Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

4-Bromo-2-chloroaniline

Zan-Bin Wei, Zhi-Hong Liu, Jian-Liang Ye* and Hong-Kui Zhang

The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's
Republic of China
Correspondence e-mail: yejl@xmu.edu.cn

Received 17 December 2009; accepted 21 December 2009

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.033 ; w R$ factor $=0.081$; data-to-parameter ratio $=20.6$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrClN}$, is almost planar (r.m.s. deviation $=0.018 \AA$). In the crystal, molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, generating sheets.

Related literature

For background to halogentaed aromatic compounds, see: Katritzky et al. (1994). For related structures, see: Cox (2001); Parkin et al. (2005); Ng (2005); Ferguson et al. (1998). For the synthesis, see: Ault \& Kraig (1966).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrClN}$

$$
\begin{aligned}
& b=15.814(6) \AA \\
& c=4.0232(15) \AA \\
& V=697.7(4) \AA^{3}
\end{aligned}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation	$T=298 \mathrm{~K}$
$\mu=6.17 \mathrm{~mm}^{-1}$	$0.7 \times 0.19 \times 0.15 \mathrm{~mm}$
Data collection	
Bruker SMART CCD	
\quad diffractometer	5799 measured reflections
Absorption correction: multi-scan	1710 independent reflections
$\quad(S A D A B S ;$ Bruker, 2001)	$R_{\text {int }}=0.044$
$\quad T_{\min }=0.254, T_{\max }=0.396$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$	$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.081$	$\Delta \rho_{\min }=-0.48 \mathrm{e} \AA^{-3}$
$S=0.99$	Absolute structure: Flack (1983),
1710 reflections	511 Friedel pairs
83 parameters	Flack parameter: $0.035(15)$
H-atom parameters constrained	

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.86	3.04	$3.719(3)$	137
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 1^{\mathrm{ii}}$	0.86	2.34	$3.172(4)$	164

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+\frac{3}{2},-y+1, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (No. 20602028) and the NFFTBS (No. J0630429) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5285).

References

Ault, A. \& Kraig, R. (1966). J. Chem. Educ. 43, 213-214.
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cox, P. J. (2001). Acta Cryst. E57, o1203-o1205.
Ferguson, G., Low, J. N., Penner, G. H. \& Wardell, J. L. (1998). Acta Cryst. C54, 1974-1977.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Katritzky, A. R., Li, J., Stevens, C. V. \& Ager, D. (1994). J. Org. Prep. Proced. Int., 26, 439-444.
Ng, S. W. (2005). Acta Cryst. E61, o2299-o2300.
Parkin, A., Spanswick, C. K., Pulham, C. R. \& Wilson, C. C. (2005). Acta Cryst. E61, o1087-o1089.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o250 [doi:10.1107/S1600536809054944]

4-Bromo-2-chloroaniline

Zan-Bin Wei, Zhi-Hong Liu, Jian-Liang Ye and Hong-Kui Zhang

S1. Comment

Halogenated aromatic compounds is an important class of intermediates for the synthesis of bio-active substances such as antibacterial, antioxidizing, antiviral agents (e.g. Katritzky et al., 1994). Despite their simple structures, the X-ray structures of halogenated aniline compounds periodically were reported, such as 2,5-dichloroaniline (Cox, 2001), 2-iodoaniline (Parkin et al., 2005) and 5-chloro-2-nitroaniline (Ng, 2005). We now report the title compound, (I).

The packing of molecules in the crystal structure is stabilized and linked into a two-dimensional texture by intermolecular $\mathrm{N} — \mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds. The $\mathrm{N} \cdots \mathrm{N}$ distance is 3.172 (4) $\AA \AA$ in hydrogen bond $\mathrm{N} — \mathrm{H} \cdots \mathrm{N}$, which are similar to that observed in 2,4-dibromo-6- chloroaniline (Ferguson et al., 1998), 3.150 (11) \AA and 2-iodoaniline (Parkin et al., 2005), 3.161 (14) Å.

S2. Experimental

The tiltle compound was prepared according to a previously reported method (Ault \& Kraig, 1966). Colourless needles of (I) were obtained by slow evaporation of a petroleum ether solution.

S3. Refinement

The hydrogen atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93,0.98,0.97$ and $0.96 \AA$ for phenyl, methine, methylene and methyl H atoms, respectively, and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to $1.5 U_{\mathrm{eq}}(\mathrm{C})$, while those of other H atoms were set to $1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.

Figure 2
The packing of (I), viewed down the c axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond interactions are shown as dashed lines.

4-Bromo-2-chloroaniline

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrClN}$
$M_{r}=206.47$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=10.965$ (4) \AA
$b=15.814$ (6) \AA
$c=4.0232(15) \AA$
$V=697.7(4) \AA^{3}$
$Z=4$
$F(000)=424$
$D_{\mathrm{x}}=1.965 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1199 reflections
$\theta=2.3-29.8^{\circ}$
$\mu=6.17 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle, colourless
$0.7 \times 0.19 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.254, T_{\text {max }}=0.396$
5799 measured reflections
1710 independent reflections
1333 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=29.8^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-14 \rightarrow 14$
$k=-20 \rightarrow 21$
$l=-5 \rightarrow 5$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=0.99$
1710 reflections
83 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0374 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.008$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.246 (8)
Absolute structure: Flack (1983), 511 Friedel pairs
Absolute structure parameter: 0.035 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.28337(3)$	$0.74386(2)$	$0.51936(10)$	$0.0646(2)$

C11	$0.42519(8)$	$0.41363(5)$	$0.4648(3)$	$0.0588(3)$
C1	$0.3957(3)$	$0.65802(18)$	$0.6258(8)$	$0.0432(7)$
C2	$0.4999(3)$	$0.6770(2)$	$0.7973(9)$	$0.0494(8)$
H2A	0.5151	0.7322	0.8656	0.059^{*}
C3	$0.5812(3)$	$0.6145(2)$	$0.8673(9)$	$0.0456(8)$
H3A	0.6518	0.6276	0.9846	0.055^{*}
C4	$0.5613(3)$	$0.5320(2)$	$0.7681(8)$	$0.0428(8)$
C5	$0.4548(3)$	$0.51544(19)$	$0.5957(8)$	$0.0395(7)$
C6	$0.3728(2)$	$0.57746(17)$	$0.5249(7)$	$0.0431(7)$
H6A	0.3018	0.5649	0.4087	0.052^{*}
N1	$0.6464(2)$	$0.47087(18)$	$0.8346(8)$	$0.0565(8)$
H1A	0.7124	0.4838	0.9383	0.068^{*}
H1B	0.6338	0.4196	0.7726	0.068^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0770(3)$	$0.0451(2)$	$0.0717(3)$	$0.01789(15)$	$-0.0064(2)$	$0.0025(2)$
C11	$0.0638(5)$	$0.0349(4)$	$0.0776(6)$	$-0.0034(3)$	$-0.0023(5)$	$-0.0047(5)$
C1	$0.0509(17)$	$0.0347(16)$	$0.0438(16)$	$0.0061(14)$	$0.0043(14)$	$0.0027(13)$
C2	$0.0582(18)$	$0.0357(18)$	$0.054(2)$	$-0.0081(15)$	$0.0075(16)$	$-0.0027(15)$
C3	$0.0368(15)$	$0.0481(19)$	$0.0520(18)$	$-0.0064(14)$	$-0.0002(14)$	$-0.0008(15)$
C4	$0.0399(16)$	$0.0430(18)$	$0.0455(18)$	$0.0005(14)$	$0.0086(14)$	$0.0040(13)$
C5	$0.0416(15)$	$0.0344(15)$	$0.0424(16)$	$-0.0028(12)$	$0.0053(13)$	$0.0012(12)$
C6	$0.0424(14)$	$0.0406(15)$	$0.0461(16)$	$-0.0022(12)$	$-0.0007(16)$	$0.0016(16)$
N1	$0.0434(15)$	$0.0500(17)$	$0.076(2)$	$0.0101(13)$	$-0.0015(15)$	$0.0006(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	$1.883(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 11-\mathrm{C} 5$	$1.725(3)$	$\mathrm{C} 4-\mathrm{N} 1$	$1.369(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.361(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.383(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.368(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.361(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.361(5)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8600
$\mathrm{C} 3-\mathrm{C} 4$	$1.382(4)$	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	0.8600
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$120.7(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{Br} 1$	$119.1(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.8(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$120.2(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Cl} 1$	$119.0(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.4(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 1$	$119.2(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 56 \mathrm{H} 6$	$119.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	120.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.6(3)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.2	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.2		120.0
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 3$	$120.2(3)$		120.0
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 5$	$122.7(3)$		

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.86	3.04	$3.719(3)$	137
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.86	2.34	$3.172(4)$	164

Symmetry codes: (i) $-x+1, y-1 / 2,-z+3 / 2$; (ii) $-x+3 / 2,-y+1, z+1 / 2$.

