organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4-hydroxypyridinium) sulfate monohydrate

Ying-Ming Xu,^a Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 14 November 2009; accepted 15 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.103; data-to-parameter ratio = 15.4.

In the crystal structure of the title salt, $2C_5H_6NO^+ \cdot SO_4^{2-} \cdot H_2O$, one planar (r.m.s. deviation = 0.01 Å) cation is stacked approximately over the other [dihedral angle between planes = 8.6 (1)°]. The pyridinium and hydroxy H atoms are hydrogen-bond donor atoms to the O atoms of the sulfate anion; the cations, anions and water molecules are consolidated into a three-dimensional network through $O-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds.

Related literature

For the crystal structures of 4-hydroxypyridinium salts, see: Fukunaga *et al.* (2004); Gao *et al.* (2004); Kiviniemi *et al.* (2001); Wang *et al.* (2006).

 $C_{5}H_{6}NO^{+}\cdot SO_{4}^{2-}\cdot H_{2}O$ $M_{r} = 306.29$ Monoclinic, $P2_{1}/n$ a = 7.1404 (2) Å b = 19.9797 (5) Å

μ=	0.28	mm^{-}
T =	: 293	Κ

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.934, T_{\rm max} = 0.957$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.103$ S = 1.053032 reflections 197 parameters 6 restraints

Table 1Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5−H5···O1w	0.85(1)	1.71 (1)	2.552 (2)	171 (2)
O6−H6···O2	0.86(1)	1.68 (1)	2.539(1)	177 (2)
O1w−H11···O1	0.84 (1)	1.93 (1)	2.765 (2)	170 (3)
$O1w-H12\cdots O3^{i}$	0.85(1)	1.99 (2)	2.783 (2)	157 (3)
$N1-H1n\cdots O4^{ii}$	0.86	1.95	2.766 (2)	158
$N2-H2n\cdots O3^{iii}$	0.86	1.87	2.705 (2)	163

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2675).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Fukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, 0718–0722.
- Gao, S., Lu, Z.-Z., Huo, L.-H., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, 02195–02196.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kiviniemi, S., Nissinen, M., Kolli, T., Jalonen, J., Rissanen, K. & Pursiainen, J. (2001). J. Inclusion Phenom. Macrocycl. Chem. 40, 153–159.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y., Tang, L. & Wang, Y. (2006). Chem. Lett. pp. 548-549.
- Westrip, S. P. (2009). publCIF. In preparation.

$0.25\,\times\,0.18\,\times\,0.16$ mm

12868 measured reflections

 $R_{\rm int} = 0.020$

refinement

 $\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.43$ e Å⁻³

3032 independent reflections

2693 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

supporting information

Acta Cryst. (2009). E65, o3146 [doi:10.1107/S1600536809048521]

Bis(4-hydroxypyridinium) sulfate monohydrate

Ying-Ming Xu, Shan Gao and Seik Weng Ng

S1. Experimental

Copper nitrate (0.37 g, 2 mmol) and 4-hydroxypyridine-3-sulfonic acid (0.35 g, 2 mmol) were dissolved in hot water. The pH value was adjusted to 6 with 0.1 M sodium hydroxide. The solution was allowed to evaporate slowly at room temperature; colorless prismatic crystals were isolated from the blue-green solution after several days.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H = 0.85 ± 0.01 Å; their temperature factors were refined. The pyridinium H-atoms could be found in a difference Fourier map; however, their refinement led to somewhat unsatisfactory angles. As such, their positions were fixed and their temperatures tied to those of the parent atoms.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $2[C_5H_6NO][SO_4]H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Bis(4-hydroxypyridinium) sulfate monohydrate

Crystal data

 $2C_{5}H_{6}NO^{+}SO_{4}^{2-}H_{2}O$ $M_{r} = 306.29$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 7.1404 (2) Å b = 19.9797 (5) Å c = 9.5148 (2) Å $\beta = 102.557$ (1)° V = 1324.94 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID IP	12868 measured reflections
diffractometer	3032 independent reflections
Radiation source: fine-focus sealed tube	2693 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.020$
ωscan	$\theta_{\rm max} = 27.4^\circ, \ \theta_{\rm min} = 3.0^\circ$
Absorption correction: multi-scan	$h = -9 \longrightarrow 9$
(ABSCOR; Higashi, 1995)	$k = -25 \longrightarrow 25$
$T_{\min} = 0.934, \ T_{\max} = 0.957$	$l = -12 \rightarrow 12$
Refinement	

F(000) = 640

 $\theta = 3.0-27.4^{\circ}$

 $\mu = 0.28 \text{ mm}^{-1}$ T = 293 K

Prism, colorless

 $0.25\times0.18\times0.16~mm$

 $D_{\rm x} = 1.535 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11052 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
<i>S</i> = 1.05	H atoms treated by a mixture of independent
3032 reflections	and constrained refinement
197 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0703P)^2 + 0.2237P]$
6 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.42 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{\min} = -0.43 \text{ e} \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.61983 (4)	0.073598 (14)	0.24878 (3)	0.02657 (12)	
01	0.43221 (15)	0.06385 (5)	0.15168 (11)	0.0397 (3)	
O2	0.64861 (17)	0.14531 (5)	0.28579 (12)	0.0436 (3)	
03	0.77259 (15)	0.05185 (5)	0.17503 (12)	0.0388 (2)	
O4	0.63392 (17)	0.03440 (5)	0.38109 (10)	0.0417 (3)	
05	0.20084 (17)	0.22956 (5)	0.36294 (12)	0.0425 (3)	
06	0.47857 (16)	0.23613 (5)	0.11899 (11)	0.0373 (2)	
O1W	0.1093 (2)	0.12590 (7)	0.2064 (2)	0.0645 (4)	
N1	0.04132 (18)	0.41179 (6)	0.18890 (13)	0.0356 (3)	
H1N	0.0088	0.4507	0.1532	0.043*	
N2	0.62608 (18)	0.42205 (6)	0.27653 (15)	0.0379 (3)	
H2N	0.6556	0.4617	0.3091	0.045*	

C1	-0.0033 (2)	0.35736 (7)	0.10572 (15)	0.0355 (3)	
H1	-0.0686	0.3623	0.0105	0.043*	
C2	0.0458 (2)	0.29479 (7)	0.15884 (14)	0.0321 (3)	
H2	0.0135	0.2573	0.1006	0.039*	
C3	0.14570 (19)	0.28776 (7)	0.30255 (14)	0.0304 (3)	
C4	0.1913 (2)	0.34564 (7)	0.38645 (14)	0.0340 (3)	
H4	0.2585	0.3424	0.4816	0.041*	
C5	0.1361 (2)	0.40666 (7)	0.32736 (16)	0.0358 (3)	
H5A	0.1643	0.4451	0.3831	0.043*	
C6	0.5135 (2)	0.41430 (7)	0.14439 (17)	0.0382 (3)	
H6A	0.4688	0.4519	0.0897	0.046*	
C7	0.4642 (2)	0.35222 (7)	0.08949 (14)	0.0329 (3)	
H7	0.3870	0.3474	-0.0022	0.039*	
C8	0.53127 (18)	0.29565 (6)	0.17300 (13)	0.0271 (3)	
C9	0.64828 (19)	0.30528 (7)	0.31067 (14)	0.0304 (3)	
H9	0.6946	0.2688	0.3685	0.036*	
C10	0.6930(2)	0.36886 (8)	0.35840 (15)	0.0350 (3)	
H10	0.7712	0.3755	0.4491	0.042*	
Н5	0.158 (3)	0.1970 (8)	0.308 (2)	0.060 (6)*	
H6	0.540 (3)	0.2060 (8)	0.1754 (18)	0.053 (5)*	
H11	0.204 (3)	0.1028 (11)	0.195 (3)	0.076 (7)*	
H12	0.021 (3)	0.1002 (12)	0.221 (3)	0.093 (9)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.03062 (19)	0.01762 (17)	0.02844 (18)	0.00117 (10)	-0.00024 (13)	-0.00033 (10)
01	0.0326 (5)	0.0376 (5)	0.0431 (6)	0.0009 (4)	-0.0045 (4)	-0.0053 (4)
O2	0.0599 (7)	0.0181 (5)	0.0440 (6)	0.0024 (4)	-0.0081 (5)	-0.0031 (4)
03	0.0371 (5)	0.0294 (5)	0.0513 (6)	0.0046 (4)	0.0123 (5)	0.0042 (4)
O4	0.0610 (7)	0.0301 (5)	0.0308 (5)	-0.0052 (5)	0.0030 (4)	0.0034 (4)
05	0.0543 (7)	0.0295 (5)	0.0406 (6)	0.0081 (5)	0.0032 (5)	0.0031 (4)
06	0.0479 (6)	0.0239 (5)	0.0354 (5)	-0.0011 (4)	-0.0010 (4)	-0.0020 (4)
O1W	0.0465 (7)	0.0422 (7)	0.1120 (11)	-0.0086 (6)	0.0328 (8)	-0.0245 (7)
N1	0.0367 (6)	0.0292 (6)	0.0408 (6)	0.0047 (5)	0.0086 (5)	0.0058 (5)
N2	0.0384 (7)	0.0271 (6)	0.0497 (7)	-0.0089(5)	0.0132 (5)	-0.0081 (5)
C1	0.0324 (7)	0.0414 (8)	0.0317 (6)	0.0018 (6)	0.0045 (5)	0.0033 (5)
C2	0.0316 (7)	0.0323 (6)	0.0319 (6)	-0.0015 (5)	0.0056 (5)	-0.0045 (5)
C3	0.0282 (6)	0.0295 (6)	0.0341 (6)	0.0034 (5)	0.0085 (5)	0.0016 (5)
C4	0.0347 (7)	0.0348 (7)	0.0309 (6)	0.0027 (5)	0.0034 (5)	-0.0028 (5)
C5	0.0369 (7)	0.0305 (6)	0.0396 (7)	0.0012 (6)	0.0077 (6)	-0.0039 (6)
C6	0.0403 (8)	0.0264 (6)	0.0481 (8)	0.0004 (6)	0.0099 (6)	0.0078 (6)
C7	0.0333 (7)	0.0308 (6)	0.0321 (6)	0.0001 (5)	0.0017 (5)	0.0050 (5)
C8	0.0257 (6)	0.0246 (6)	0.0309 (6)	-0.0005 (4)	0.0060 (5)	0.0000 (5)
C9	0.0285 (6)	0.0323 (6)	0.0294 (6)	0.0011 (5)	0.0042 (5)	0.0022 (5)
C10	0.0288 (6)	0.0408 (7)	0.0350 (7)	-0.0065 (5)	0.0055 (5)	-0.0072 (6)

Geometric parameters (Å, °)

<u>81—04</u>	1.4674 (10)	C1—C2	1.365 (2)
S1—O1	1.4656 (10)	C1—H1	0.9300
S1—O2	1.4790 (10)	C2—C3	1.4051 (18)
S1—O3	1.4845 (10)	C2—H2	0.9300
O5—C3	1.3187 (16)	C3—C4	1.4026 (19)
O5—H5	0.849 (9)	C4—C5	1.364 (2)
O6—C8	1.3175 (15)	C4—H4	0.9300
O6—H6	0.861 (9)	C5—H5A	0.9300
O1W—H11	0.844 (10)	C6—C7	1.362 (2)
O1W—H12	0.847 (10)	C6—H6A	0.9300
N1—C1	1.3419 (19)	C7—C8	1.4046 (18)
N1—C5	1.3479 (19)	С7—Н7	0.9300
N1—H1N	0.8600	C8—C9	1.4054 (18)
N2	1.343 (2)	C9—C10	1.3633 (19)
N2—C6	1.346 (2)	С9—Н9	0.9300
N2—H2N	0.8600	C10—H10	0.9300
O4—S1—O1	110.65 (7)	C4—C3—C2	118.51 (12)
O4—S1—O2	109.43 (6)	C5—C4—C3	119.46 (12)
O1—S1—O2	109.85 (6)	C5—C4—H4	120.3
O4—S1—O3	109.21 (6)	C3—C4—H4	120.3
O1—S1—O3	109.15 (6)	N1—C5—C4	120.62 (13)
O2—S1—O3	108.53 (7)	N1—C5—H5A	119.7
C3—O5—H5	112.0 (15)	C4—C5—H5A	119.7
С8—О6—Н6	109.0 (14)	N2—C6—C7	121.01 (13)
H11—O1W—H12	109 (3)	N2—C6—H6A	119.5
C1—N1—C5	121.28 (12)	С7—С6—Н6А	119.5
C1—N1—H1N	119.4	C6—C7—C8	119.20 (13)
C5—N1—H1N	119.4	С6—С7—Н7	120.4
C10—N2—C6	121.06 (12)	C8—C7—H7	120.4
C10—N2—H2N	119.5	O6—C8—C7	118.19 (12)
C6—N2—H2N	119.5	O6—C8—C9	123.28 (11)
N1—C1—C2	120.98 (13)	C7—C8—C9	118.52 (12)
N1—C1—H1	119.5	C10—C9—C8	119.13 (12)
C2—C1—H1	119.5	С10—С9—Н9	120.4
C1—C2—C3	119.14 (12)	С8—С9—Н9	120.4
C1—C2—H2	120.4	N2—C10—C9	121.07 (12)
C3—C2—H2	120.4	N2—C10—H10	119.5
O5—C3—C4	117.95 (12)	C9—C10—H10	119.5
O5—C3—C2	123.54 (12)		
C5—N1—C1—C2	0.1 (2)	C10—N2—C6—C7	-0.1 (2)
N1—C1—C2—C3	-0.5 (2)	N2—C6—C7—C8	0.4 (2)
C1—C2—C3—O5	-179.30 (13)	C6—C7—C8—O6	178.62 (13)
C1—C2—C3—C4	0.1 (2)	C6—C7—C8—C9	-0.3 (2)
O5—C3—C4—C5	-179.92 (13)	O6—C8—C9—C10	-179.00 (12)

supporting information

C2—C3—C4—C5	0.7 (2)	C7—C8—C9—C10	-0.1 (2)
C1—N1—C5—C4	0.7 (2)	C6—N2—C10—C9	-0.4 (2)
C3—C4—C5—N1	-1.1 (2)	C8—C9—C10—N2	0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O5—H5…O1w	0.85(1)	1.71 (1)	2.552 (2)	171 (2)
O6—H6…O2	0.86(1)	1.68 (1)	2.539(1)	177 (2)
01w—H11…O1	0.84(1)	1.93 (1)	2.765 (2)	170 (3)
O1w—H12···O3 ⁱ	0.85(1)	1.99 (2)	2.783 (2)	157 (3)
N1—H1n····O4 ⁱⁱ	0.86	1.95	2.766 (2)	158
N2—H2n···O3 ⁱⁱⁱ	0.86	1.87	2.705 (2)	163

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) -*x*+3/2, *y*+1/2, -*z*+1/2.