

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-[Ethylenebis(azanediylmethylene)]diphenol

Ying-Ming Xu,^a Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 16 November 2009; accepted 17 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.176; data-to-parameter ratio = 16.5.

In the title compound, $C_{16}H_{20}N_2O_4$, the molecule features a zigzag -CH2-NH-CH2-CH2-NH-CH2- chain whose ends are connected to the hydroxyphenyl rings. The molecules lies about a center of inversion. The imino group is a hydrogenbond donor for the hydroxy group, which is a hydrogen-bond donor for the imino group of an adjacent molecule. This latter intermolecular hydrogen bonding leads to a layer structure.

Related literature

The title compound was doubly-deprotonated, forming several tetradentate chelated metal complexes. For their crystal structures, see: Atwood et al. (1995, 1996); Borer et al. (1983); Bottcher et al. (1994); García-Zarracino et al. (2002); Henrick et al. (1984); Viswanathan et al. (1998); Xie et al. (2006); Yang et al. (2007).

Experimental

Crystal data

 $C_{16}H_{20}N_2O_2$ $M_r = 272.34$ Monoclinic, $P2_1/c$ a = 15.263 (2) Å b = 4.860 (1) Åc = 9.770 (1) Å $\beta = 96.318 \ (3)^{\circ}$

$V = 720.3 (2) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 293 K
$0.31\times0.27\times0.25$ mm

Data collection

```
Rigaku R-AXIS RAPID IP
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.975, \ \tilde{T}_{\max} = 0.979
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	
$wR(F^2) = 0.176$	
S = 1.09	
1635 reflections	
99 parameters	
2 restraints	

6726 measured reflections 1635 independent reflections 912 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.055$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H10\cdots N1^{i}$	0.86 (1)	1.89 (1)	2.721 (2)	165 (3)
$N1 - H1n \cdots O1$	0.86 (1)	2.23 (2)	2.884 (2)	133 (2)

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2679).

References

- Atwood, D. A., Jegier, J. A., Lindholm, N. F., Martin, K. J. & Rutherford, D. R. (1996). J. Coord. Chem. 38, 305-318.
- Atwood, D. A., Jegier, J. A., Martin, K. J. & Rutherford, D. (1995). J. Organomet. Chem. 503, C4-C7.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Borer, L., Thalken, L., Ceccarelli, C., Glick, M., Zhang, J. H. & Reiff, W. M. (1983). Inorg. Chem. 22, 1719-1724.
- Bottcher, A., Elias, H., Glerup, J., Neuburger, M., Olsen, C. E., Paulus, H., Sprinbborg, J. & Zehinder, M. (1994). Acta Chem. Scand. 48, 967-980.
- García-Zarracino, R., Ramos-Quiñones, J. & Höpfl, H. (2002). J. Organomet. Chem. 664, 188-200.
- Henrick, K., Lindoy, L. F., McPartlin, M., Tasker, P. A. & Wood, M. P. (1984). J. Am. Chem. Soc. 106, 1641-1645.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Viswanathan, R., Palaniandavar, M., Prabakaran, P. & Muthiah, P. T. (1998). Inorg. Chem. 37, 3881-3884.
- Westrip, S. P. (2009). publCIF. In preparation.
- Xie, Y.-S., Liu, Q.-L., Jiang, H., Ni, J., Hui, J. & Jia, N. (2006). Eur. J. Inorg. Chem. pp. 4010-4016.
- Yang, S.-P., Han, L.-J., Wang, D.-Q. & Wang, B. (2007). Acta Cryst. E63, m2777-m2778

supporting information

Acta Cryst. (2009). E65, o3151 [doi:10.1107/S1600536809048831]

2,2'-[Ethylenebis(azanediylmethylene)]diphenol

Ying-Ming Xu, Shan Gao and Seik Weng Ng

S1. Experimental

To a solution of salicylaldehyde (2.44 g, 20 mmol) in methanol was added a solution of ethylenediamine (0.6 ml, 10 mmol) in methanol. The solution was heated for two hours. The yellow Schiff base that was isolated upon evaporation of the solvent was reduced in absolute methanol by sodium borohydride. Colorless prismatic crystals were grown from a solution of the diamine in methanol.

S2. Refinement

Carbon-bound H-atoms generated geometrically (0.93–0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$). The nitrogen- and oxygen-bound H-atoms were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å; their temperature factors were refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the molecule of $C_{16}H_{20}N_2O_2$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2,2'-[Ethylenebis(azanediylmethylene)]diphenol

Crystal data	
$C_{16}H_{20}N_2O_2$	V = 720.3 (2) Å ³
$M_r = 272.34$	Z = 2
Monoclinic, $P2_1/c$	F(000) = 292
Hall symbol: -P 2ybc	$D_{\rm x} = 1.256 {\rm ~Mg} {\rm ~m}^{-3}$
a = 15.263 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 4.860 (1) Å	Cell parameters from 3415 reflections
c = 9.770 (1) Å	$\theta = 4.0 - 27.4^{\circ}$
$\beta = 96.318 \ (3)^{\circ}$	$\mu=0.08~\mathrm{mm^{-1}}$

T = 293 KPrism, colorless

Data collection

Rigaku R-AXIS RAPID IP diffractometer	6726 measured reflections 1635 independent reflections
Radiation source: fine-focus sealed tube	912 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.055$
ω scan	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(ABSCOR; Higashi, 1995)	$k = -6 \rightarrow 6$
$T_{\min} = 0.975, \ T_{\max} = 0.979$	$l = -12 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.176$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
1635 reflections	and constrained refinement
99 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0749P)^2 + 0.1302P]$
2 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.21$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

 $0.31 \times 0.27 \times 0.25 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

_	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.34270 (10)	0.3118 (4)	0.13029 (16)	0.0555 (5)	
N1	0.38397 (11)	0.4899 (4)	0.41165 (18)	0.0451 (5)	
C1	0.25836 (14)	0.3821 (5)	0.1507 (2)	0.0439 (6)	
C2	0.18572 (15)	0.2708 (5)	0.0744 (2)	0.0552 (6)	
H2A	0.1932	0.1404	0.0070	0.066*	
C3	0.10190 (15)	0.3510 (6)	0.0972 (3)	0.0622 (7)	
Н3	0.0532	0.2732	0.0460	0.075*	
C4	0.09036 (16)	0.5466 (6)	0.1958 (3)	0.0624 (7)	
H4	0.0340	0.6040	0.2103	0.075*	
C5	0.16325 (16)	0.6564 (5)	0.2727 (2)	0.0564 (7)	
Н5	0.1552	0.7871	0.3397	0.068*	
C6	0.24808 (13)	0.5773 (5)	0.2530 (2)	0.0443 (6)	
C7	0.32748 (15)	0.6983 (5)	0.3364 (2)	0.0524 (6)	
H7A	0.3621	0.7987	0.2754	0.063*	
H7B	0.3079	0.8285	0.4019	0.063*	
C8	0.46843 (13)	0.6100 (5)	0.4701 (2)	0.0497 (6)	
H8A	0.4579	0.7403	0.5418	0.060*	
H8B	0.4947	0.7091	0.3988	0.060*	
H10	0.3458 (18)	0.209 (5)	0.0600 (19)	0.081 (10)*	
H1N	0.3943 (15)	0.370 (4)	0.3504 (19)	0.060 (7)*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0458 (10)	0.0730 (13)	0.0477 (10)	0.0062 (8)	0.0060 (7)	-0.0106 (8)
N1	0.0441 (10)	0.0469 (12)	0.0432 (10)	-0.0043 (8)	0.0005 (8)	-0.0013 (9)
C1	0.0434 (12)	0.0475 (13)	0.0409 (11)	0.0033 (10)	0.0055 (9)	0.0053 (10)
C2	0.0546 (14)	0.0616 (16)	0.0482 (13)	-0.0008 (11)	-0.0005 (11)	-0.0064 (12)
C3	0.0457 (14)	0.0746 (19)	0.0642 (16)	-0.0037 (12)	-0.0036 (12)	0.0023 (14)
C4	0.0465 (13)	0.0746 (19)	0.0660 (16)	0.0126 (13)	0.0065 (12)	0.0082 (14)
C5	0.0565 (14)	0.0592 (16)	0.0536 (14)	0.0127 (12)	0.0074 (11)	0.0000 (11)
C6	0.0489 (13)	0.0424 (13)	0.0418 (11)	0.0012 (9)	0.0050 (10)	0.0039 (9)
C7	0.0570 (14)	0.0458 (14)	0.0532 (13)	0.0055 (11)	0.0014 (11)	0.0000 (11)
C8	0.0480 (13)	0.0493 (15)	0.0510(13)	-0.0079(10)	0.0009 (10)	-0.0009 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C4—C5 C4—H4	1.380 (4)
C4—H4	0.0200
	0.9300
C5—C6	1.384 (3)
С5—Н5	0.9300
C6—C7	1.504 (3)
C7—H7A	0.9700
C7—H7B	0.9700
C8—C8 ⁱ	1.513 (4)
C8—H8A	0.9700
C8—H8B	0.9700
) C4—C5—H5	119.1
7) C6—C5—H5	119.1
C5—C6—C1	117.9 (2)
) C5—C6—C7	121.7 (2)
C1—C6—C7	120.34 (19)
9) N1—C7—C6	113.21 (18)
N1—C7—H7A	108.9
C6—C7—H7A	108.9
N1—C7—H7B	108.9
C6—C7—H7B	108.9
H7A—C7—H7B	107.8
N1	111.3 (2)
N1—C8—H8A	109.4
C8 ⁱ —C8—H8A	109.4
N1—C8—H8B	109.4
C8 ⁱ —C8—H8B	109.4
H8A—C8—H8B	108.0
) C2—C1—C6—C5	-1.0 (3)
O1—C1—C6—C7	-0.7 (3)
	$C_{5} - C_{6}$ $C_{5} - H_{5}$ $C_{6} - C_{7}$ $C_{7} - H_{7}A$ $C_{7} - H_{7}B$ $C_{8} - C_{8}^{i}$ $C_{8} - H_{8}A$ $C_{8} - H_{8}B$ $C_{8} - C_{7}$ $C_{1} - C_{6} - C_{7}$ $C_{1} - C_{6} - C_{7}$ $C_{1} - C_{6} - C_{7} - H_{7}A$ $C_{6} - C_{7} - H_{7}B$ $C_{8} - C_{8}^{i}$ $N_{1} - C_{8} - H_{8}B$ $C_{8}^{i} - C_{8} - H_{8}B$

supporting information

C1—C2—C3—C4	0.8 (4)	C2-C1-C6-C7	179.9 (2)
C2—C3—C4—C5	-1.2 (4)	C8—N1—C7—C6	169.35 (18)
C3—C4—C5—C6	0.6 (4)	C5-C6-C7-N1	122.4 (2)
C4—C5—C6—C1	0.6 (4)	C1—C6—C7—N1	-58.5 (3)
C4—C5—C6—C7	179.7 (2)	C7-N1-C8-C8 ⁱ	-171.9 (2)
O1—C1—C6—C5	178.39 (19)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H10…N1 ⁱⁱ	0.86 (1)	1.89 (1)	2.721 (2)	165 (3)
N1—H1n···O1	0.86 (1)	2.23 (2)	2.884 (2)	133 (2)

Symmetry code: (ii) x, -y+1/2, z-1/2.