

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bipyridyl- $\kappa^2 N$,N')(sulfato- $\kappa^2 O$,O')zinc(II) ethane-1,2-diol solvate

Kai-Long Zhong

Department of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China Correspondence e-mail: zklong@tom.com

Received 19 December 2009; accepted 25 December 2009

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.088; data-to-parameter ratio = 16.0.

The title compound, $[Zn(SO_4)(C_{10}H_8N_2)_2]\cdot C_2H_6O_2$, is a sixcoordinate zinc(II) complex with a distorted octahedral coordination geometry. The Zn^{II} atom is bonded by two O atoms of the bidentate chelating sulfate ligand and four N atoms of the two chelating 2,2'-bipyridine ligands. The Zn-N bond distances range from 2.1287 (17) to 2.1452 (17) Å and the Zn-O bond distance is 2.1811 (15) Å. The two chelating NCCN groups subtend a dihedral angle of 81.1 (1)°. In the crystal structure, the $[ZnSO_4(C_{10}H_8N_2)_2]$ and $C_2H_6O_2$ units are connected by intermolecular O-H···O hydrogen bonding, which leads to additional stabilization of the structure.

Related literature

For related compounds, see: Liu & Arora (1993); Harvey *et al.* (2001, 2002); Jian *et al.* (2004); Rodrigues (2004); Juric *et al.* (2006); Zhu *et al.* (2006); Yu *et al.* (2007); Zhong *et al.* (2007).

Experimental

Crystal data $[Zn(SO_4)(C_{10}H_8N_2)_2] \cdot C_2H_6O_2$ $M_r = 535.90$ Monoclinic, C2/c a = 17.017 (3) Å b = 11.890 (2) Å c = 12.831 (3) Å $\beta = 122.14$ (3)°

 $V = 2198.3 (10) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 1.26 \text{ mm}^{-1}$ T = 223 K $0.55 \times 0.45 \times 0.20 \text{ mm}$ $R_{\rm int} = 0.021$

6138 measured reflections

2489 independent reflections

2155 reflections with $I > 2\sigma(I)$

Data collection

Rigaku Mercury CCD

diffractometer Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{min} = 0.747, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	156 parameters
$wR(F^2) = 0.088$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
2489 reflections	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

	. 1		
N2-Zn1-N1	76.61 (7)	$O1^i - Zn1 - O1$	65.64 (8)
Zn1-O1	2.1811 (15)		
Zn1-N1	2.1452 (17)	S1-O1	1.4915 (15)
Zn1-N2	2.1287 (17)	S1-O2	1.4683 (15)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3-H3···O2	0.82	1.97	2.746 (2)	158

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The work was supported by Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2188).

References

Harvey, M., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 771–774.

Harvey, M., Baggio, S., Russi, S. & Baggio, R. (2003). Acta Cryst. C59, m171– m174.

Jacobson, R. A. (1998). REQAB. Rigaku Corportation, Tokyo, Japan.

Jian, F., Li, C., Sun, P. & Xiao, H. (2004). Acta Cryst. E60, m1811-m1812.

Juric, M., Planinic, P. & Giester, G. (2006). Acta Cryst. E62, m2826-m2829.

Liu, M. & Arora, S. K. (1993). Acta Cryst. C49, 372-374.

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Rodrigues, B. L. (2004). Acta Cryst. E60, m1169-m1171.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yu, Y., Zhen, W. & Albrecht-Schmitt, T. E. (2007). Inorg. Chem. 46, 10214– 10220.

Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007). Acta Cryst. E63, m2208. Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725–m2726.

supporting information

Acta Cryst. (2010). E66, m131 [https://doi.org/10.1107/S1600536809055433] Bis(2,2'-bipyridyl- $\kappa^2 N$,N')(sulfato- $\kappa^2 O$,O')zinc(II) ethane-1,2-diol solvate

Kai-Long Zhong

S1. Comment

2,2'-bipyridyl(2,2'-bipy) is a well known neutral didentate ligand. Many metal zinc complexes with 2,2'-bipy have been previously synthesized and reported, such as bis(2,2'-bipyridyl) zinc(II) with diperchlorate (Liu & Arora, 1993), uranyl phosphate (Yu *et al.*, 2007), thiocyanate (Zhong *et al.*, 2007), oxalate (Juric *et al.*, 2006), azide (Jian *et al.*, 2004), acetate (Rodrigues, 2004). Moreover, the crystal structures of zinc complexes with monodente (Harvey *et al.*, 2003), bidentate chelating (Zhu *et al.*, 2006) and bidentate bridging sulfate (Harvey *et al.*, 2000) have been structurally characterized. Recently, we attempt to utilize polydentate and mixed ligands for the design of coordination networks. The title compound [ZnSO₄(C₁₀H₈N₂)₂].C₂H₆O₂, (I), which is very similar to the zinc complex with 1,10-phenanthroline instead of 2,2'-bipyridine (Zhu *et al.*, 2006), was obtained unitentionally during an attempt to synthesize mixed-ligand complex of Zn(II) with 2,2'-bipy and melamine *via* a solvothermal reaction. The crystal structure of the title complex has not hitherto been reported.

Single crystal X-ray diffraction experiment reveal that a twofold rotation axis (symmetry code: -*x*, *y*, - *z* + 1/2) passes through the Zn, S atoms, and also through the mid-point of C—C bond of the solvent, 1,2-ethanediol molecule. The Zn (II) ions are coordinated by four N atoms from two chelating 2,2'-bipy ligands and two O atoms from a bidentate-chelating salfate ligand, in a distorted octahedral geometry (Fig. 1. and Table 1.). The Zn—N bond distances range from 2.1287 (17)Å to 2.1452 (17)Å and Zn—O bond distance is 2.1811 (15) Å. The N—Zn—N bite angle, O—Zn—O bite angle and the dihedral angle between the two chelating NCCN groups is 76.61 (7) Å, 65.64 (8) Å and 81.1 (1) Å, respectively. The metal complex and solvent components of the title compound are held together by intermolecular O3—H3···O2 hydrogen bonding, which contribute to the stabilization of the structure (Fig.1 and Table 2.).

S2. Experimental

The title compound was obtained unexpectedly during an attempt to synthesize mixed-ligand complex of Zn(II) with phenol and melamine *via* a solvo-thermal reaction. Colorless prism-shaped single crystals of the title compound for X-ray diffraction determination were prepared by 0.2 mmol mixing 2,2'-bipyridine, 0.1 mmol melamine, 0.1 mmol ZnSO₄.7H₂O, 2.0 ml 1,3-propanediol and 1.0 ml water and then placing them in a thick Pyrex tube, which was sealed and heated to 423 K for 3 days.

S3. Refinement

All H atoms of 2,2'-bipyridyl were positioned geometrically and allowed to ride on their attached atoms, with C—H =0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of 1,2-ethanediol were locate in a difference map and then allowed to ride on their parent atoms, with C—H =0.97 Å and O—H =0.82 Å; $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I) showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related to the labeled atoms by the symmetry operator(-x, y, -z + 1/2).

Bis(2,2'-bipyridyl- $\kappa^2 N$, N')(sulfato- $\kappa^2 O$, O')zinc(II) ethane-1,2-diol solvate

Crystal data

$[Zn(SO_4)(C_{10}H_8N_2)_2] \cdot C_2H_6O_2$ $M_r = 535.90$ Monoclinic, $C2/c$ Hall symbol: -C 2yc a = 17.017 (3) Å b = 11.890 (2) Å c = 12.831 (3) Å $\beta = 122.14$ (3)° V = 2198.3 (10) Å ³ Z = 4	F(000) = 1104 $D_x = 1.619 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5954 reflections $\theta = 3.4-27.5^{\circ}$ $\mu = 1.26 \text{ mm}^{-1}$ T = 223 K Prism, colorless $0.55 \times 0.45 \times 0.20 \text{ mm}$
Data collection Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite Monochromator monochromator Detector resolution: 28.5714 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{min} = 0.747, T_{max} = 1.000$	6138 measured reflections 2489 independent reflections 2155 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -22 \rightarrow 22$ $k = -12 \rightarrow 15$ $l = -16 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0539P)^2]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
2489 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
156 parameters	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0173 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.0000	0.30659 (2)	0.2500	0.02342 (14)
S 1	0.0000	0.53723 (5)	0.2500	0.02518 (18)
N2	0.09876 (11)	0.19245 (12)	0.38322 (15)	0.0241 (4)
01	-0.04900 (9)	0.46074 (12)	0.14153 (13)	0.0304 (3)
O2	0.06823 (10)	0.60723 (12)	0.24320 (15)	0.0359 (4)
С9	0.16178 (16)	0.07532 (17)	0.5611 (2)	0.0327 (5)
H9A	0.1567	0.0452	0.6242	0.039*
C7	0.24124 (14)	0.09388 (16)	0.45508 (19)	0.0280 (4)
H7A	0.2911	0.0771	0.4469	0.034*
C8	0.23603 (14)	0.04818 (17)	0.55093 (19)	0.0316 (5)
H8A	0.2821	-0.0001	0.6074	0.038*
C10	0.09473 (14)	0.14816 (18)	0.47609 (19)	0.0307 (4)
H10A	0.0450	0.1670	0.4839	0.037*
C6	0.17124 (13)	0.16470 (15)	0.37204 (18)	0.0233 (4)
N1	0.10086 (11)	0.29012 (13)	0.19914 (16)	0.0246 (4)
C5	0.17129 (13)	0.21769 (16)	0.26699 (18)	0.0234 (4)
C4	0.23903 (15)	0.19633 (16)	0.2402 (2)	0.0299 (4)
H4A	0.2869	0.1461	0.2880	0.036*
C1	0.09742 (14)	0.34294 (18)	0.1043 (2)	0.0297 (4)
H1A	0.0494	0.3935	0.0581	0.036*
C2	0.16244 (16)	0.32515 (18)	0.0724 (2)	0.0326 (5)
H2A	0.1578	0.3625	0.0057	0.039*
C3	0.23444 (15)	0.25072 (19)	0.1417 (2)	0.0336 (5)

supporting information

H3A	0.2791	0.2374	0.1223	0.040*
O3	0.02134 (16)	0.82127 (14)	0.14925 (19)	0.0535 (5)
H3	0.0243	0.7602	0.1809	0.080*
C11	0.03464 (18)	0.90768 (19)	0.2313 (3)	0.0437 (6)
H11A	0.0316	0.9794	0.1934	0.052*
H11B	0.0963	0.9006	0.3045	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02046 (19)	0.0218 (2)	0.0288 (2)	0.000	0.01361 (15)	0.000
S1	0.0204 (3)	0.0203 (3)	0.0342 (4)	0.000	0.0141 (3)	0.000
N2	0.0227 (8)	0.0242 (8)	0.0248 (8)	-0.0007 (6)	0.0122 (7)	-0.0012 (6)
01	0.0258 (7)	0.0285 (7)	0.0321 (8)	0.0005 (6)	0.0120 (6)	-0.0016 (6)
O2	0.0303 (8)	0.0280 (7)	0.0520 (10)	-0.0042 (6)	0.0236 (7)	0.0030 (7)
C9	0.0364 (11)	0.0338 (11)	0.0273 (11)	0.0006 (9)	0.0166 (9)	0.0038 (9)
C7	0.0228 (9)	0.0263 (10)	0.0312 (11)	0.0022 (8)	0.0118 (8)	-0.0011 (8)
C8	0.0284 (10)	0.0290 (10)	0.0289 (11)	0.0030 (9)	0.0094 (9)	0.0030 (8)
C10	0.0296 (10)	0.0346 (11)	0.0303 (10)	0.0027 (9)	0.0176 (9)	0.0011 (9)
C6	0.0223 (9)	0.0195 (8)	0.0256 (9)	-0.0022 (7)	0.0111 (8)	-0.0042 (7)
N1	0.0219 (8)	0.0242 (8)	0.0287 (9)	-0.0002 (7)	0.0140 (7)	0.0004 (7)
C5	0.0213 (9)	0.0208 (9)	0.0261 (9)	-0.0025 (7)	0.0112 (8)	-0.0037 (7)
C4	0.0256 (10)	0.0307 (10)	0.0348 (11)	0.0036 (8)	0.0170 (9)	-0.0013 (9)
C1	0.0292 (10)	0.0297 (10)	0.0327 (11)	0.0033 (9)	0.0182 (9)	0.0056 (9)
C2	0.0358 (11)	0.0344 (11)	0.0337 (11)	-0.0045 (9)	0.0227 (10)	-0.0008 (9)
C3	0.0323 (11)	0.0372 (12)	0.0396 (12)	-0.0011 (10)	0.0247 (10)	-0.0045 (10)
O3	0.0912 (15)	0.0382 (9)	0.0511 (11)	0.0008 (9)	0.0513 (11)	0.0052 (8)
C11	0.0494 (14)	0.0302 (11)	0.0551 (16)	-0.0024 (10)	0.0301 (13)	0.0025 (10)

Geometric parameters (Å, °)

Zn1—N2 ⁱ	2.1287 (17)	C8—H8A	0.9300
Zn1—N2	2.1287 (17)	C10—H10A	0.9300
Zn1—N1	2.1452 (17)	C6—C5	1.488 (3)
Zn1—N1 ⁱ	2.1452 (17)	N1—C1	1.343 (3)
Zn1—O1 ⁱ	2.1811 (15)	N1—C5	1.351 (3)
Zn1—01	2.1811 (15)	C5—C4	1.390 (3)
Zn1—S1	2.7424 (8)	C4—C3	1.385 (3)
S1—O2	1.4683 (15)	C4—H4A	0.9300
$S1-O2^i$	1.4683 (14)	C1—C2	1.385 (3)
S1—01	1.4915 (15)	C1—H1A	0.9300
S101 ⁱ	1.4915 (15)	C2—C3	1.384 (3)
N2-C10	1.338 (3)	C2—H2A	0.9300
N2—C6	1.356 (3)	С3—НЗА	0.9300
С9—С8	1.376 (3)	O3—C11	1.401 (3)
C9—C10	1.385 (3)	O3—H3	0.8200
С9—Н9А	0.9300	C11—C11 ⁱ	1.490 (5)
С7—С6	1.383 (3)	C11—H11A	0.9700

supporting information

C7—C8	1.390 (3)	C11—H11B	0.9700
С7—Н7А	0.9300		
N2 ⁱ —Zn1—N2	100.78 (9)	C6—C7—C8	119.04 (19)
$N2^{i}$ —Zn1—N1	96.61 (7)	С6—С7—Н7А	120.5
N2—Zn1—N1	76.61 (7)	С8—С7—Н7А	120.5
$N2^{i}$ — $Zn1$ — $N1^{i}$	76.61 (7)	C9—C8—C7	119.1 (2)
$N2$ — $Zn1$ — $N1^{i}$	96.61 (7)	С9—С8—Н8А	120.4
N1—Zn1—N1 ⁱ	169.52 (9)	С7—С8—Н8А	120.4
$N2^{i}$ —Zn1—O1 ⁱ	156.73 (6)	N2-C10-C9	122.5 (2)
N_2 — Zn_1 — O_1^i	98.79 (6)	N2-C10-H10A	118.8
$N1$ — $Zn1$ — $O1^{i}$	100.06 (6)	C9-C10-H10A	118.8
$N1^{i}$ $Zn1$ $O1^{i}$	88.78 (6)	N2-C6-C7	121.72 (19)
$N2^{i}$ 7.01	98.79 (6)	N2-C6-C5	115.57(17)
N_2 —Zn1—O1	156.73 (6)	C7—C6—C5	122.69 (18)
N1 - Zn1 - O1	88.78 (6)	C1-N1-C5	118.56 (17)
$N1^{i}$ $Zn1$ $O1$	100.06 (6)	C1-N1-Zn1	125.22(14)
$O1^{i}$ Zn1 $O1$	65 64 (8)	C_{5} N1 Z_{n1}	116 18 (13)
$N2^{i}$ Zn1 S1	129 61 (4)	N1-C5-C4	121 68 (19)
$N_2 = Zn_1 = S_1$	129.61 (4)	N1-C5-C6	115 19 (17)
N1 - Zn1 - S1	95.24 (4)	C4-C5-C6	123.12 (18)
$N1^{i}$ Zn1 S1	95.24 (4)	C3-C4-C5	119.26 (19)
$O1^{i}$ Zn1 S1	32.82 (4)	C3—C4—H4A	120.4
O1-Zn1-S1	32.82 (4)	C5—C4—H4A	120.4
$02-81-02^{i}$	110.95 (12)	N1-C1-C2	122.7 (2)
02—S1—O1	110.94 (9)	N1—C1—H1A	118.7
O2 ⁱ —S1—O1	109.50 (8)	C2—C1—H1A	118.7
02—S1—O1 ⁱ	109.50 (8)	C3—C2—C1	118.8 (2)
$O2^{i}$ — $S1$ — $O1^{i}$	110.94 (9)	C3—C2—H2A	120.6
01—S1—O1 ⁱ	104.85 (12)	C1—C2—H2A	120.6
O2 - S1 - Zn1	124.53 (6)	C2—C3—C4	119.0 (2)
$O2^{i}$ —S1—Zn1	124.53 (6)	C2—C3—H3A	120.5
O1 - S1 - Zn1	52.43 (6)	С4—С3—Н3А	120.5
$O1^{i}$ $S1$ $Zn1$	52.43 (6)	C11—O3—H3	109.5
C10 - N2 - C6	118.62 (17)	$03-C11-C11^{i}$	113.7 (2)
C10 - N2 - Zn1	125.01(14)	03-C11-H11A	108.8
C6-N2-Zn1	116.37 (13)	C11 ⁱ —C11—H11A	108.8
S1-01-Zn1	94.75 (8)	03—C11—H11B	108.8
C8-C9-C10	119.0 (2)	C11 ⁱ —C11—H11B	108.8
C8—C9—H9A	120.5	H11A—C11—H11B	107.7
C10—C9—H9A	120.5		10/./
	120.0		
N2 ⁱ —Zn1—S1—O2	-114.55 (10)	N1 ⁱ —Zn1—O1—S1	84.03 (8)
N2—Zn1—S1—O2	65.45 (10)	O1 ⁱ —Zn1—O1—S1	0.0
N1—Zn1—S1—O2	-11.49 (9)	C10—C9—C8—C7	-0.5 (3)
N1 ⁱ —Zn1—S1—O2	168.51 (9)	C6—C7—C8—C9	-0.5 (3)
O1 ⁱ —Zn1—S1—O2	88.97 (11)	C6—N2—C10—C9	0.1 (3)
O1—Zn1—S1—O2	-91.03 (11)	Zn1—N2—C10—C9	-179.13 (15)

$N2^{i}$ —Zn1—S1—O2 ⁱ	65.45 (10)	C8—C9—C10—N2	0.8 (3)
$N2$ — $Zn1$ — $S1$ — $O2^{i}$	-114.55 (10)	C10—N2—C6—C7	-1.2 (3)
$N1$ — $Zn1$ — $S1$ — $O2^{i}$	168.51 (9)	Zn1—N2—C6—C7	178.11 (14)
$N1^{i}$ — $Zn1$ — $S1$ — $O2^{i}$	-11.49 (9)	C10—N2—C6—C5	-179.68 (17)
$O1^{i}$ —Zn1—S1— $O2^{i}$	-91.03 (11)	Zn1—N2—C6—C5	-0.4 (2)
$O1$ — $Zn1$ — $S1$ — $O2^{i}$	88.97 (11)	C8—C7—C6—N2	1.4 (3)
$N2^{i}$ —Zn1—S1—O1	-23.52 (9)	C8—C7—C6—C5	179.77 (18)
N2—Zn1—S1—O1	156.48 (9)	N2 ⁱ —Zn1—N1—C1	80.70 (17)
N1—Zn1—S1—O1	79.54 (9)	N2—Zn1—N1—C1	-179.74 (18)
N1 ⁱ —Zn1—S1—O1	-100.46 (9)	N1 ⁱ —Zn1—N1—C1	129.77 (17)
Ol ⁱ —Zn1—S1—O1	180.0	O1 ⁱ —Zn1—N1—C1	-83.00 (17)
$N2^{i}$ —Zn1—S1—O1 ⁱ	156.48 (9)	O1—Zn1—N1—C1	-18.01 (17)
$N2$ — $Zn1$ — $S1$ — $O1^{i}$	-23.52 (9)	S1—Zn1—N1—C1	-50.23 (17)
$N1$ — $Zn1$ — $S1$ — $O1^{i}$	-100.46 (9)	N2 ⁱ —Zn1—N1—C5	-97.15 (14)
$N1^{i}$ — $Zn1$ — $S1$ — $O1^{i}$	79.54 (9)	N2—Zn1—N1—C5	2.41 (13)
$O1$ — $Zn1$ — $S1$ — $O1^i$	180.0	N1 ⁱ —Zn1—N1—C5	-48.08 (13)
N2 ⁱ —Zn1—N2—C10	-87.46 (16)	O1 ⁱ —Zn1—N1—C5	99.15 (14)
N1—Zn1—N2—C10	178.23 (17)	O1—Zn1—N1—C5	164.14 (14)
N1 ⁱ —Zn1—N2—C10	-9.89 (17)	S1—Zn1—N1—C5	131.92 (13)
O1 ⁱ —Zn1—N2—C10	79.90 (16)	C1—N1—C5—C4	-0.5 (3)
O1—Zn1—N2—C10	125.73 (18)	Zn1—N1—C5—C4	177.47 (15)
S1—Zn1—N2—C10	92.54 (16)	C1—N1—C5—C6	178.66 (17)
N2 ⁱ —Zn1—N2—C6	93.31 (13)	Zn1—N1—C5—C6	-3.3 (2)
N1—Zn1—N2—C6	-1.00 (13)	N2-C6-C5-N1	2.5 (2)
N1 ⁱ —Zn1—N2—C6	170.88 (13)	C7—C6—C5—N1	-176.01 (17)
O1 ⁱ —Zn1—N2—C6	-99.33 (13)	N2-C6-C5-C4	-178.35 (18)
O1—Zn1—N2—C6	-53.5 (2)	C7—C6—C5—C4	3.2 (3)
S1—Zn1—N2—C6	-86.69 (13)	N1	0.1 (3)
O2—S1—O1—Zn1	118.12 (8)	C6—C5—C4—C3	-179.02 (18)
O2 ⁱ —S1—O1—Zn1	-119.09 (8)	C5—N1—C1—C2	0.8 (3)
O1 ⁱ —S1—O1—Zn1	0.0	Zn1—N1—C1—C2	-177.02 (15)
N2 ⁱ —Zn1—O1—S1	161.88 (7)	N1-C1-C2-C3	-0.6 (3)
N2—Zn1—O1—S1	-51.09 (18)	C1—C2—C3—C4	0.1 (3)
N1—Zn1—O1—S1	-101.62 (8)	C5—C4—C3—C2	0.1 (3)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	D····A	D—H···A
O3—H3…O2	0.82	1.97	2.746 (2)	158