

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(methyl 3-oxobutanoato- $\kappa^2 O, O'$)aluminium(III)

Gururaj M. Neelgund,^a S. A. Shivashankar,^a T. Narasimhamurthy^a and Seik Weng Ng^{b*}

^aMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, and ^bDepartment of Chemistry, University of Malava, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 19 November 2009; accepted 20 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.068; wR factor = 0.189; data-to-parameter ratio = 13.8.

In the title compound, $[Al(C_5H_7O_3)_3]$, three acac-type ligands (methyl 3-oxobutanoate anions) chelate to the aluminium(III) cation in a slightly distorted AlO₆ octahedral coordination geometry. Electron delocalization occurs within the chelating rings.

Related literature

For the crystal structure of tris(acetylacetonato)aluminium, see: von Chrzanowski et al. (2007).

Experimental

Crystal data [Al(C₅H₇O₃)₃]

 $M_r = 372.30$

metal-organic compounds

riclinic, P1	V = 916.1 (2) Å ³
a = 6.476 (1) Å	Z = 2
P = 9.986 (2) Å	Mo $K\alpha$ radiation
= 14.368 (2) Å	$\mu = 0.15 \text{ mm}^{-1}$
$u = 90.478 \ (2)^{\circ}$	T = 293 K
$B = 92.229 \ (2)^{\circ}$	$0.5 \times 0.4 \times 0.2 \text{ mm}$
$y = 99.337 \ (2)^{\circ}$	
Data collection	

Bruker SMART APEX	8801 measured reflections
diffractometer	3207 independent reflections
Absorption correction: multi-scan	2304 reflections with $I > 2\sigma(I)$
SADABS (Sheldrick, 1996)	$R_{\rm int} = 0.041$

SADABS (Sheldrick, 1996) $T_{\min} = 0.927, \ T_{\max} = 0.970$

Refinement

٦

a Ł

C

1

$R[F^2 > 2\sigma(F^2)] = 0.068$	232 parameters
$wR(F^2) = 0.189$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 1.26 \text{ e } \text{\AA}^{-3}$
3207 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Al1-01	1.905 (3)	Al1-06	1.849 (3)
Al1-O3	1.859 (3)	Al1-O7	1.904 (3)
Al1-O4	1.909 (3)	Al1-09	1.869 (3)

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We acknowledge the use of the X-ray CCD facility at the Indian Institute of Science, Bangalore under the IRHPA/DST program, and we thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2684).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Chrzanowski, L. S. von, Lutz, M. & Spek, A. L. (2007). Acta Cryst. C63, m129m134.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m1681 [doi:10.1107/S1600536809049812]

Tris(methyl 3-oxobutanoato- $\kappa^2 O, O'$)aluminium(III)

Gururaj M. Neelgund, S. A. Shivashankar, T. Narasimhamurthy and Seik Weng Ng

S1. Experimental

Aluminium isopropoxide (10 mmol, 2.04 g) was dissolved in toluene (25 ml) under a nitrogen atmosphere. Methyl acetoacetate (30 mmol, 3.2 ml) was added. The mixture turned yellow. The solution was stirred for 6 h. The solvent was removed by fractional distillation under vacuum to yield the product, which was purified by repeated recrystallization from cyclohexane.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The final difference Fourier map had a peak in the vicinity of the C13 and C14 atoms.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $Al(C_5H_7O_3)_3$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Tris(methyl 3-oxobutanoato- κ^2 O,O')aluminium(III)

Crystal data	
$[Al(C_5H_7O_3)_3]$	Z = 2
$M_r = 372.30$	F(000) = 392
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.350 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.476 (1) Å	Cell parameters from 712 reflections
b = 9.986 (2) Å	$\theta = 2.5 - 25.9^{\circ}$
c = 14.368 (2) Å	$\mu = 0.15 \text{ mm}^{-1}$
$\alpha = 90.478 \ (2)^{\circ}$	T = 293 K
$\beta = 92.229 \ (2)^{\circ}$	Block, yellow
$\gamma = 99.337 \ (2)^{\circ}$	$0.5 \times 0.4 \times 0.2 \text{ mm}$
$V = 916.1 (2) Å^3$	

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan <i>SADABS</i> (Sheldrick, 1996) $T_{min} = 0.927, T_{max} = 0.970$ <i>Refinement</i>	8801 measured reflections 3207 independent reflections 2304 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 17$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.189$	neighbouring sites
S = 1.02	H-atom parameters constrained
3207 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0907P)^2 + 1.477P]$
232 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.26 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
A11	0.61876 (18)	0.34609 (11)	0.25756 (8)	0.0287 (3)
01	0.8373 (4)	0.4902 (2)	0.29494 (17)	0.0298 (6)
O2	1.0420 (4)	0.6906 (3)	0.2872 (2)	0.0407 (7)
O3	0.4846 (4)	0.4644 (3)	0.18716 (19)	0.0348 (7)
O4	0.7671 (4)	0.2253 (2)	0.32512 (17)	0.0279 (6)
05	0.8034 (4)	0.0612 (3)	0.42532 (19)	0.0388 (7)
O6	0.4689 (4)	0.3726 (2)	0.36122 (18)	0.0317 (6)
07	0.7870 (4)	0.3167 (3)	0.15592 (17)	0.0342 (7)
O8	0.9151 (5)	0.1916 (3)	0.0516 (2)	0.0472 (8)
O9	0.4156 (4)	0.1989 (3)	0.21949 (19)	0.0375 (7)
C1	1.1890 (6)	0.6352 (5)	0.3464 (3)	0.0419 (10)
H1A	1.3137	0.7011	0.3560	0.063*
H1B	1.2235	0.5551	0.3176	0.063*
H1C	1.1283	0.6125	0.4052	0.063*
C2	0.8676 (6)	0.6084 (4)	0.2614 (3)	0.0302 (9)
C3	0.7318 (7)	0.6615 (4)	0.1987 (3)	0.0364 (10)
H3	0.7674	0.7509	0.1799	0.044*
C4	0.5509 (6)	0.5875 (4)	0.1646 (3)	0.0324 (9)
C5	0.4062 (7)	0.6453 (4)	0.0957 (3)	0.0418 (11)
H5A	0.2692	0.6377	0.1203	0.063*
H5B	0.3978	0.5957	0.0378	0.063*
H5C	0.4602	0.7391	0.0854	0.063*
C6	0.9613 (7)	0.0242 (5)	0.3656 (3)	0.0423 (10)
H6A	1.0342	-0.0400	0.3968	0.063*
H6B	1.0590	0.1039	0.3518	0.063*
H5A H5B H5C C6 H6A H6B	0.2692 0.3978 0.4602 0.9613 (7) 1.0342 1.0590	0.6377 0.5957 0.7391 0.0242 (5) -0.0400 0.1039	0.1203 0.0378 0.0854 0.3656 (3) 0.3968 0.3518	0.063* 0.063* 0.063* 0.0423 (10) 0.063* 0.063*

H6C	0.8953	-0.0157	0.3088	0.063*
C7	0.7055 (6)	0.1615 (4)	0.3967 (3)	0.0280 (8)
C9	0.4357 (6)	0.2936 (4)	0.4312 (3)	0.0317 (9)
C8	0.5413 (6)	0.1888 (4)	0.4513 (3)	0.0336 (9)
H8	0.5038	0.1345	0.5021	0.040*
C10	0.2692 (7)	0.3274 (4)	0.4948 (3)	0.0433 (11)
H10A	0.1454	0.3372	0.4583	0.065*
H10B	0.3205	0.4109	0.5279	0.065*
H10C	0.2364	0.2557	0.5385	0.065*
C11	1.0873 (7)	0.2966 (5)	0.0492 (3)	0.0464 (11)
H11A	1.1911	0.2695	0.0104	0.070*
H11B	1.1462	0.3157	0.1112	0.070*
H11C	1.0424	0.3766	0.0244	0.070*
C12	0.7677 (7)	0.2051 (5)	0.1104 (3)	0.0380 (10)
C13	0.5996 (7)	0.0964 (4)	0.1146 (3)	0.0403 (10)
H13	0.6048	0.0183	0.0796	0.048*
C14	0.4322 (7)	0.1000 (4)	0.1665 (3)	0.0379 (10)
C15	0.2460 (7)	-0.0173 (4)	0.1643 (3)	0.0434 (11)
H15A	0.1178	0.0182	0.1545	0.065*
H15B	0.2434	-0.0639	0.2225	0.065*
H15C	0.2605	-0.0795	0.1145	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Al1	0.0348 (7)	0.0243 (6)	0.0268 (6)	0.0046 (5)	0.0003 (5)	0.0002 (4)
O1	0.0298 (14)	0.0295 (14)	0.0295 (14)	0.0021 (11)	0.0035 (11)	-0.0032 (11)
O2	0.0372 (17)	0.0351 (15)	0.0484 (18)	0.0012 (13)	0.0016 (14)	0.0019 (13)
O3	0.0390 (16)	0.0275 (14)	0.0395 (16)	0.0099 (12)	0.0002 (13)	0.0030 (12)
O4	0.0289 (14)	0.0320 (14)	0.0233 (13)	0.0055 (11)	0.0028 (11)	0.0030 (11)
O5	0.0450 (17)	0.0441 (17)	0.0313 (15)	0.0179 (14)	0.0079 (13)	0.0078 (12)
O6	0.0277 (14)	0.0289 (14)	0.0385 (16)	0.0035 (11)	0.0059 (12)	0.0016 (12)
O7	0.0491 (17)	0.0345 (15)	0.0217 (14)	0.0136 (13)	0.0050 (12)	-0.0011 (11)
08	0.0407 (18)	0.058 (2)	0.0421 (18)	0.0050 (15)	0.0080 (14)	-0.0004 (15)
09	0.0457 (17)	0.0283 (14)	0.0366 (16)	0.0027 (12)	-0.0069 (13)	-0.0013 (12)
C1	0.030 (2)	0.051 (3)	0.044 (3)	0.0045 (19)	0.0002 (19)	-0.001 (2)
C2	0.030 (2)	0.027 (2)	0.032 (2)	-0.0037 (16)	0.0129 (17)	-0.0102 (16)
C3	0.047 (3)	0.027 (2)	0.037 (2)	0.0094 (18)	0.0084 (19)	0.0068 (17)
C4	0.040 (2)	0.033 (2)	0.028 (2)	0.0124 (18)	0.0097 (17)	-0.0013 (16)
C5	0.055 (3)	0.037 (2)	0.038 (2)	0.022 (2)	0.004 (2)	0.0085 (18)
C6	0.044 (3)	0.047 (3)	0.041 (2)	0.023 (2)	0.006 (2)	0.007 (2)
C7	0.030 (2)	0.0283 (19)	0.0240 (19)	0.0028 (16)	-0.0050 (16)	0.0005 (15)
C9	0.029 (2)	0.029 (2)	0.034 (2)	-0.0040 (16)	0.0020 (17)	-0.0061 (17)
C8	0.038 (2)	0.035 (2)	0.026 (2)	-0.0002 (18)	0.0076 (17)	0.0030 (16)
C10	0.039 (2)	0.044 (2)	0.047 (3)	0.002 (2)	0.021 (2)	-0.006 (2)
C11	0.030 (2)	0.074 (3)	0.036 (2)	0.008 (2)	0.0128 (19)	0.003 (2)
C12	0.044 (2)	0.058 (3)	0.0174 (19)	0.026 (2)	0.0062 (17)	0.0084 (18)
C13	0.058 (3)	0.022 (2)	0.039 (2)	0.0031 (19)	-0.007 (2)	-0.0040 (17)

supporting information

C14	0.049 (3)	0.036 (2)	0.030 (2)	0.0126 (19)	-0.0016 (19)	0.0033 (18)
C15	0.051 (3)	0.033 (2)	0.044 (3)	-0.001 (2)	0.009 (2)	-0.0113 (19)

Geometric parameters (Å, °)

All—Ol	1.905 (3)	C4—C5	1.518 (6)	
Al1—O3	1.859 (3)	C5—H5A	0.9600	
Al1—O4	1.909 (3)	С5—Н5В	0.9600	
Al106	1.849 (3)	С5—Н5С	0.9600	
Al107	1.904 (3)	C6—H6A	0.9600	
Al1—09	1.869 (3)	C6—H6B	0.9600	
O1—C2	1.267 (5)	С6—Н6С	0.9600	
O2—C2	1.322 (4)	C7—C8	1.406 (5)	
O2—C1	1.432 (5)	C9—C8	1.367 (6)	
O3—C4	1.284 (5)	C9—C10	1.517 (5)	
O4—C7	1.258 (4)	C8—H8	0.9300	
O5—C7	1.329 (4)	C10—H10A	0.9600	
O5—C6	1.450 (5)	C10—H10B	0.9600	
O6—C9	1.286 (5)	C10—H10C	0.9600	
O7—C12	1.273 (5)	C11—H11A	0.9600	
O8—C12	1.322 (5)	C11—H11B	0.9600	
O8—C11	1.403 (5)	C11—H11C	0.9600	
O9—C14	1.263 (5)	C12—C13	1.411 (6)	
C1—H1A	0.9600	C13—C14	1.345 (6)	
C1—H1B	0.9600	C13—H13	0.9300	
C1—H1C	0.9600	C14—C15	1.538 (6)	
C2—C3	1.401 (6)	C15—H15A	0.9600	
C3—C4	1.352 (6)	C15—H15B	0.9600	
С3—Н3	0.9300	C15—H15C	0.9600	
0.6 411 00			100 5	
06—AII—03	92.13 (12)	H5B—C5—H5C	109.5	
06—AII—09	90.45 (13)	05—C6—H6A	109.5	
03—All—09	91.19 (13)	05—C6—H6B	109.5	
06—AII—01	91.76 (12)	H6A—C6—H6B	109.5	
03—AII—01	90.98 (12)	O5—C6—H6C	109.5	
09—AII—01	176.85 (13)	H6A—C6—H6C	109.5	
06—AII—07	176.44 (13)	H6B—C6—H6C	109.5	
03—All—07	90.98 (12)	04 - 05	118.6 (3)	
09—AII—07	91.22 (13)	04-07-08	125.3 (3)	
01—AII—07	86.45 (12)	05-07-08	116.1 (3)	
06—AII—04	90.71 (12)	06-09-08	124.9 (4)	
03—All—04	177.05 (13)	06-09-010	114.6 (3)	
09—AII—04	89.59 (12)	C8 - C9 - C10	120.5 (4)	
01—A11—04	88.13 (12)	C9—C8—C7	121.4 (3)	
U/-AII-04	86.16 (12)	C9—C8—H8	119.3	
C2—O1—All	126.1 (3)	C/C8H8	119.3	
C2	116.9 (3)	C9—C10—H10A	109.5	
C4—O3—All	129.5 (3)	C9—C10—H10B	109.5	

C7—O4—All	125.6 (2)	H10A—C10—H10B	109.5
C7—O5—C6	116.8 (3)	C9—C10—H10C	109.5
C9—O6—Al1	127.3 (2)	H10A—C10—H10C	109.5
C12—O7—Al1	123.6 (3)	H10B-C10-H10C	109.5
C12—O8—C11	117.6 (4)	O8—C11—H11A	109.5
C14—O9—Al1	129.2 (3)	O8—C11—H11B	109.5
O2—C1—H1A	109.5	H11A—C11—H11B	109.5
O2—C1—H1B	109.5	O8—C11—H11C	109.5
H1A—C1—H1B	109.5	H11A—C11—H11C	109.5
O2—C1—H1C	109.5	H11B—C11—H11C	109.5
H1A—C1—H1C	109.5	O7—C12—O8	117.0 (4)
H1B—C1—H1C	109.5	O7—C12—C13	126.0 (4)
O1—C2—O2	118.0 (4)	O8—C12—C13	116.9 (4)
O1—C2—C3	125.9 (3)	C14—C13—C12	123.3 (4)
O2—C2—C3	116.1 (3)	C14—C13—H13	118.4
C4—C3—C2	122.4 (4)	C12—C13—H13	118.4
С4—С3—Н3	118.8	O9—C14—C13	122.9 (4)
С2—С3—Н3	118.8	O9—C14—C15	115.5 (4)
O3—C4—C3	124.0 (4)	C13—C14—C15	121.6 (4)
O3—C4—C5	114.0 (4)	C14—C15—H15A	109.5
C3—C4—C5	122.0 (4)	C14—C15—H15B	109.5
C4—C5—H5A	109.5	H15A—C15—H15B	109.5
C4—C5—H5B	109.5	C14—C15—H15C	109.5
H5A—C5—H5B	109.5	H15A—C15—H15C	109.5
C4—C5—H5C	109.5	H15B—C15—H15C	109.5
H5A—C5—H5C	109.5		
O6—Al1—O1—C2	-102.8 (3)	C1—O2—C2—C3	-176.1 (3)
O3—Al1—O1—C2	-10.6 (3)	O1—C2—C3—C4	-2.0 (6)
O7—Al1—O1—C2	80.3 (3)	O2—C2—C3—C4	178.1 (4)
O4—Al1—O1—C2	166.6 (3)	Al1-03-C4-C3	-8.0 (6)
O6—Al1—O3—C4	102.4 (3)	Al1-03-C4-C5	172.5 (3)
O9—Al1—O3—C4	-167.1 (3)	C2—C3—C4—O3	1.4 (6)
O1—A11—O3—C4	10.6 (3)	C2—C3—C4—C5	-179.1 (4)
O7—Al1—O3—C4	-75.8 (3)	Al1-04-C7-05	166.7 (2)
O6—Al1—O4—C7	22.3 (3)	Al1-04-C7-C8	-14.6(5)
O9—Al1—O4—C7	-68.1 (3)	C6—O5—C7—O4	-6.2 (5)
O1—Al1—O4—C7	114.0 (3)	C6—O5—C7—C8	175.0 (3)
O7—Al1—O4—C7	-159.4 (3)	Al1-06-C9-C8	14.4 (5)
O3—Al1—O6—C9	158.5 (3)	Al1-06-C9-C10	-167.3(3)
O9—Al1—O6—C9	67.3 (3)	O6—C9—C8—C7	2.3 (6)
O1—Al1—O6—C9	-110.5 (3)	C10—C9—C8—C7	-175.8 (4)
O4—Al1—O6—C9	-22.3 (3)	O4—C7—C8—C9	-1.8 (6)
O3—Al1—O7—C12	-110.4 (3)	05	176.9 (3)
O9—Al1—O7—C12	-19.2 (3)	Al1-07-C12-08	-169.6 (2)
01—Al1—07—C12	1587(3)	A11-07-C12-C13	12.8 (5)
	150.7 (5)		12.0 (2)
O4—Al1—O7—C12	70.3 (3)	C11—O8—C12—O7	4.5 (5)

O3—Al1—O9—C14	110.6 (3)	O7—C12—C13—C14	2.2 (7)
O7—Al1—O9—C14	19.6 (3)	O8—C12—C13—C14	-175.4 (4)
O4—Al1—O9—C14	-66.5 (3)	Al1-09-C14-C13	-11.6 (6)
Al1-01-C2-02	-171.6 (2)	Al1-09-C14-C15	168.8 (3)
Al1-01-C2-C3	8.6 (5)	C12—C13—C14—O9	-3.4 (7)
C1—O2—C2—O1	4.1 (5)	C12—C13—C14—C15	176.2 (4)