

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[di-*µ*-iodido-dicopper(I)-(Cu - Cu)]bis(μ -4,4'-di-3-pyridyl-2,2'disulfanediyldipyrimidine)]

Hai-Bin Zhu

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and School of Material Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhuhaibin@seu.edu.cn

Received 28 November 2009; accepted 5 December 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 14.1.

The title complex, $[Cu_2I_2(C_{18}H_{12}N_6S_2)_2]_n$, contains a Cu_2I_2 core with a Cu–Cu distance of 2.6935 (14) Å. The Cu^I atom is coordinated by two bridging 4,4'-di-3-pyridyl-2,2'-disulfanedivldipyrimidine ligands and two bridging I atoms, forming a double chain.

Related literature

For coordination polymers with 4,4'-dipyridinedisulfide, see: Horikoshi & Mochida (2006). For coordination polymers with 2,2'-dithiobis(4-pyridin-4-yl-pyrimidine), see: Zhu et al. (2009). For the structure of free 2,2'-dithiobis(3-pyridin-4-ylpyrimidine), see: Ji et al. (2009).

5395 measured reflections 3568 independent reflections 2956 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.097$

Experimental

Crystal data

$[Cu_2I_2(C_{18}H_{12}N_6S_2)_2]$	$\gamma = 96.449 \ (1)^{\circ}$
$M_r = 1133.86$	$V = 1023.66 (13) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 1
a = 8.5561 (6) Å	Mo $K\alpha$ radiation
b = 10.7702 (8) Å	$\mu = 2.80 \text{ mm}^{-1}$
c = 11.9045 (8) Å	$T = 298 { m K}$
$\alpha = 98.110 \ (1)^{\circ}$	$0.19 \times 0.15 \times 0.12 \text{ mm}$
$\beta = 107.193 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.611, \ T_{\max} = 0.715$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	253 parameters
$vR(F^2) = 0.108$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 1.28 \text{ e} \text{ \AA}^{-3}$
568 reflections	$\Delta \rho_{\rm min} = -1.03 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Cu1-I1	2.6550 (7)	Cu1-N1	2.037 (4)
Cu1-I1 ⁱ	2.6579 (8)	Cu1-N6 ⁱⁱ	2.060 (4)
	. 1 . 2	\	

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x, y + 1, z - 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

The author acknowledges finanical support from the China Postdoctoral Reseach Fund (20070411010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2260).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.

Ji, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, 01253.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhu, H.-B., Wang, H., Kong, F., Gou, S.-H. & Sun, Y.-M. (2009). J. Mol. Struct. 936. 99-103.

supporting information

Acta Cryst. (2010). E66, m41 [doi:10.1107/S1600536809052325]

catena-Poly[[di-µ-iodido-dicopper(I)(*Cu*—*Cu*)]bis(µ-4,4'-di-3-pyridyl-2,2'-disulfanediyldipyrimidine)]

Hai-Bin Zhu

S1. Comment

In recent years, heterocyclic disulfide ligands have received increasing attention because of their conformationally defined dihedral angle (Horikoshi & Mochida, 2006). As continuation of our previous research (Zhu *et al.*, 2009), we report here a copper(I) coordination polymer with a 2,2'-dithiobis(3-pyridin-4-ylpyrimidine) (*L*) ligand.

The Cu^I atom in the title complex has a tetrahedral coordination geometry completed by two N atoms from two different *L* ligands and two bridging I atoms (Fig. 1 and Table 1). The C—S—S—C torsion angle of 81.2 (2)° in *L* is almost identical with the free molecule (Ji *et al.*, 2009). Alternative linkings of one Cu₂I₂ core and two bridging *L* ligands generate a one-dimensional double chain (Fig. 2).

S2. Experimental

A CH_2Cl_2 solution (5 ml) of ligand L (0.1 mmol) was slowly added into a CuI (0.1 mmol) solution in acetonitrile (10 ml). The mixture was kept on standing for 3 d to give single crystals suitable for X-ray diffraction analysis.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density was found 0.98 Å from I1 and the deepest hole 0.92 Å from I1.

Figure 1

The structure of the title compound with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x, y + 1, z - 1.]

Figure 2

The one-dimensional double chain viewed along the *a* axis.

catena-Poly[[di-µ-iodido-dicopper(I)(Cu—Cu)]bis(µ-4,4'-di-3-pyridyl-2,2'-disulfanediyldipyrimidine)]

Z = 1

F(000) = 552

 $\theta = 2.3 - 25.5^{\circ}$

 $\mu = 2.80 \text{ mm}^{-1}$

Block, yellow

 $0.19 \times 0.15 \times 0.12 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.839 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3568 reflections

Crystal data

 $\begin{bmatrix} Cu_2I_2(C_{18}H_{12}N_6S_2)_2 \end{bmatrix}$ $M_r = 1133.86$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5561 (6) Å b = 10.7702 (8) Å c = 11.9045 (8) Å a = 98.110 (1)° $\beta = 107.193$ (1)° $\gamma = 96.449$ (1)° V = 1023.66 (13) Å³

Data collection

Bruker APEXII CCD	5395 measured reflections
diffractometer	3568 independent reflections
Radiation source: fine-focus sealed tube	2956 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.097$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 10$
(SADABS; Bruker, 2001)	$k = -12 \rightarrow 12$
$T_{\min} = 0.611, \ T_{\max} = 0.715$	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.108$ S = 0.993568 reflections 253 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0541P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.03 \text{ e } \text{Å}^{-3}$

	x	y	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
	0.31696 (4)	0.97725 (3)	0.10525 (3)	0.04697 (15)
Cul	0.38873 (9)	0.92391 (6)	-0.09670 (6)	0.0503 (2)
S1	0.13540 (17)	0.55124 (12)	0.27577 (10)	0.0447 (3)
S2	0.02067 (16)	0.43336 (14)	0.35509 (12)	0.0498 (3)
N2	0.2094 (5)	0.5182 (3)	0.0809 (3)	0.0340 (8)
C5	0.3021 (5)	0.5258 (4)	-0.0900 (4)	0.0328 (10)
N3	0.0948 (5)	0.3267 (4)	0.1271 (4)	0.0426 (10)
N1	0.3815 (5)	0.7322 (4)	-0.1296 (3)	0.0387 (9)
С9	0.1455 (5)	0.4513 (4)	0.1466 (4)	0.0340 (10)
N5	0.1235 (5)	0.2820 (4)	0.4999 (3)	0.0381 (9)
C1	0.3142 (6)	0.6574 (4)	-0.0705 (4)	0.0356 (10)
H1A	0.2728	0.6955	-0.0127	0.043*
C6	0.2284 (5)	0.4523 (4)	-0.0183 (4)	0.0330 (10)
C10	0.1797 (6)	0.3566 (5)	0.4357 (4)	0.0392 (11)
C3	0.4346 (6)	0.5483 (5)	-0.2380 (4)	0.0436 (11)
H3B	0.4772	0.5130	-0.2963	0.052*
C13	0.2302 (6)	0.2187 (4)	0.5638 (4)	0.0381 (10)
C12	0.3936 (6)	0.2331 (5)	0.5625 (4)	0.0480 (13)
H12A	0.4704	0.1894	0.6067	0.058*
C4	0.3639 (6)	0.4719 (5)	-0.1776 (4)	0.0411 (11)
H4A	0.3572	0.3842	-0.1951	0.049*
N4	0.3312 (5)	0.3777 (4)	0.4277 (3)	0.0453 (10)
C11	0.4371 (6)	0.3147 (5)	0.4933 (5)	0.0515 (13)
H11A	0.5461	0.3261	0.4925	0.062*
C2	0.4419 (6)	0.6772 (5)	-0.2117 (4)	0.0418 (11)
H2B	0.4909	0.7284	-0.2528	0.050*
C8	0.1115 (6)	0.2636 (5)	0.0281 (5)	0.0457 (12)
H8A	0.0766	0.1761	0.0087	0.055*
C7	0.1775 (6)	0.3213 (4)	-0.0466 (4)	0.0416 (11)
H7A	0.1883	0.2739	-0.1148	0.050*
C14	0.1671 (6)	0.1341 (4)	0.6336 (4)	0.0380 (10)
C15	-0.0011 (6)	0.1112 (5)	0.6209 (4)	0.0475 (12)
H15A	-0.0761	0.1500	0.5691	0.057*
C16	-0.0545 (7)	0.0301 (5)	0.6864 (5)	0.0532 (14)
H16A	-0.1663	0.0141	0.6796	0.064*
C18	0.2701 (7)	0.0733 (5)	0.7125 (4)	0.0456 (12)
H18A	0.3827	0.0880	0.7217	0.055*
C17	0.0554 (7)	-0.0264 (5)	0.7604 (4)	0.0503 (13)
H17A	0.0161	-0.0825	0.8023	0.060*
N6	0.2191 (5)	-0.0053 (4)	0.7765 (3)	0.0442 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
I1	0.0504 (2)	0.0489 (2)	0.0526 (2)	0.00536 (15)	0.02987 (17)	0.01773 (16)

Acta Cryst. (2010). E66, m41

Cu1	0.0647 (4)	0.0437 (4)	0.0576 (4)	0.0113 (3)	0.0319 (3)	0.0285 (3)
S1	0.0595 (8)	0.0464 (7)	0.0346 (6)	0.0117 (6)	0.0179 (6)	0.0187 (5)
S2	0.0478 (7)	0.0725 (9)	0.0424 (7)	0.0181 (7)	0.0204 (6)	0.0338 (7)
N2	0.039 (2)	0.034 (2)	0.0308 (19)	0.0039 (16)	0.0112 (16)	0.0143 (16)
C5	0.031 (2)	0.036 (2)	0.031 (2)	0.0029 (19)	0.0078 (18)	0.0140 (19)
N3	0.045 (2)	0.040 (2)	0.049 (2)	0.0049 (18)	0.0167 (19)	0.0225 (19)
N1	0.044 (2)	0.038 (2)	0.038 (2)	0.0031 (17)	0.0182 (18)	0.0159 (17)
C9	0.035 (2)	0.040 (3)	0.028 (2)	0.008 (2)	0.0081 (19)	0.0147 (19)
N5	0.042 (2)	0.046 (2)	0.0293 (19)	0.0054 (18)	0.0114 (17)	0.0156 (17)
C1	0.042 (3)	0.035 (2)	0.036 (2)	0.007 (2)	0.018 (2)	0.012 (2)
C6	0.033 (2)	0.034 (2)	0.033 (2)	0.0050 (19)	0.0091 (19)	0.0131 (19)
C10	0.044 (3)	0.045 (3)	0.030 (2)	0.004 (2)	0.012 (2)	0.012 (2)
C3	0.046 (3)	0.053 (3)	0.036 (2)	0.008 (2)	0.018 (2)	0.008 (2)
C13	0.046 (3)	0.040 (3)	0.029 (2)	0.004 (2)	0.011 (2)	0.012 (2)
C12	0.041 (3)	0.060 (3)	0.047 (3)	0.012 (2)	0.010 (2)	0.030 (3)
C4	0.046 (3)	0.039 (3)	0.039 (3)	0.005 (2)	0.015 (2)	0.008 (2)
N4	0.043 (2)	0.057 (3)	0.039 (2)	0.006 (2)	0.0127 (18)	0.021 (2)
C11	0.038 (3)	0.069 (4)	0.051 (3)	0.001 (3)	0.013 (2)	0.027 (3)
C2	0.046 (3)	0.048 (3)	0.036 (3)	0.000 (2)	0.018 (2)	0.016 (2)
C8	0.051 (3)	0.034 (3)	0.052 (3)	0.004 (2)	0.015 (2)	0.014 (2)
C7	0.056 (3)	0.031 (2)	0.039 (3)	0.006 (2)	0.017 (2)	0.010(2)
C14	0.046 (3)	0.037 (2)	0.033 (2)	0.005 (2)	0.016 (2)	0.010 (2)
C15	0.046 (3)	0.059 (3)	0.040 (3)	0.004 (2)	0.014 (2)	0.017 (2)
C16	0.050 (3)	0.070 (4)	0.045 (3)	0.001 (3)	0.022 (2)	0.018 (3)
C18	0.049 (3)	0.048 (3)	0.045 (3)	0.004 (2)	0.018 (2)	0.021 (2)
C17	0.064 (3)	0.048 (3)	0.047 (3)	-0.002 (3)	0.029 (3)	0.018 (2)
N6	0.054 (3)	0.042 (2)	0.041 (2)	0.0064 (19)	0.0178 (19)	0.0175 (18)

Geometric parameters (Å, °)

Cu1—I1	2.6550 (7)	С3—Н3В	0.9300
Cu1—I1 ⁱ	2.6579 (8)	C13—C12	1.394 (7)
Cu1—N1	2.037 (4)	C13—C14	1.477 (6)
Cu1—N6 ⁱⁱ	2.060 (4)	C12—C11	1.379 (7)
Cu1—Cu1 ⁱ	2.6935 (14)	C12—H12A	0.9300
S1—C9	1.779 (5)	C4—H4A	0.9300
S1—S2	2.0183 (17)	N4—C11	1.327 (6)
S2—C10	1.778 (5)	C11—H11A	0.9300
N2—C9	1.323 (5)	C2—H2B	0.9300
N2—C6	1.352 (6)	C8—C7	1.367 (6)
C5—C1	1.390 (6)	C8—H8A	0.9300
C5—C4	1.389 (6)	С7—Н7А	0.9300
C5—C6	1.466 (6)	C14—C18	1.379 (7)
N3—C9	1.329 (6)	C14—C15	1.392 (7)
N3—C8	1.329 (6)	C15—C16	1.376 (7)
N1—C2	1.333 (6)	C15—H15A	0.9300
N1—C1	1.330 (5)	C16—C17	1.349 (7)
N5—C13	1.324 (6)	C16—H16A	0.9300

N5—C10	1.328 (6)	C18—N6	1.336 (6)
C1—H1A	0.9300	C18—H18A	0.9300
C6—C7	1.391 (6)	C17—N6	1.344 (7)
C10—N4	1.325 (6)	C17—H17A	0.9300
C3—C2	1.370 (7)	N6—Cu1 ⁱⁱⁱ	2.060 (4)
C3—C4	1.368 (6)		
Cu1—I1—Cu1 ⁱ	60.92 (3)	C12—C13—C14	123.0 (4)
N1—Cu1—N6 ⁱⁱ	115.68 (16)	C11—C12—C13	117.4 (4)
N1—Cu1—I1	106.36 (10)	C11—C12—H12A	121.3
N6 ⁱⁱ —Cu1—I1	106.25 (12)	C13—C12—H12A	121.3
N1—Cu1—I1 ⁱ	105.02 (11)	C3—C4—C5	119.8 (4)
N6 ⁱⁱ —Cu1—I1 ⁱ	104.97 (12)	C3—C4—H4A	120.1
I1—Cu1—I1 ⁱ	119.08 (3)	C5—C4—H4A	120.1
N1—Cu1—Cu1 ⁱ	122.23 (11)	C10—N4—C11	113.9 (4)
N6 ⁱⁱ —Cu1—Cu1 ⁱ	122.06 (12)	N4—C11—C12	123.3 (5)
I1—Cu1—Cu1 ⁱ	59.59 (2)	N4—C11—H11A	118.3
I1 ⁱ —Cu1—Cu1 ⁱ	59.49 (3)	C12—C11—H11A	118.3
C9—S1—S2	104.18 (16)	N1—C2—C3	122.6 (4)
C10—S2—S1	104.60 (17)	N1—C2—H2B	118.7
C9—N2—C6	116.6 (4)	C3—C2—H2B	118.7
C1—C5—C4	116.6 (4)	C7—C8—N3	123.1 (4)
C1—C5—C6	119.6 (4)	С7—С8—Н8А	118.5
C4—C5—C6	123.8 (4)	N3—C8—H8A	118.5
C9—N3—C8	114.2 (4)	C8—C7—C6	118.6 (4)
C2—N1—C1	117.8 (4)	С8—С7—Н7А	120.7
C2—N1—Cu1	121.4 (3)	С6—С7—Н7А	120.7
C1—N1—Cu1	120.8 (3)	C18—C14—C15	117.0 (4)
N2—C9—N3	128.4 (4)	C18—C14—C13	122.1 (4)
N2—C9—S1	110.9 (3)	C15—C14—C13	120.8 (4)
N3—C9—S1	120.7 (3)	C14—C15—C16	118.8 (5)
C13—N5—C10	116.9 (4)	C14—C15—H15A	120.6
N1—C1—C5	123.9 (4)	C16—C15—H15A	120.6
N1—C1—H1A	118.0	C17—C16—C15	120.0 (5)
C5—C1—H1A	118.0	C17—C16—H16A	120.0
N2—C6—C7	119.1 (4)	C15—C16—H16A	120.0
N2—C6—C5	116.7 (4)	N6-C18-C14	124.5 (5)
C7—C6—C5	124.2 (4)	N6—C18—H18A	117.8
N4—C10—N5	128.4 (4)	C14—C18—H18A	117.8
N4—C10—S2	120.6 (3)	C16—C17—N6	123.1 (5)
N5—C10—S2	111.1 (3)	С16—С17—Н17А	118.5
C2—C3—C4	119.3 (4)	N6—C17—H17A	118.5
С2—С3—Н3В	120.4	C18—N6—C17	116.6 (4)
C4—C3—H3B	120.4	C18—N6—Cu1 ⁱⁱⁱ	120.4 (4)
N5-C13-C12	120.0 (4)	C17—N6—Cu1 ⁱⁱⁱ	122.7 (3)
N5-C13-C14	117.0 (4)		
Cu1 ⁱ —I1—Cu1—N1	118.18 (12)	C10-N5-C13-C12	0.7 (7)

-118.04 (12)	C10—N5—C13—C14	-179.0 (4)
0.0	N5-C13-C12-C11	0.1 (7)
81.1 (2)	C14—C13—C12—C11	179.7 (4)
75.1 (4)	C2—C3—C4—C5	-0.6 (7)
-167.2 (3)	C1—C5—C4—C3	1.1 (6)
-40.1 (4)	C6—C5—C4—C3	-178.3 (4)
-103.2 (3)	N5-C10-N4-C11	0.0 (8)
-104.0 (4)	S2-C10-N4-C11	179.6 (4)
13.7 (4)	C10—N4—C11—C12	0.8 (8)
140.8 (3)	C13—C12—C11—N4	-0.9 (8)
77.7 (4)	C1—N1—C2—C3	1.0 (7)
-1.0 (7)	Cu1—N1—C2—C3	-178.1 (4)
178.0 (3)	C4—C3—C2—N1	-0.5 (7)
-0.2 (7)	C9—N3—C8—C7	1.0 (7)
-179.1 (3)	N3—C8—C7—C6	-0.6 (8)
176.0 (3)	N2-C6-C7-C8	-0.7 (7)
-4.8 (4)	C5—C6—C7—C8	179.6 (4)
-0.5 (7)	N5-C13-C14-C18	-173.4 (4)
178.7 (3)	C12-C13-C14-C18	6.9 (7)
-0.5 (7)	N5-C13-C14-C15	7.5 (7)
178.9 (4)	C12—C13—C14—C15	-172.2 (5)
1.4 (6)	C18—C14—C15—C16	-0.2 (7)
-178.8 (4)	C13—C14—C15—C16	178.9 (4)
-14.3 (6)	C14—C15—C16—C17	-0.6 (8)
165.0 (4)	C15—C14—C18—N6	0.0 (7)
165.5 (4)	C13—C14—C18—N6	-179.1 (4)
-15.2 (7)	C15—C16—C17—N6	1.6 (8)
-0.8 (7)	C14—C18—N6—C17	0.9 (7)
179.6 (3)	C14—C18—N6—Cu1 ⁱⁱⁱ	-174.0 (4)
-4.1 (4)	C16-C17-N6-C18	-1.7 (8)
175.5 (3)	C16—C17—N6—Cu1 ⁱⁱⁱ	173.0 (4)
	$\begin{array}{c} -118.04 \ (12) \\ 0.0 \\ 81.1 \ (2) \\ 75.1 \ (4) \\ -167.2 \ (3) \\ -40.1 \ (4) \\ -103.2 \ (3) \\ -104.0 \ (4) \\ 13.7 \ (4) \\ 140.8 \ (3) \\ 77.7 \ (4) \\ -1.0 \ (7) \\ 178.0 \ (3) \\ -0.2 \ (7) \\ -179.1 \ (3) \\ 176.0 \ (3) \\ -4.8 \ (4) \\ -0.5 \ (7) \\ 178.7 \ (3) \\ -0.5 \ (7) \\ 178.9 \ (4) \\ 1.4 \ (6) \\ -178.8 \ (4) \\ -14.3 \ (6) \\ 165.5 \ (4) \\ -15.2 \ (7) \\ -79.6 \ (3) \\ -4.1 \ (4) \\ 175.5 \ (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) *x*, *y*+1, *z*-1; (iii) *x*, *y*-1, *z*+1.