Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(III) octacyanidotungstate(V)

Qian Jun and Chi Zhang*

Molecular Materials Research Center, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing 210094, People's Republic of China

Correspondence e-mail: zhangchinjust@yahoo.com

Received 13 November 2009; accepted 1 December 2009

Key indicators: single-crystal X-ray study; T = 250 K; mean σ (C–C) = 0.005 Å; R factor = 0.026; wR factor = 0.059; data-to-parameter ratio = 14.5.

In the title compound, $[Co(C_{10}H_8N_2)_3][W(CN)_8]$, the Co atom (..2 site symmetry) is coordinated by six N atoms from three 2,2'-bipyridine ligands in an octahedral geometry; the Co–N bond distances range from 1.926 (2) to 1.939 (2) Å. The W (..2 site symmetry) metal center is coordinated by eight cyanide ligands, resulting in a dodecahedral conformation with W–C distances in the range 1.165 (3)–2.176 (3) Å. The cations and anions are linked into a three-demensional structure by weak C–H···N hydrogen bonds.

Related literature

For compounds with similar architectures, see: Przychodzeń *et al.* (2006); Withers *et al.* (2005); Mathonière *et al.* (2005). For related structures, see: Liu *et al.* (2008); Chang *et al.* (2002).

Experimental

Crystal data $[Co(C_{10}H_8N_2)_3][W(CN)_8]$ $M_r = 919.48$

b = 15.141 (3) Å c = 20.007 (4) Å $V = 3473.0 (12) \text{ Å}^3$ Z = 4

Data collection

Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.841, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.059$ S = 1.103554 reflections 245 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.33$ e Å⁻³ $\Delta \rho_{min} = -0.41$ e Å⁻³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

12594 measured reflections

3554 independent reflections

3023 reflections with $I > 2\sigma(I)$

 $\mu = 3.84 \text{ mm}^-$

T = 250 K

 $R_{\rm int} = 0.018$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C4 - H4A \cdots N4^{i} \\ C10 - H10A \cdots N1^{ii} \\ C12 - H12A \cdots N2^{ii} \\ C1 - H1A \cdots N3 \end{array}$	0.93 0.93 0.93 0.93	2.53 2.54 2.51 2.50	3.371 (4) 3.032 (4) 3.008 (4) 2.993 (4)	151 114 114 113

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, z.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Graduate Innovation Foundation of Nanjing University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2237).

References

- Chang, F., Sun, H. L., Kou, H. Z. & Gao, S. (2002). Inorg. Chem. Commun. 5, 660–663.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152-m1153.
- Mathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem. Mater. 17, 442–449.
- Przychodzeń, P., Korzenial, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

Withers, J. R., Ruschmann, C., Bojang, P., Parkin, S. & Holmes, S. M. (2005). *Inorg. Chem.* 44, 352–358.

supporting information

Acta Cryst. (2010). E66, m12 [doi:10.1107/S1600536809051654]

Tris(2,2'-bipyridine- $\kappa^2 N, N'$)cobalt(III) octacyanidotungstate(V)

Qian Jun and Chi Zhang

S1. Comment

As the direct addition of transition metal salts and $[W(CN)_8]$ ions (Przychodzeń *et al.*, 2006; Withers *et al.*, 2005; Mathonière *et al.*, 2005) leads to the immediate precipitation, the title compound was obtained through the interdiffusion method (Liu *et al.*, 2008; Chang *et al.*, 2002). Based on the crystal structure determination, the cations, $[Co(C_{10}H_8N_2)_3]^{2+}$, and the anions, $[W(CN)_8]^{3-}$, have a molar ratio of 1:1. It means that the Co^{2+} of $Co(ClO_4)_2$ has been oxided into Co^{3+} during the reaction process.

As illustrated in Fig. 1, Co^{3+} has an octahedral geometry, coordinated by six nitrogen atoms from three 2,2'-bipyridine ligands. The W metal center is coordinated by eight cyanide ligands, forming a dodecahedron. The Co—N bond distances range from 1.926 (2) Å to 1.939 (2) Å, while the W—C distances in the [W(CN)₈] unit range from 1.165 (3) to 2.176 (3) Å and C—N distances lie between 1.137 (4) Å to 1.144 (4) Å. The cations and the anions are linked with each other by weak C—H···N hydrogen bond into a three-demensional structure. (Fig. 2).

S2. Experimental

 $Co(ClO_4)_2$. $6H_2O$ (146.4 mg, 0.4 mmol) and $(Bu_3N)_3[W(CN)_8]$ (44.72 mg, 0.1 mmol) were added into 2 ml dimethylformamide with thorough stirring for 5 minutes. After filtration, 2 ml dimethylformamide solvent and a solution of 2,2'bipyridine (124.96 mg, 0.8 mmol) in 2 ml CH₃OH were successively laid on the surface of the above filtrate. Red block crystals were obtained after five days.

S3. Refinement

H atoms were positioned geometrically and refined with riding model, with $U_{iso} = 1.2U_{eq}$ for pyridyl H atoms, the C—H bond is 0.93 Å in 2,2'-bipyridine. The highest peak in the final difference map was located at a distance of 2.12 Å from H2A and was chemically meaningless.

Figure 1

The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. [Symmetry codes: (i) -x + 1/2, -y + 1/2, z; (ii) -x + 3/2, -y + 1/2, z.]

Figure 2

The unit cell packing diagram.

Tris(2,2'-bipyridine- $\kappa^2 N, N'$) cobalt(III) octacyanidotungstate(V)

Crystal data	
$[Co(C_{10}H_8N_2)_3][W(CN)_8]$	F(000) = 1803
$M_r = 919.48$	$D_{\rm x} = 1.758 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pccn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 10230 reflections
a = 11.465 (2) Å	$\theta = 2.5 - 31.3^{\circ}$
b = 15.141 (3) Å	$\mu = 3.84 \text{ mm}^{-1}$
c = 20.007 (4) Å	T = 250 K
$V = 3473.0 (12) Å^3$	Prism, red
Z = 4	$0.20 \times 0.20 \times 0.20$ mm

Data collection

Rigaku Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 28.5714 pixels mm ⁻¹ dtprofit.ref scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.841, T_{max} = 1.000$	12594 measured reflections 3554 independent reflections 3023 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -14 \rightarrow 11$ $k = -15 \rightarrow 18$ $l = -25 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.059$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.10 3554 reflections	H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.0237P)^2 + 2.7418P]$
245 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.33 \text{ e } A^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm A}^{-3}$

Special details

Experimental. Yield: 62.1 mg in pure form, 42.1% based on Co. Analysis calculated for $C_{38}H_{24}CoN_{14}W$: C 49.59, H 2.61, N 21.32%; found: C 50.31, H 2.88, N 21.44%. IR: v, cm⁻¹,2132 s.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co1	0.2500	0.2500	0.44279 (2)	0.02694 (12)	
N1	0.0967 (2)	0.19603 (17)	0.44129 (11)	0.0332 (5)	
N2	0.2836 (2)	0.16505 (16)	0.37377 (12)	0.0329 (5)	
N3	0.2091 (2)	0.32944 (16)	0.51483 (12)	0.0328 (5)	
C1	0.0030 (3)	0.2192 (2)	0.47655 (17)	0.0474 (8)	
H1A	0.0068	0.2693	0.5033	0.057*	
C2	-0.0986 (3)	0.1720 (3)	0.47478 (18)	0.0574 (10)	
H2A	-0.1631	0.1906	0.4992	0.069*	
C3	-0.1042 (3)	0.0979 (3)	0.43700 (18)	0.0606 (11)	
H3A	-0.1725	0.0647	0.4358	0.073*	
C4	-0.0087 (3)	0.0716 (2)	0.40038 (18)	0.0521 (9)	
H4A	-0.0114	0.0204	0.3747	0.063*	
C5	0.0911 (3)	0.1222 (2)	0.40228 (14)	0.0352 (7)	
C6	0.1962 (2)	0.10663 (18)	0.36179 (14)	0.0321 (6)	

C7	0.2071 (3)	0.0426 (2)	0.31379 (16)	0.0434 (8)
H7A	0.1467	0.0027	0.3064	0.052*
C8	0.3073 (3)	0.0376 (2)	0.27679 (17)	0.0479 (8)
H8A	0.3156	-0.0056	0.2440	0.058*
C9	0.3944 (3)	0.0961 (2)	0.28839 (17)	0.0499 (9)
H9A	0.4628	0.0935	0.2635	0.060*
C10	0.3813 (3)	0.1595 (2)	0.33709 (16)	0.0442 (8)
H10A	0.4415	0.1995	0.3448	0.053*
C12	0.1644 (3)	0.4112 (2)	0.50934 (16)	0.0399 (7)
H12A	0.1572	0.4364	0.4671	0.048*
C13	0.1381 (3)	0.4211 (2)	0.62628 (17)	0.0530 (9)
H13A	0.1120	0.4514	0.6639	0.064*
C14	0.1288 (3)	0.4588 (2)	0.56437 (16)	0.0455 (8)
H14A	0.0989	0.5155	0.5595	0.055*
C11	0.1858 (3)	0.3387 (2)	0.63277 (17)	0.0522 (9)
H11A	0.1927	0.3130	0.6748	0.063*
C15	0.2235 (3)	0.2939 (2)	0.57651 (15)	0.0369 (7)
W1	0.7500	0.2500	0.194217 (8)	0.02995 (7)
N4	0.9827 (3)	0.3555 (2)	0.13727 (15)	0.0565 (8)
N5	0.8322 (3)	0.3742 (2)	0.32171 (16)	0.0571 (8)
N6	0.5146 (3)	0.3489 (2)	0.25333 (15)	0.0590 (8)
N7	0.6578 (3)	0.3788 (2)	0.07078 (15)	0.0569 (8)
C16	0.9012 (3)	0.3203 (2)	0.15643 (15)	0.0398 (7)
C17	0.8039 (3)	0.3325 (2)	0.27706 (16)	0.0401 (7)
C18	0.5961 (3)	0.3157 (2)	0.23298 (15)	0.0397 (7)
C19	0.6896 (3)	0.3344 (2)	0.11329 (16)	0.0396 (7)

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0231 (3)	0.0306 (3)	0.0271 (3)	-0.0031 (2)	0.000	0.000
0.0237 (12)	0.0422 (15)	0.0337 (13)	-0.0050 (11)	0.0019 (10)	0.0019 (11)
0.0287 (12)	0.0375 (14)	0.0326 (13)	-0.0011 (10)	0.0032 (10)	-0.0005 (11)
0.0290 (12)	0.0350 (13)	0.0343 (13)	-0.0030 (10)	0.0011 (10)	-0.0033 (11)
0.0336 (16)	0.063 (2)	0.0456 (18)	-0.0053 (16)	0.0092 (15)	-0.0064 (17)
0.0346 (18)	0.081 (3)	0.057 (2)	-0.0131 (18)	0.0170 (16)	-0.009 (2)
0.0351 (19)	0.080(3)	0.067 (2)	-0.0240 (19)	0.0093 (17)	-0.004 (2)
0.0433 (19)	0.055 (2)	0.058 (2)	-0.0181 (17)	0.0029 (16)	-0.0068 (18)
0.0304 (15)	0.0398 (17)	0.0356 (15)	-0.0044 (13)	-0.0006 (12)	0.0055 (14)
0.0301 (15)	0.0328 (15)	0.0334 (15)	-0.0011 (12)	-0.0028 (12)	0.0044 (13)
0.0379 (17)	0.0415 (19)	0.051 (2)	-0.0034 (15)	-0.0036 (14)	-0.0026 (15)
0.052 (2)	0.0439 (19)	0.0476 (19)	0.0035 (16)	0.0046 (17)	-0.0108 (16)
0.0405 (19)	0.061 (2)	0.0481 (19)	0.0016 (17)	0.0129 (16)	-0.0079 (17)
0.0307 (16)	0.053 (2)	0.0486 (19)	-0.0076 (14)	0.0094 (14)	-0.0056 (16)
0.0357 (16)	0.0383 (17)	0.0457 (18)	-0.0006 (14)	0.0011 (14)	0.0009 (15)
0.065 (2)	0.048 (2)	0.047 (2)	-0.0058 (18)	0.0108 (17)	-0.0167 (17)
0.0397 (18)	0.0386 (18)	0.058 (2)	-0.0019 (15)	0.0057 (15)	-0.0076 (16)
0.070 (3)	0.050 (2)	0.0364 (18)	-0.0059 (19)	0.0034 (17)	-0.0029 (16)
	$\begin{array}{c} U^{11} \\ \hline 0.0231 \ (3) \\ 0.0237 \ (12) \\ 0.0287 \ (12) \\ 0.0290 \ (12) \\ 0.0336 \ (16) \\ 0.0346 \ (18) \\ 0.0351 \ (19) \\ 0.0304 \ (15) \\ 0.0301 \ (15) \\ 0.0301 \ (15) \\ 0.0379 \ (17) \\ 0.052 \ (2) \\ 0.0405 \ (19) \\ 0.0307 \ (16) \\ 0.0357 \ (16) \\ 0.0357 \ (16) \\ 0.0357 \ (18) \\ 0.070 \ (3) \end{array}$	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0231 (3) & 0.0306 (3) \\ 0.0237 (12) & 0.0422 (15) \\ 0.0287 (12) & 0.0375 (14) \\ 0.0290 (12) & 0.0350 (13) \\ 0.0336 (16) & 0.063 (2) \\ 0.0346 (18) & 0.081 (3) \\ 0.0351 (19) & 0.080 (3) \\ 0.0433 (19) & 0.055 (2) \\ 0.0304 (15) & 0.0398 (17) \\ 0.0301 (15) & 0.0328 (15) \\ 0.0379 (17) & 0.0415 (19) \\ 0.052 (2) & 0.0439 (19) \\ 0.0405 (19) & 0.061 (2) \\ 0.0307 (16) & 0.053 (2) \\ 0.0397 (18) & 0.0386 (18) \\ 0.070 (3) & 0.050 (2) \\ \end{array}$	U^{11} U^{22} U^{33} 0.0231 (3)0.0306 (3)0.0271 (3)0.0237 (12)0.0422 (15)0.0337 (13)0.0287 (12)0.0375 (14)0.0326 (13)0.0290 (12)0.0350 (13)0.0343 (13)0.0336 (16)0.063 (2)0.0456 (18)0.0346 (18)0.081 (3)0.057 (2)0.0351 (19)0.080 (3)0.067 (2)0.0304 (15)0.0398 (17)0.0356 (15)0.0301 (15)0.0328 (15)0.0334 (15)0.0379 (17)0.0415 (19)0.051 (2)0.0405 (19)0.061 (2)0.0481 (19)0.0307 (16)0.053 (2)0.0486 (19)0.0357 (16)0.0383 (17)0.0457 (18)0.0397 (18)0.0386 (18)0.058 (2)0.070 (3)0.050 (2)0.0364 (18)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0231 (3) 0.0306 (3) 0.0271 (3) -0.0031 (2) 0.000 0.0237 (12) 0.0422 (15) 0.0337 (13) -0.0050 (11) 0.0019 (10) 0.0287 (12) 0.0375 (14) 0.0326 (13) -0.0011 (10) 0.0032 (10) 0.0290 (12) 0.0350 (13) 0.0343 (13) -0.0030 (10) 0.0011 (10) 0.0336 (16) 0.063 (2) 0.0456 (18) -0.0053 (16) 0.0092 (15) 0.0346 (18) 0.081 (3) 0.057 (2) -0.0131 (18) 0.0170 (16) 0.0351 (19) 0.080 (3) 0.067 (2) -0.0240 (19) 0.0093 (17) 0.0433 (19) 0.055 (2) 0.058 (2) -0.0181 (17) 0.0029 (16) 0.0304 (15) 0.0398 (17) 0.0356 (15) -0.0044 (13) -0.0006 (12) 0.0301 (15) 0.0328 (15) 0.0334 (15) -0.0011 (12) -0.0028 (12) 0.0307 (17) 0.0415 (19) 0.051 (2) -0.0034 (15) -0.0026 (14) 0.052 (2) 0.0439 (19) 0.0476 (19) 0.0035 (16) 0.0046 (17) 0.0405 (19) 0.061 (2) 0.0486 (19) -0.0076 (14) 0.0094 (14) 0.0357 (16) 0.0383 (17) 0.0457 (18) -0.0006 (14) 0.0111 (14) 0.065 (2) 0.048 (2) 0.047 (2) -0.0019 (15) 0.0057 (15) 0.070 (3) 0.050 (2) 0.0364 (18) -0.0059 (19) 0.0034 (17)

supporting information

a 1.	0.0050 (15)	0.000 (1.5)		0.0004 (1.0)	0.0014 (10)	
C15	0.0372 (17)	0.0398 (17)	0.0336 (15)	-0.0084 (13)	0.0014 (13)	-0.0033 (14)
W1	0.02626 (9)	0.03213 (11)	0.03147 (10)	0.00157 (7)	0.000	0.000
N4	0.0450 (17)	0.065 (2)	0.0592 (19)	-0.0143 (15)	0.0015 (15)	0.0043 (16)
N5	0.0503 (19)	0.062 (2)	0.0592 (19)	-0.0056 (16)	-0.0012 (15)	-0.0185 (16)
N6	0.0415 (17)	0.082 (2)	0.0530 (18)	0.0177 (16)	0.0023 (14)	-0.0080 (16)
N7	0.0489 (18)	0.069 (2)	0.0526 (18)	0.0133 (16)	0.0029 (14)	0.0204 (16)
C16	0.0356 (17)	0.0418 (17)	0.0421 (18)	-0.0027 (14)	-0.0030 (14)	0.0017 (15)
C17	0.0314 (16)	0.0430 (18)	0.0459 (18)	-0.0010 (14)	0.0006 (14)	-0.0029 (16)
C18	0.0346 (17)	0.0471 (19)	0.0373 (16)	0.0043 (14)	-0.0005 (13)	-0.0007 (15)
C19	0.0312 (16)	0.0458 (18)	0.0419 (17)	0.0057 (14)	0.0043 (14)	0.0032 (15)

Geometric parameters (Å, °)

Co1—N2	1.926 (2)	C8—H8A	0.9300	
Co1—N2 ⁱ	1.926 (2)	C9—C10	1.376 (4)	
Co1—N3 ⁱ	1.935 (2)	С9—Н9А	0.9300	
Co1—N3	1.935 (2)	C10—H10A	0.9300	
Co1—N1 ⁱ	1.939 (2)	C12—C14	1.377 (4)	
Co1—N1	1.939 (2)	C12—H12A	0.9300	
N1—C1	1.332 (4)	C13—C14	1.368 (5)	
N1—C5	1.364 (4)	C13—C11	1.368 (5)	
N2-C10	1.342 (4)	C13—H13A	0.9300	
N2—C6	1.358 (4)	C14—H14A	0.9300	
N3—C12	1.345 (4)	C11—C15	1.384 (4)	
N3—C15	1.357 (4)	C11—H11A	0.9300	
C1—C2	1.367 (5)	C15—C15 ⁱ	1.460 (6)	
C1—H1A	0.9300	W1-C17	2.165 (3)	
C2—C3	1.355 (5)	W1C17 ⁱⁱ	2.165 (3)	
C2—H2A	0.9300	W1C18 ⁱⁱ	2.169 (3)	
C3—C4	1.376 (5)	W1C18	2.169 (3)	
С3—НЗА	0.9300	W1-C16	2.170 (3)	
C4—C5	1.378 (4)	W1C16 ⁱⁱ	2.170 (3)	
C4—H4A	0.9300	W1-C19 ⁱⁱ	2.176 (3)	
С5—С6	1.471 (4)	W1-C19	2.176 (3)	
С6—С7	1.370 (4)	N4—C16	1.142 (4)	
С7—С8	1.369 (5)	N5—C17	1.141 (4)	
C7—H7A	0.9300	N6—C18	1.137 (4)	
С8—С9	1.355 (5)	N7—C19	1.144 (4)	
N2—Co1—N2 ⁱ	88.39 (15)	N2—C10—C9	121.5 (3)	
N2—Co1—N3 ⁱ	94.04 (11)	N2—C10—H10A	119.3	
N2 ⁱ —Co1—N3 ⁱ	176.06 (10)	C9—C10—H10A	119.3	
N2—Co1—N3	176.06 (10)	N3—C12—C14	121.9 (3)	
N2 ⁱ —Co1—N3	94.04 (11)	N3—C12—H12A	119.0	
N3 ⁱ —Co1—N3	83.70 (15)	C14—C12—H12A	119.0	
N2—Co1—N1 ⁱ	95.11 (10)	C14—C13—C11	119.8 (3)	
N2 ⁱ —Co1—N1 ⁱ	83.60 (10)	C14—C13—H13A	120.1	
N3 ⁱ —Co1—N1 ⁱ	93.09 (10)	C11—C13—H13A	120.1	

N3—Co1—N1 ⁱ	88.24 (10)	C13—C14—C12	118.9 (3)
N2—Co1—N1	83.60 (10)	C13—C14—H14A	120.6
N2 ⁱ —Co1—N1	95.11 (10)	C12—C14—H14A	120.6
N3 ⁱ —Co1—N1	88.24 (10)	C13—C11—C15	119.7 (3)
N3—Co1—N1	93.09 (10)	C13—C11—H11A	120.2
N1 ⁱ —Co1—N1	178.22 (13)	C15—C11—H11A	120.2
C1—N1—C5	118.7 (3)	N3—C15—C11	120.5 (3)
C1—N1—Co1	127.7 (2)	N3—C15—C15 ⁱ	114.32 (17)
C5—N1—Co1	113.36 (19)	C11—C15—C15 ⁱ	125.2 (2)
C10—N2—C6	118.6 (3)	C17—W1—C17 ⁱⁱ	80.10 (17)
C10—N2—Co1	126.9 (2)	C17—W1—C18 ⁱⁱ	76.03 (12)
C6—N2—Co1	114.46 (19)	C17 ⁱⁱ —W1—C18 ⁱⁱ	72.18 (12)
C12—N3—C15	119.1 (3)	C17—W1—C18	72.18 (12)
C12—N3—Co1	127.2 (2)	C17 ⁱⁱ —W1—C18	76.03 (12)
C15—N3—Co1	113.7 (2)	C18 ⁱⁱ —W1—C18	138.10 (16)
N1—C1—C2	122.4 (3)	C17—W1—C16	75.86 (12)
N1—C1—H1A	118.8	C17 ⁱⁱ —W1—C16	141.03 (12)
C2—C1—H1A	118.8	C18 ⁱⁱ —W1—C16	72.52 (12)
C3—C2—C1	119.2 (3)	C18—W1—C16	123.33 (12)
C3—C2—H2A	120.4	C17—W1—C16 ⁱⁱ	141.03 (12)
C1—C2—H2A	120.4	C17 ⁱⁱ —W1—C16 ⁱⁱ	75.86 (12)
C2—C3—C4	119.9 (3)	C18 ⁱⁱ —W1—C16 ⁱⁱ	123.33 (12)
С2—С3—НЗА	120.0	C18—W1—C16 ⁱⁱ	72.52 (12)
С4—С3—НЗА	120.0	C16—W1—C16 ⁱⁱ	139.23 (16)
C3—C4—C5	119.0 (3)	C17—W1—C19 ⁱⁱ	144.84 (12)
C3—C4—H4A	120.5	C17 ⁱⁱ —W1—C19 ⁱⁱ	108.76 (12)
C5—C4—H4A	120.5	C18 ⁱⁱ —W1—C19 ⁱⁱ	74.80 (11)
N1-C5-C4	120.7 (3)	C18—W1—C19 ⁱⁱ	142.59 (11)
N1—C5—C6	114.1 (2)	C16—W1—C19 ⁱⁱ	76.99 (12)
C4—C5—C6	125.1 (3)	C16 ⁱⁱ —W1—C19 ⁱⁱ	72.95 (11)
N2—C6—C7	121.1 (3)	C17—W1—C19	108.76 (12)
N2—C6—C5	113.7 (3)	C17 ⁱⁱ —W1—C19	144.84 (12)
C7—C6—C5	125.1 (3)	C18 ⁱⁱ —W1—C19	142.59 (11)
C8—C7—C6	119.6 (3)	C18—W1—C19	74.80 (11)
С8—С7—Н7А	120.2	C16—W1—C19	72.95 (11)
С6—С7—Н7А	120.2	C16 ⁱⁱ —W1—C19	76.99 (12)
C9—C8—C7	119.3 (3)	C19 ⁱⁱ —W1—C19	83.84 (16)
С9—С8—Н8А	120.3	N4—C16—W1	178.2 (3)
С7—С8—Н8А	120.3	N5-C17-W1	178.3 (3)
C8—C9—C10	119.8 (3)	N6-C18-W1	178.9 (3)
С8—С9—Н9А	120.1	N7—C19—W1	179.9 (4)
С10—С9—Н9А	120.1		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, *z*; (ii) -*x*+3/2, -*y*+1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C4—H4A···N4 ⁱⁱⁱ	0.93	2.53	3.371 (4)	151

supporting information

C10—H10A····N1 ⁱ	0.93	2.54	3.032 (4)	114	
C12—H12A····N2 ⁱ	0.93	2.51	3.008 (4)	114	
C1—H1A…N3	0.93	2.50	2.993 (4)	113	

Symmetry codes: (i) -x+1/2, -y+1/2, z; (iii) -x+1, y-1/2, -z+1/2.