Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

catena-Poly[[[triaquacadmium(II)]-μ-2,2'-[oxalylbis(azanediyl)]diacetato$\left.\kappa^{2} O, O^{\prime}\right]$ dihydrate]

Fangxia Zhou

Department of Chemistry , Jining University, Shandong 273155, People's Republic of China
Correspondence e-mail: fangxiazhou@yahoo.cn
Received 17 November 2009; accepted 3 December 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.023 ; w R$ factor $=0.058$; data-to-parameter ratio $=13.1$.

The structure of the polymeric title complex, $\left\{\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of chains running parallel to [101] in which the oxamidato ligand, deprotonated only at the carboxylate groups, acts as a bridging bismonodentate ligand. The Cd atom and the O atom of a coordinated water molecule are located on a twofold axis. The coordination geometry around the Cd atom is distorted trigonal-pyramidal. In the crystal structure, neighbouring chains are linked into a three-dimensional network by interchain $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the crystal structure of the corresponding copper(II) compound, see: Lloret et al. (1992).

Experimental

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$V=1331.2(5) \AA^{3}$
$M_{r}=404.61$
Monoclinic, $C 2 / c$
$a=7.0898$ (14) A
$b=8.0306(16) \AA$
$c=23.396(5) \AA$
$\beta=92.06(3)^{\circ}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.696, T_{\text {max }}=0.785$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 93$ parameters
$w R\left(F^{2}\right)=0.058$
$S=1.07$
1214 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.23 \times 0.18 \times 0.15 \mathrm{~mm}$

3445 measured reflections 1214 independent reflections 1171 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.53 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.86	2.31	3.024 (3)	141
$\mathrm{O} 4-\mathrm{H} 4 W 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.88	1.78	2.654 (2)	171
$\mathrm{O} 6-\mathrm{H} 6 W 2 \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.93	2.03	2.869 (3)	150
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~W} \cdots \mathrm{O} 4^{\text {iv }}$	0.83	1.89	2.717 (3)	170
$\mathrm{O} 4-\mathrm{H} 4 W 2 \cdots \mathrm{O}$	0.91	1.83	2.733 (3)	170
O6-H6W1 . ${ }^{\text {O }} 3$	0.88	1.97	2.839 (3)	170

Symmetry codes: (i) $x+1, y, z$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z ;$ (iii) $x-\frac{1}{2}, y+\frac{1}{2}, z ;$ (iv)
$x+\frac{1}{2}, y-\frac{1}{2}, z$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The financial support of the Science Foundation of Shandong is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2395).

References

Bruker, (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.
Lloret, F., Sletten, J., Ruiz, R., Julve, M., Faus, J. \& Verdaguer, M. (1992). Inorg. Chem. 31, 778-784.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

catena-Poly[[[triaquacadmium(II)]- $\mu-2,2^{\prime}$-[oxalylbis(azanediyl)]diacetato$\left.\kappa^{2} O, O^{\prime}\right]$ dihydrate]

Fangxia Zhou

S1. Comment

N -Substituted and $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted oxamides have played an important role in the design of new polymetallic systems. The versatility of these ligands is based on the wide variety of substituted derivatives which can be synthesized, yielding different numbers of chelate rings with different donor atoms, and on their easy cis-trans conformational change affording symmetric and asymmetric oxamidato bridges. A new polymeric cadmium(II) complex bridged by a symmetrical oxamide- $\mathrm{N}, \mathrm{N}^{\prime}$-diacetic acid ligand has been synthesized and its crystal structure is reported herein. The title compound (Fig. 1) is a polymeric cadmium(II) complex forming one-dimensional chains parallel to [$\left.\begin{array}{lll}1 & 0 & 1\end{array}\right]$. The Cd and the oxygen atom of a coordinated water molecules are located on a two-fold axis and the midpoint of the oxamide C - C bond on an inversion centre. The ligand is deprotonated only at the terminal carboxylate groups and acts as a bis-monodentate bridge. The coordination geometry around the Cd atom is distorted trigonal pyramidal, with atoms $\mathrm{O} 5, \mathrm{O} 1$ and $\mathrm{O} 1^{\mathrm{i}}$ [symmetry code: (i) $1-\mathrm{x}, \mathrm{y}, 1 / 2-\mathrm{z}$] at the equatorial plane and atoms O 4 and $\mathrm{O} 4^{\mathrm{i}}$ at the apical positions [$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}=178.29(8)^{\circ}$]. The sum of the $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angles within the equatorial plane is $359.99(9)^{\circ}$. The structure is similar to that previously reported for the copper(II) complex (Lloret et al., 1992). The cadmium-cadmium separation within the chain 12.369 (4) \AA. Strong interchain $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) result in the formation of a three-dimensional network (Fig. 2).

S2. Experimental

To a stirred methanol solution $(10 \mathrm{ml})$ containing $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} 3 \mathrm{H}_{2} \mathrm{O}(0.0581 \mathrm{~g}, 0.2 \mathrm{mmol})$ was added dropwise a methanol solution $(10 \mathrm{ml})$ of oxamide- $\mathrm{N}, \mathrm{N}^{\prime}$-diacetic acid $(0.0408 \mathrm{~g}, 0.2 \mathrm{mmol})$ and piperidine. The mixture was stirred quickly at 323 K for 5 h . The resulting solution at $\mathrm{pH}=3$ was filtered and the filtrate was kept at room temperature. Green crystals suitable for X -ray analysis were obtained from the filtrate by slow evaporation for 3 days (yield: 65%) Analysis, calculated for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Cd}$: C 17.81, H 3.99; N 6.92\%; found: C 17.89, H 3.97, N, 6.96\%.

S3. Refinement

Water H atoms were located in a difference Fourier map and isotropically refined with $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1
The polymeric structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Lattice water molecules generated by symmetry are omitted. [Symmetry codes: (A) 3/2-x, 1/2-y, -z; (B) 1-x, y, 1/2-z; (C) $1 / 2+x$, $1 / 2-y,-1 / 2+z]$.

Figure 2
Packing diagram of the title compound viewed along the a axis. Interchain H bonds are shown as dashed lines.
catena-Poly[[[triaquacadmium(II)]- $\mu_{2}-2,2^{\prime}-\left[\right.$ oxalylbis(azanediyl)]diacetato- $\left.\kappa^{2} O: O^{\prime}\right]$ dihydrate]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=404.61$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=7.0898$ (14) \AA
$b=8.0306$ (16) \AA
$c=23.396$ (5) \AA
$\beta=92.06$ (3) ${ }^{\circ}$
$V=1331.2(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.696, T_{\text {max }}=0.785$
$F(000)=808$
$D_{\mathrm{x}}=2.019 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3445 reflections
$\theta=3.5-25.2^{\circ}$
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.23 \times 0.18 \times 0.15 \mathrm{~mm}$

3445 measured reflections
1214 independent reflections
1171 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.2^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-7 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-25 \rightarrow 28$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.058$
$S=1.07$
1214 reflections
93 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.032 P)^{2}+1.2127 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.53 \mathrm{e} \AA^{-3}$
> Extinction correction: SHELXL, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0057 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C1	$0.6801(3)$	$0.3969(3)$	$0.15103(10)$	$0.0264(5)$
C2	$0.7678(4)$	$0.4894(3)$	$0.10180(11)$	$0.0300(6)$
H1A	0.6764	0.5681	0.0859	0.036^{*}
H1B	0.8756	0.5525	0.1166	0.036^{*}
C3	$0.7039(4)$	$0.3045(3)$	$0.02244(11)$	$0.0272(6)$
N1	$0.8284(3)$	$0.3821(3)$	$0.05672(9)$	$0.0308(5)$
H1	0.9470	0.3680	0.0519	0.037^{*}
O1	$0.5996(2)$	$0.4896(2)$	$0.18701(8)$	$0.0328(4)$
O2	$0.6869(3)$	$0.2444(3)$	$0.15559(9)$	$0.0407(5)$
O3	$0.5325(3)$	$0.3144(2)$	$0.02483(9)$	$0.0377(5)$
O4	$0.2191(3)$	$0.3021(2)$	$0.19554(8)$	$0.0304(4)$
H4W1	0.1704	0.2020	0.1897	0.080^{*}
H4W2	0.2397	0.3493	0.1608	0.080^{*}
O5	0.5000	$0.0250(3)$	0.2500	$0.0437(7)$
H5W	0.5695	-0.0341	0.2305	0.080^{*}
O6	$0.2377(2)$	$0.4466(2)$	$0.09015(8)$	$0.0362(4)$
H6W1	0.3381	0.4129	0.0726	0.080^{*}
H6W2	0.2583	0.5541	0.1036	0.080^{*}
Cd	0.5000	$0.29781(3)$	0.2500	$0.02762(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0266(12)$	$0.0301(13)$	$0.0225(12)$	$-0.0053(10)$	$-0.0004(9)$	$-0.0037(11)$

C2	$0.0376(14)$	$0.0280(13)$	$0.0250(13)$	$-0.0056(11)$	$0.0073(11)$	$-0.0049(11)$
C3	$0.0346(14)$	$0.0277(14)$	$0.0198(13)$	$0.0017(10)$	$0.0074(11)$	$0.0004(10)$
N1	$0.0326(11)$	$0.0351(12)$	$0.0253(11)$	$-0.0017(9)$	$0.0091(9)$	$-0.0060(10)$
O1	$0.0391(10)$	$0.0324(10)$	$0.0277(10)$	$-0.0058(8)$	$0.0108(8)$	$-0.0048(8)$
O2	$0.0580(13)$	$0.0273(10)$	$0.0375(12)$	$0.0003(10)$	$0.0107(10)$	$0.0027(9)$
O3	$0.0310(11)$	$0.0460(12)$	$0.0364(11)$	$0.0035(8)$	$0.0058(9)$	$-0.0099(9)$
O4	$0.0337(10)$	$0.0260(10)$	$0.0316(11)$	$-0.0015(7)$	$0.0027(8)$	$-0.0023(7)$
O5	$0.0417(15)$	$0.0282(14)$	$0.063(2)$	0.000	$0.0247(14)$	0.000
O6	$0.0353(10)$	$0.0368(11)$	$0.0368(11)$	$0.0000(8)$	$0.0055(8)$	$-0.0020(8)$
Cd	$0.0324(2)$	$0.02517(19)$	$0.02557(19)$	0.000	$0.00427(11)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2$	1.230 (3)	$\mathrm{O} 1-\mathrm{Cd}$	2.2621 (18)
C1-O1	1.274 (3)	$\mathrm{O} 4-\mathrm{Cd}$	2.326 (2)
C1-C2	1.522 (3)	O4-H4W1	0.8839
C2-N1	1.440 (3)	O4-H4W2	0.9134
$\mathrm{C} 2-\mathrm{H} 1 \mathrm{~A}$	0.9700	O5-Cd	2.191 (3)
C2-H1B	0.9700	O5-H5W	0.8320
C3-O3	1.221 (3)	O6-H6W1	0.8775
C3-O3	1.221 (3)	O6-H6W2	0.9280
C3-N1	1.326 (4)	$\mathrm{Cd}-\mathrm{Ol}^{\text {ii }}$	2.2621 (18)
C3-C3 ${ }^{\text {i }}$	1.531 (5)	$\mathrm{Cd}-\mathrm{O} 4{ }^{\text {ii }}$	2.326 (2)
N1-H1	0.8600		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	122.8 (2)	C1-O1-Cd	100.97 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	122.4 (2)	$\mathrm{Cd}-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~W} 1$	113.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	114.8 (2)	$\mathrm{Cd}-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~W} 2$	109.4
N1-C2-C1	113.7 (2)	H4W1-O4-H4W2	108.3
N1-C2-H1A	108.8	$\mathrm{Cd}-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~W}$	124.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1 \mathrm{~A}$	108.8	H6W1-O6-H6W2	109.0
N1-C2-H1B	108.8	$\mathrm{O} 5-\mathrm{Cd}-\mathrm{O} 1^{\text {ii }}$	132.90 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1 \mathrm{~B}$	108.8	$\mathrm{O} 5-\mathrm{Cd}-\mathrm{O} 1$	132.90 (4)
H1A-C2-H1B	107.7	$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Cd}-\mathrm{O} 1$	94.19 (9)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$	125.7 (2)	$\mathrm{O} 5-\mathrm{Cd}-\mathrm{O} 4$	90.86 (4)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$	125.7 (2)	$\mathrm{O} 1{ }^{\text {iii- }} \mathrm{Cd}-\mathrm{O} 4$	93.76 (7)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	121.3 (3)	$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 4$	85.08 (7)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	121.3 (3)	$\mathrm{O} 5-\mathrm{Cd}-\mathrm{O} 4{ }^{\text {ii }}$	90.86 (4)
N1-C3-C3 ${ }^{\text {i }}$	113.1 (3)	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cd}-\mathrm{O} 4{ }^{\text {ii }}$	85.08 (7)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	121.0 (2)	$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 4{ }^{\text {ii }}$	93.76 (7)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	119.5	$\mathrm{O} 4-\mathrm{Cd}-\mathrm{O} 4{ }^{\text {ii }}$	178.29 (8)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	119.5		

Symmetry codes: (i) $-x+3 / 2,-y+1 / 2,-z$; (ii) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H}^{\cdots} A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots 6^{\text {iii }}$	0.86	2.31	$3.024(3)$	141

supporting information

$\mathrm{O} 4 — \mathrm{H} 4 W 1 \cdots \mathrm{O} 1^{\text {iv }}$	0.88	1.78	$2.654(2)$	171
$\mathrm{O} 6 — \mathrm{H} 6 W 2 \cdots 2^{\mathrm{v}}$	0.93	2.03	$2.869(3)$	150
$\mathrm{O} 5-\mathrm{H} 5 W \cdots \mathrm{O} 4^{\text {vi }}$	0.83	1.89	$2.717(3)$	170
$\mathrm{O} 4 — \mathrm{H} 4 W 2 \cdots \mathrm{O} 6$	0.91	1.83	$2.733(3)$	170
$\mathrm{O} 6 — \mathrm{H} 6 W 1 \cdots \mathrm{O} 3$	0.88	1.97	$2.839(3)$	170

Symmetry codes: (iii) $x+1, y, z$; (iv) $x-1 / 2, y-1 / 2, z$; (v) $x-1 / 2, y+1 / 2, z$; (vi) $x+1 / 2, y-1 / 2, z$.

