metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquaazido{3,3'-[o-phenylenebis(nitrilomethylidyne)]di-2-naphtholato}manganese(III)

Cui-Juan Wang,* Xian-Li Zhou and Bing-Jun Zhang

Department of Chemistry and Chemical Engineering, School of Bioengineering, SouthWest JiaoTong University, Chengdu, Sichuan 610031, People's Republic of China

Correspondence e-mail: wangcuijuan2000@126.com

Received 2 December 2009; accepted 8 December 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.121; data-to-parameter ratio = 12.4.

In the title complex, $[Mn(C_{28}H_{18}N_2O_2)(N_3)(H_2O)]$, the Mn^{III} ion adopts a distorted *fac*-MnO₃N₃ octahedral geometry arising from the *O*,*N*,*N'*,*O'*-tetradentate Schiff base ligand, an azide ion and a water molecule. In the crystal, intermolecular $O-H\cdots(O,O)$ and $O-H\cdots$ N hydrogen bonds and $\pi-\pi$ interactions [centroid–centroid separation = 3.5535 (13) Å] link the molecules into chains.

Related literature

For background to Schiff base-metal complexes, see: Sunatsuki et al. (2002).

Experimental

Crystal data

$$\begin{split} & \left[\mathrm{Mn}(\mathrm{C}_{28}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2})(\mathrm{N}_{3})(\mathrm{H}_{2}\mathrm{O}) \right] \\ & M_{r} = 529.43 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 6.6827 \ (1) \ \mathrm{\mathring{A}} \\ & b = 11.8803 \ (2) \ \mathrm{\mathring{A}} \end{split}$$

c = 15.3778 (3) Å $\alpha = 99.455 (1)^{\circ}$ $\beta = 97.692 (1)^{\circ}$ $\gamma = 98.180 (1)^{\circ}$ $V = 1176.49 (4) \text{ Å}^{3}$ Z = 2Mo $K\alpha$ radiation $\mu = 0.60 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.844, T_{\rm max} = 0.931$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.121$ S = 0.884205 reflections 340 parameters 3 restraints $\begin{array}{l} T=298~\mathrm{K}\\ 0.29\,\times\,0.20\,\times\,0.12~\mathrm{mm} \end{array}$

12984 measured reflections 4205 independent reflections 3519 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.26~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.23~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

Mn1-O2	1.8644 (15)	Mn1-N2	1.9672 (17)
Mn1-O1	1.8799 (14)	Mn1-N3	2.2465 (19)
Mn1-N1	1.9663 (17)	Mn1-O3	2.3905 (16)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3-H3WA\cdots N3^{i}\\ O3-H3WB\cdots O1^{ii}\\ O3-H3WB\cdots O2^{ii} \end{array}$	0.82 (1)	2.10 (3)	2.911 (3)	167 (4)
	0.82 (3)	2.14 (3)	2.941 (2)	164 (4)
	0.82 (3)	2.57 (3)	3.130 (2)	127 (3)

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Science and Technology Development Fund of SouthWest JiaoTong University

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5265).

References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Sunatsuki, Y., Motoda, Y. & Matsumoto, N. (2002). Coord. Chem. Rev. 226, 199–209.

supporting information

Acta Cryst. (2010). E66, m50 [doi:10.1107/S1600536809052659]

Aquaazido{3,3'-[o-phenylenebis(nitrilomethylidyne)]di-2-naphtholato}manganese(III)

Cui-Juan Wang, Xian-Li Zhou and Bing-Jun Zhang

S1. Comment

In recent years, there has been considerable interest in the chemistry of transition metal complexes of Schiff bases (Sunatsuki *et al.*, 2002). In this paper, we report here the synthesis and crystal structure of the title complex (I).

The molecular structure of (I) is illustrated in Fig. 1. The Mn^{III} ion takes a slightly distorted octahedral geometry, where the equatorial plane comprise the two N atoms two imine nitrogen atoms and two O atoms of alkoxide groups. The apical postiions are occupied by the N atom of azide ligand and one O atom from water molecule. The Mn—N(azide) bond length is significantly longer than the Mn-N(imine) (Table 1) and the bond angles deviate from the ideal values (the largest angle is 173.80 (7)°). The chelate bite angles in the five-membered and the six-membered rings formed by the coordination of alkoxide-O and imine-N, and two related imine-N of Schiff base to the Mn^{III} center lie in same plane and are almost parallel to the naphthalen rings with 2.6°.

The structure is further stabilized by strongly π - π stacking interactions between two adjacent naphthalen rings in an offset arrangement. The distance between the centroids of the six-membered rings is 3.55 (3)Å. In addition, Intermolecular O-H···O, O-H···N hydrogen bonds form a zig-zag like chain parallel to the b axis (Table 2).

S2. Experimental

A mixture of Mn(Ac)₃, NaN₃ and 3-((1E)-((E)-2-((naphthalen-2-yl)methyleneamino) phenylimino)methyl)naphthalen-2,2'-diol in water (30mL) was refluxed for 5 hours and then filtered while hot. Colourless blocks of (I) were obtained by evaporating the filtrate at room temperature for a period of three weeks. The compound is insoluble in commom organic solvents and dissolves water very slowly.

S3. Refinement

The H atoms of organic ligand were placed in calculated positions (C-H = 0.93Å) refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ H atoms of water molecules were located in a difference map and refined with restraints of O-H=0.83 (1)Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

Molecular view of (I) with ellipsoids drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radius.

Aquaazido{3,3'-[o-phenylenebis(nitrilomethylidyne)]di-2- naphtholato}manganese(III)

Crystal data	
$[Mn(C_{28}H_{18}N_2O_2)(N_3)(H_2O)]$	Z = 2
$M_r = 529.43$	F(000) = 544
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.495 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6827 (1) Å	Cell parameters from 4205 reflections
b = 11.8803 (2) Å	$\theta = 2.2 - 25.2^{\circ}$
c = 15.3778 (3) Å	$\mu=0.60~\mathrm{mm}^{-1}$
$\alpha = 99.455 \ (1)^{\circ}$	T = 298 K
$\beta = 97.692 \ (1)^{\circ}$	Block, colourless
$\gamma = 98.180 \ (1)^{\circ}$	$0.29 \times 0.20 \times 0.12 \text{ mm}$
$V = 1176.49 (4) \text{ Å}^3$	
Data collection	
Bruker APEXII CCD	12984 measured reflections
diffractometer	4205 independent reflections
Radiation source: fine-focus sealed tube	3519 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
φ and ω scan	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2005)	$k = -14 \rightarrow 13$
$T_{\min} = 0.844, \ T_{\max} = 0.931$	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.035$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.121$	map
<i>S</i> = 0.88	Hydrogen site location: inferred from
4205 reflections	neighbouring sites

neighbouring sites H atoms treated by a mixture of independent and constrained refinement

340 parameters

3 restraints

$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.1339P]$	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or e	equivalent isotropic	c displacement	parameters ($(Å^2)$
	1	1 1	1	1 1	· /

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mn1	0.21230 (5)	0.16035 (2)	0.939323 (19)	0.03163 (14)
N2	0.2571 (3)	0.32332 (14)	0.99968 (12)	0.0311 (4)
O1	0.1336 (2)	0.00645 (12)	0.87811 (10)	0.0356 (4)
N1	0.0823 (3)	0.22059 (14)	0.83821 (12)	0.0307 (4)
O2	0.3187 (2)	0.11226 (12)	1.04281 (10)	0.0378 (4)
C11	0.0019 (3)	0.15759 (19)	0.76023 (15)	0.0337 (5)
H11	-0.0463	0.1971	0.7165	0.040*
O3	-0.1107 (2)	0.14771 (13)	0.99088 (12)	0.0411 (4)
C1	0.0450 (3)	-0.03427 (17)	0.79550 (14)	0.0303 (5)
C28	0.3879 (3)	0.17238 (18)	1.12325 (14)	0.0322 (5)
C19	0.3971 (3)	0.29292 (19)	1.14745 (14)	0.0339 (5)
C10	-0.0201 (3)	0.03561 (18)	0.73472 (14)	0.0317 (5)
C16	0.2261 (4)	0.51867 (18)	0.96493 (16)	0.0396 (5)
H16	0.2947	0.5559	1.0212	0.048*
C18	0.3317 (3)	0.36058 (18)	1.08433 (15)	0.0335 (5)
H18	0.3430	0.4396	1.1054	0.040*
N3	0.5156 (3)	0.19321 (18)	0.89218 (13)	0.0432 (5)
C22	0.5792 (5)	0.5194 (3)	1.35685 (19)	0.0701 (9)
H22	0.5873	0.5986	1.3757	0.084*
C25	0.5511 (4)	0.2830 (2)	1.30092 (16)	0.0426 (6)
C12	0.0973 (3)	0.34341 (17)	0.85631 (15)	0.0340 (5)
C9	-0.1130 (3)	-0.0194 (2)	0.64364 (15)	0.0369 (5)
C4	-0.1307 (3)	-0.1403 (2)	0.61810 (15)	0.0401 (5)
C5	-0.2167 (4)	-0.1956 (2)	0.52954 (17)	0.0526 (7)
Н5	-0.2277	-0.2754	0.5134	0.063*
C3	-0.0665 (3)	-0.20654 (19)	0.68215 (15)	0.0391 (5)
H3	-0.0817	-0.2865	0.6652	0.047*
C2	0.0163 (3)	-0.15628 (18)	0.76743 (14)	0.0341 (5)
H2	0.0549	-0.2023	0.8081	0.041*
C21	0.4955 (4)	0.4698 (2)	1.27051 (18)	0.0534 (7)
H21	0.4480	0.5161	1.2318	0.064*
C20	0.4797 (3)	0.3504 (2)	1.23912 (15)	0.0388 (5)

C6	-0.2835 (4)	-0.1338 (3)	0.46767 (18)	0.0615 (8)
H6	-0.3387	-0.1706	0.4095	0.074*
C14	0.0525 (4)	0.5279 (2)	0.82062 (18)	0.0484 (6)
H14	0.0026	0.5718	0.7804	0.058*
C15	0.1542 (4)	0.58246 (19)	0.90428 (17)	0.0435 (6)
H15	0.1742	0.6628	0.9197	0.052*
C26	0.5337 (4)	0.1611 (2)	1.27266 (16)	0.0429 (6)
H26	0.5778	0.1170	1.3138	0.051*
C13	0.0239 (4)	0.4089 (2)	0.79603 (17)	0.0453 (6)
H13	-0.0441	0.3728	0.7394	0.054*
C17	0.1963 (3)	0.39877 (17)	0.94229 (14)	0.0323 (5)
C8	-0.1867 (4)	0.0416 (2)	0.57819 (17)	0.0507 (6)
H8	-0.1800	0.1213	0.5932	0.061*
C27	0.4558 (3)	0.1080 (2)	1.18858 (15)	0.0383 (5)
H27	0.4460	0.0282	1.1727	0.046*
C24	0.6383 (4)	0.3370 (3)	1.38941 (17)	0.0570 (7)
H24	0.6868	0.2925	1.4294	0.068*
C7	-0.2677 (4)	-0.0144 (3)	0.49312 (17)	0.0589 (7)
H7	-0.3134	0.0283	0.4512	0.071*
C23	0.6525 (5)	0.4530 (3)	1.41707 (19)	0.0712 (9)
H23	0.7105	0.4877	1.4754	0.085*
N4	0.5327 (3)	0.21532 (17)	0.82123 (15)	0.0454 (5)
N5	0.5512 (4)	0.2366 (3)	0.75124 (19)	0.0928 (10)
H3WA	-0.218 (3)	0.149 (3)	0.958 (2)	0.139*
H3WB	-0.129 (6)	0.095 (3)	1.019 (2)	0.139*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0397 (2)	0.0212 (2)	0.0312 (2)	0.00640 (14)	-0.00187 (14)	0.00203 (13)
N2	0.0304 (9)	0.0229 (8)	0.0391 (10)	0.0044 (7)	0.0049 (8)	0.0039 (7)
01	0.0485 (9)	0.0231 (7)	0.0323 (8)	0.0081 (6)	-0.0029 (7)	0.0024 (6)
N1	0.0336 (9)	0.0223 (9)	0.0356 (10)	0.0045 (7)	0.0035 (8)	0.0052 (7)
O2	0.0491 (9)	0.0282 (8)	0.0333 (8)	0.0083 (7)	-0.0016 (7)	0.0030 (6)
C11	0.0342 (11)	0.0340 (12)	0.0343 (12)	0.0075 (9)	0.0026 (9)	0.0108 (9)
03	0.0420 (9)	0.0340 (9)	0.0492 (10)	0.0069 (7)	0.0057 (7)	0.0137 (7)
C1	0.0284 (10)	0.0281 (10)	0.0324 (11)	0.0036 (8)	0.0045 (9)	0.0014 (9)
C28	0.0279 (10)	0.0342 (12)	0.0331 (11)	0.0046 (8)	0.0046 (9)	0.0034 (9)
C19	0.0314 (11)	0.0334 (12)	0.0343 (12)	0.0018 (9)	0.0054 (9)	0.0022 (9)
C10	0.0313 (11)	0.0308 (11)	0.0311 (11)	0.0040 (8)	0.0024 (9)	0.0033 (9)
C16	0.0421 (12)	0.0278 (11)	0.0495 (14)	0.0055 (9)	0.0125 (11)	0.0049 (10)
C18	0.0308 (11)	0.0266 (10)	0.0399 (12)	0.0016 (8)	0.0075 (9)	-0.0015 (9)
N3	0.0398 (11)	0.0522 (12)	0.0410 (12)	0.0148 (9)	0.0072 (9)	0.0120 (9)
C22	0.092 (2)	0.0518 (17)	0.0509 (17)	0.0014 (16)	0.0000 (16)	-0.0164 (14)
C25	0.0356 (12)	0.0539 (15)	0.0356 (12)	0.0069 (10)	0.0064 (10)	0.0006 (11)
C12	0.0337 (11)	0.0262 (11)	0.0441 (13)	0.0062 (9)	0.0080 (10)	0.0096 (9)
C9	0.0358 (12)	0.0392 (12)	0.0330 (12)	0.0037 (9)	0.0025 (9)	0.0040 (9)
C4	0.0384 (12)	0.0417 (13)	0.0355 (12)	0.0007 (10)	0.0052 (10)	-0.0010 (10)

C5	0.0602 (16)	0.0482 (15)	0.0389 (14)	-0.0036 (12)	0.0011 (12)	-0.0052 (12)
C3	0.0425 (13)	0.0270 (11)	0.0426 (13)	0.0019 (9)	0.0033 (10)	-0.0024 (9)
C2	0.0370 (11)	0.0276 (11)	0.0368 (12)	0.0055 (9)	0.0034 (9)	0.0052 (9)
C21	0.0634 (17)	0.0437 (14)	0.0456 (15)	0.0030 (12)	0.0044 (13)	-0.0050 (12)
C20	0.0351 (12)	0.0410 (13)	0.0363 (12)	0.0014 (10)	0.0071 (10)	-0.0014 (10)
C6	0.0670 (18)	0.0696 (19)	0.0353 (14)	-0.0041 (15)	-0.0060 (13)	-0.0019 (13)
C14	0.0572 (15)	0.0338 (13)	0.0608 (16)	0.0148 (11)	0.0081 (13)	0.0226 (12)
C15	0.0487 (14)	0.0228 (11)	0.0625 (16)	0.0077 (10)	0.0170 (12)	0.0100 (11)
C26	0.0409 (13)	0.0531 (14)	0.0370 (13)	0.0148 (11)	0.0017 (10)	0.0127 (11)
C13	0.0532 (14)	0.0327 (12)	0.0490 (14)	0.0093 (10)	0.0009 (11)	0.0092 (11)
C17	0.0300 (10)	0.0259 (10)	0.0420 (12)	0.0033 (8)	0.0101 (9)	0.0069 (9)
C8	0.0578 (15)	0.0496 (15)	0.0413 (14)	0.0081 (12)	-0.0041 (12)	0.0095 (11)
C27	0.0367 (12)	0.0392 (12)	0.0399 (13)	0.0114 (9)	0.0024 (10)	0.0087 (10)
C24	0.0590 (17)	0.0692 (19)	0.0370 (14)	0.0096 (14)	-0.0001 (12)	0.0011 (13)
C7	0.0646 (17)	0.0703 (19)	0.0391 (14)	0.0113 (14)	-0.0051 (13)	0.0133 (13)
C23	0.086 (2)	0.073 (2)	0.0393 (15)	0.0053 (17)	-0.0039 (15)	-0.0150 (14)
N4	0.0364 (11)	0.0474 (12)	0.0519 (13)	0.0075 (9)	0.0045 (9)	0.0099 (10)
N5	0.0725 (18)	0.149 (3)	0.0665 (18)	0.0116 (18)	0.0128 (15)	0.0513 (19)

Geometric parameters (Å, °)

Mn1—O2	1.8644 (15)	C25—C20	1.417 (3)
Mn1—O1	1.8799 (14)	C25—C26	1.425 (4)
Mn1—N1	1.9663 (17)	C12—C13	1.389 (3)
Mn1—N2	1.9672 (17)	C12—C17	1.405 (3)
Mn1—N3	2.2465 (19)	C9—C4	1.409 (3)
Mn1—O3	2.3905 (16)	C9—C8	1.411 (3)
N2-C18	1.309 (3)	C4—C5	1.416 (3)
N2—C17	1.419 (3)	C4—C3	1.418 (3)
01—C1	1.309 (2)	C5—C6	1.361 (4)
N1-C11	1.306 (3)	С5—Н5	0.9300
N1—C12	1.426 (3)	C3—C2	1.355 (3)
O2—C28	1.310 (3)	С3—Н3	0.9300
C11—C10	1.419 (3)	C2—H2	0.9300
C11—H11	0.9300	C21—C20	1.405 (3)
O3—H3WA	0.824 (10)	C21—H21	0.9300
O3—H3WB	0.82 (3)	C6—C7	1.393 (4)
C1-C10	1.414 (3)	С6—Н6	0.9300
C1—C2	1.420 (3)	C14—C15	1.380 (4)
C28—C19	1.409 (3)	C14—C13	1.381 (3)
C28—C27	1.425 (3)	C14—H14	0.9300
C19—C18	1.422 (3)	C15—H15	0.9300
C19—C20	1.458 (3)	C26—C27	1.341 (3)
С10—С9	1.458 (3)	С26—Н26	0.9300
C16—C15	1.375 (3)	C13—H13	0.9300
C16—C17	1.388 (3)	C8—C7	1.367 (4)
С16—Н16	0.9300	C8—H8	0.9300
C18—H18	0.9300	С27—Н27	0.9300

N3—N4	1.180 (3)	C24—C23	1.359 (4)
C22—C21	1.369 (4)	C24—H24	0.9300
C22—C23	1.396 (4)	С7—Н7	0.9300
C22—H22	0.9300	С23—Н23	0.9300
C25—C24	1.413 (3)	N4—N5	1.163 (3)
O2—Mn1—O1	91.53 (6)	C17—C12—N1	115.35 (18)
O2—Mn1—N1	173.78 (7)	C4—C9—C8	117.2 (2)
O1—Mn1—N1	92.11 (7)	C4—C9—C10	119.0 (2)
O2—Mn1—N2	92.48 (7)	C8—C9—C10	123.8 (2)
O1—Mn1—N2	172.58 (6)	C9—C4—C5	120.2 (2)
N1—Mn1—N2	83.37 (7)	C9—C4—C3	119.6 (2)
O2—Mn1—N3	94.70 (7)	C5—C4—C3	120.2 (2)
O1—Mn1—N3	96.71 (7)	C6—C5—C4	121.1 (3)
N1—Mn1—N3	89.87 (7)	С6—С5—Н5	119.5
N2—Mn1—N3	89.18 (7)	С4—С5—Н5	119.5
O2—Mn1—O3	88.06 (6)	C2—C3—C4	121.7 (2)
O1—Mn1—O3	88.87 (6)	С2—С3—Н3	119.2
N1—Mn1—O3	86.98 (6)	С4—С3—Н3	119.2
N2—Mn1—O3	85.04 (6)	C3—C2—C1	120.8 (2)
N3—Mn1—O3	173.70 (6)	C3—C2—H2	119.6
C18—N2—C17	122.21 (18)	C1—C2—H2	119.6
C18—N2—Mn1	124.62(15)	$C_{22} = C_{21} = C_{20}$	121.4 (3)
C17 - N2 - Mn1	113.16(13)	$C_{22} = C_{21} = H_{21}$	119.3
C1 - O1 - Mn1	129.97 (13)	C20—C21—H21	119.3
$C_{11} = N_{1} = C_{12}$	122.49 (18)	C21—C20—C25	117.3 (2)
C11—N1—Mn1	124.55 (15)	C21—C20—C19	124.1 (2)
C12— $N1$ — $Mn1$	112.82 (14)	C25—C20—C19	118.7(2)
C28—O2—Mn1	129.92 (14)	C5—C6—C7	118.8 (2)
N1—C11—C10	127.3 (2)	С5—С6—Н6	120.6
N1—C11—H11	116.4	С7—С6—Н6	120.6
C10—C11—H11	116.4	C15—C14—C13	120.7 (2)
Mn1—O3—H3WA	122 (3)	C15—C14—H14	119.7
Mn1—O3—H3WB	112 (3)	C13—C14—H14	119.7
H3WA—O3—H3WB	109 (2)	C16—C15—C14	120.3 (2)
O1—C1—C10	123.96 (18)	C16—C15—H15	119.8
O1—C1—C2	116.30 (18)	C14—C15—H15	119.8
C10—C1—C2	119.74 (18)	C27—C26—C25	122.1 (2)
O2—C28—C19	124.40 (19)	С27—С26—Н26	119.0
O2—C28—C27	115.74 (19)	С25—С26—Н26	119.0
C19—C28—C27	119.9 (2)	C14—C13—C12	119.7 (2)
C28—C19—C18	121.72 (19)	C14—C13—H13	120.2
C28—C19—C20	119.3 (2)	C12—C13—H13	120.2
C18—C19—C20	119.0 (2)	C16—C17—C12	119.6 (2)
C1—C10—C11	121.72 (19)	C16—C17—N2	125.5 (2)
C1—C10—C9	119.03 (19)	C12—C17—N2	114.96 (17)
C11—C10—C9	119.25 (19)	C7—C8—C9	121.1 (2)
C15—C16—C17	120.1 (2)	С7—С8—Н8	119.4

C15 C16 H16	120.0	C0 C8 H8	110 /
	120.0	07-00-110	117.4
C17—C16—H16	120.0	C26—C27—C28	120.8 (2)
N2-C18-C19	126.8 (2)	С26—С27—Н27	119.6
N2-C18-H18	116.6	С28—С27—Н27	119.6
C19—C18—H18	116.6	C23—C24—C25	121.1 (3)
N4—N3—Mn1	123.20 (16)	C23—C24—H24	119.5
C21—C22—C23	121.1 (3)	C25—C24—H24	119.5
C21—C22—H22	119.5	C8—C7—C6	121.6 (3)
C23—C22—H22	119.5	С8—С7—Н7	119.2
C24—C25—C20	119.9 (2)	С6—С7—Н7	119.2
C24—C25—C26	120.8 (2)	C24—C23—C22	119.2 (3)
C20—C25—C26	119.3 (2)	С24—С23—Н23	120.4
C13—C12—C17	119.66 (19)	С22—С23—Н23	120.4
C13-C12-N1	125.0 (2)	N5—N4—N3	179.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3 <i>WA</i> ···N3 ⁱ	0.82 (1)	2.10 (3)	2.911 (3)	167 (4)
O3—H3 <i>WB</i> ···O1 ⁱⁱ	0.82 (3)	2.14 (3)	2.941 (2)	164 (4)
O3—H3 <i>WB</i> ···O2 ⁱⁱ	0.82 (3)	2.57 (3)	3.130 (2)	127 (3)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*, -*z*+2.