0.0539 (5)	
H10	0.4544	0.6382	0.8942	0.065*	
C11	0.3028 (2)	0.6775 (4)	0.8871 (4)	0.0606 (6)	
H11	0.2976	0.6270	1.0184	0.073*	
C12	0.21810 (19)	0.7470 (4)	0.7637 (5)	0.0598 (6)	
C13	0.22135 (19)	0.8207 (4)	0.5678 (4)	0.0607 (6)	
H13	0.1625	0.8667	0.4877	0.073*	
C14	0.31454 (17)	0.8245 (4)	0.4932 (4)	0.0522 (5)	
H14	0.3185	0.8717	0.3599	0.063*	
N1	0.49593 (14)	0.7598 (2)	0.5277 (3)	0.0485 (5)	
01	0.60343 (14)	0.6613 (3)	0.2332 (3)	0.0631 (5)	
O2	0.96531 (13)	0.7433 (3)	0.3800 (3)	0.0561 (4)	
F1	0.12629 (15)	0.7419 (3)	0.8381 (4)	0.0922 (6)	
H1	0.553 (2)	0.676 (4)	0.294 (5)	0.079 (10)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0418 (10)	0.0416 (11)	0.0453 (12)	-0.0015 (8)	0.0053 (8)	-0.0006 (8)
C2	0.0420 (11)	0.0492 (11)	0.0433 (12)	-0.0009 (8)	0.0020 (9)	-0.0016 (8)
C3	0.0479 (11)	0.0539 (12)	0.0406 (10)	-0.0011 (9)	0.0075 (8)	-0.0044 (9)
C4	0.0433 (11)	0.0459 (10)	0.0459 (12)	0.0014 (8)	0.0083 (9)	0.0045 (9)
C5	0.0439 (11)	0.0547 (11)	0.0443 (11)	-0.0041 (8)	-0.0003 (9)	-0.0031 (9)
C6	0.0493 (12)	0.0510 (11)	0.0403 (11)	-0.0007 (8)	0.0034 (9)	-0.0047 (8)
C7	0.0540 (14)	0.109 (2)	0.0612 (15)	-0.0001 (14)	0.0216 (11)	-0.0148 (14)
C8	0.0456 (11)	0.0472 (11)	0.0467 (11)	0.0012 (8)	0.0068 (9)	-0.0022 (8)
C9	0.0427 (11)	0.0453 (11)	0.0492 (12)	-0.0012 (8)	0.0073 (9)	-0.0028 (8)
C10	0.0521 (12)	0.0561 (12)	0.0527 (13)	0.0052 (10)	0.0051 (10)	0.0028 (10)
C11	0.0668 (16)	0.0630 (13)	0.0541 (13)	-0.0032 (12)	0.0158 (12)	0.0027 (11)
C12	0.0453 (13)	0.0678 (14)	0.0692 (17)	-0.0077 (10)	0.0184 (12)	-0.0090 (12)
C13	0.0435 (12)	0.0705 (15)	0.0663 (17)	-0.0007 (11)	0.0008 (11)	-0.0035 (12)
C14	0.0461 (12)	0.0593 (12)	0.0503 (13)	-0.0003 (9)	0.0041 (9)	0.0013 (10)
N1	0.0415 (10)	0.0532 (10)	0.0509 (11)	0.0016 (8)	0.0063 (8)	-0.0004 (8)
01	0.0438 (8)	0.0922 (12)	0.0515 (9)	-0.0082 (8)	0.0007 (7)	-0.0194 (9)
O2	0.0420 (8)	0.0746 (12)	0.0529 (9)	-0.0021 (7)	0.0108 (7)	-0.0033 (8)
F1	0.0568 (10)	0.1257 (16)	0.1005 (15)	-0.0092 (10)	0.0334 (9)	-0.0025 (11)

Geometric parameters (Å, °)

C1—C6	1.397 (3)	C8—N1	1.282 (3)	
C1—C2	1.416 (3)	C8—H8	0.9300	
C1—C8	1.445 (3)	C9—C10	1.387 (3)	
C2—O1	1.351 (3)	C9—C14	1.399 (3)	
C2—C3	1.385 (3)	C9—N1	1.417 (3)	
C3—C4	1.383 (3)	C10—C11	1.381 (3)	

С3—Н3	0.9300	C10—H10	0.9300
C4—O2	1.352 (3)	C11—C12	1.371 (4)
C4—C5	1 404 (3)	C11—H11	0.9300
C5-C6	1.364(3)	$C12$ _F1	1 362 (3)
C5 H5	0.0300	C_{12} C_{13}	1.302(3) 1.372(4)
	0.9300	C12 - C13	1.372(4)
	0.9300		1.379 (3)
C/	1.414 (3)	C13—H13	0.9300
C/—H/A	0.9600	C14—H14	0.9300
С7—Н7В	0.9600	O1—H1	0.824 (19)
С7—Н7С	0.9600		
C6 C1 C2	117.86 (10)	N1 C8 C1	121 03 (10)
$C_0 = C_1 = C_2$	117.00(19) 120.22(10)	N1 = C0 = C1	121.95 (19)
$C_0 - C_1 - C_0$	120.22(19)	$NI = C_0 = H_0$	119.0
$C_2 = C_1 = C_8$	121.89 (18)	$CI = C_8 = H_8$	119.0
01 - 02 - 03	118.2 (2)	C10 - C9 - C14	119.1 (2)
01	120.96 (19)	C10—C9—N1	122.6 (2)
C3—C2—C1	120.86 (18)	C14—C9—N1	118.2 (2)
C4—C3—C2	119.5 (2)	C11—C10—C9	120.4 (2)
С4—С3—Н3	120.3	C11—C10—H10	119.8
С2—С3—Н3	120.3	С9—С10—Н10	119.8
O2—C4—C3	124.8 (2)	C12-C11-C10	118.6 (3)
O2—C4—C5	114.78 (19)	C12—C11—H11	120.7
C3—C4—C5	120.4 (2)	C10-C11-H11	120.7
C6—C5—C4	119.69 (19)	F1—C12—C11	118.6 (3)
С6—С5—Н5	120.2	F1—C12—C13	118.4 (3)
С4—С5—Н5	120.2	C11—C12—C13	123.0 (2)
C5-C6-C1	121.6 (2)	C12-C13-C14	1180(2)
C5—C6—H6	119.2	C12—C13—H13	121.0
C1_C6_H6	119.2	C12 - C13 - H13	121.0
$\Omega^2 - \Omega^7 - H7A$	109.5	C_{13} C_{14} C_{9}	121.0 120.8(2)
$O_2 = C_7 = H_7 R$	100.5	$C_{13} = C_{14} = C_{3}$	110.6
	109.5	$C_{13} - C_{14} - H_{14}$	119.0
$\Pi/A - C / - \Pi/B$	109.5	C_{9} C_{14} $C_$	119.0
	109.5	$C_0 = N_1 = C_9$	119.00 (17)
H/A - C/ - H/C	109.5	C2—O1—H1	108 (3)
H/B—C/—H/C	109.5	C4—O2—C7	118.77 (19)
C6-C1-C2-O1	-1786(2)	C14—C9—C10—C11	-0.7(3)
$C_{8} - C_{1} - C_{2} - O_{1}$	35(3)	N1 - C9 - C10 - C11	-1769(2)
C6-C1-C2-C3	13(3)	C9-C10-C11-C12	-0.4(4)
$C_{8} - C_{1} - C_{2} - C_{3}$	-176.6(2)	C_{10} C_{11} C_{12} F_{1}	-1795(2)
$C_{1} = C_{1} = C_{2} = C_{3}$	176.0(2)	$C_{10} = C_{11} = C_{12} = C_{13}$	179.3(2)
$C_1 = C_2 = C_3 = C_4$	-2.1(2)	$E_{10} = C_{11} = C_{12} = C_{13}$	0.9(4)
C1 = C2 = C3 = C4	-5.1(5)	$\Gamma_1 = C_{12} = C_{13} = C_{14}$	-1/9.7(2)
$C_2 = C_3 = C_4 = C_5$	-1/(.00(19))	$C_{11} - C_{12} - C_{13} - C_{14}$	-0.1(4)
$C_2 = C_3 = C_4 = C_3$	2.3 (3)	$C_{12} - C_{13} - C_{14} - C_{9}$	-1.1(4)
02 - 04 - 05 - 06	-1/9.79(19)	10 - 09 - 014 - 013	1.5 (3)
	0.2 (3)	N1 - C9 - C14 - C13	1//.9(2)
C4—C5—C6—C1	-2.1 (3)	C1—C8—N1—C9	1/4.01 (17)
C2-C1-C6-C5	1.3 (3)	C10-C9-N1-C8	-40.8(3)

C8—C1—C6—C5	179.26 (19)	C14—C9—N1—C8	143.0 (2)
C6—C1—C8—N1	176.2 (2)	C3—C4—O2—C7	-2.2 (3)
C2—C1—C8—N1	-5.9 (3)	C5—C4—O2—C7	177.8 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C1-C6 and C9-C14 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
01—H1…N1	0.82 (2)	1.87 (2)	2.615 (3)	150 (3)
C6—H6··· $Cg1^i$	0.93	2.73	3.4363	133
C11—H11··· <i>Cg</i> 2 ⁱⁱ	0.93	2.93	3.6414	134
C14—H14···Cg2 ⁱⁱⁱ	0.93	2.91	3.6076	133

Symmetry codes: (i) *x*, -*y*, *z*+1/2; (ii) *x*, -*y*+1, *z*+1/2; (iii) *x*, -*y*, *z*-1/2.