

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[diagua(μ_4 -1*H*-benzimidazole-5,6dicarboxylato)strontium] monohydrate]

Wen-Dong Song,^a Hao Wang,^b Juan-Hua Liu,^b Xiao-Tian Ma^b and Seik Weng Ng^c*

^aCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, ^bCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and CDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 12 November 2009; accepted 13 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.010 Å; R factor = 0.076; wR factor = 0.214; data-to-parameter ratio = 15.6.

Each of the carboxylate -CO₂ fragments of the dianion ligand in the title compound, $\{[Sr(C_9H_4N_2O_4)(H_2O)_2]\cdot H_2O\}_n$, chelates to a Sr^{II} atom and at the same time, one of the two O atoms coordinates to a third Sr^{II} atom. The μ_4 -bridging mode of the dianion generates a square-grid layer motif; adjacent layers are connected by O-H···O, O-H···N and N-H···O hydrogen bonds, forming a three-dimensional network. The eight-coordinate Sr atom exists in a distorted square-antiprismatic geometry. The crystal studied was a nonmerohedral twin with a minor twin component of 24%.

Related literature

For the crystal structures of other metal salts of dicarboxylic acid, see: Gao et al. (2008); Lo et al. (2007); Song et al. (2009a,b). For the treated of diffraction data of twinned crystals, see: Spek (2009).

Experimental

Crystal data	
$[Sr(C_9H_4N_2O_4)(H_2O)_2]\cdot H_2O$	b = 7.093 (1) Å
$M_r = 345.81$	c = 13.037 (2) Å
Triclinic, $P\overline{1}$	$\alpha = 80.860 \ (5)^{\circ}$
a = 6.909 (1) Å	$\beta = 83.974 \ (5)^{\circ}$

 $\gamma = 71.795 \ (4)^{\circ}$ V = 598.2 (2) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$ 173 parameters $wR(F^2) = 0.214$ H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 2.69 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -2.12$ e Å⁻³ 2695 reflections

Гable	1		
Selecte	Ь	bond	lengths

Selected bond lengths (Å).

Sr1-01	2.604 (5)	Sr1-O3 ⁱⁱⁱ	2.528 (5)
Sr1-O2	2.760 (5)	Sr1-O4 ⁱⁱ	2.635 (6)
Sr1-O2 ⁱ	2.516 (5)	Sr1-O1w	2.554 (5)
Sr1–O3 ⁱⁱ	2.711 (5)	Sr1-O2w	2.579 (6)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1.

Table 2 en-bond geometry (Å)

Tydrogen-bond	geometry	(A,)	•

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1w - H11 \cdots O1^{iii}$	0.84	1.98	2.81 (1)	167
$O1w - H12 \cdots O4^{iv}$	0.84	2.00	2.83 (1)	173
$O2w - H21 \cdots O3w^{v}$	0.84	2.28	2.95 (1)	136
$O2w - H22 \cdots O4^{i}$	0.84	2.12	2.93 (1)	162
$O3w - H3w1 \cdots N1$	0.84	1.97	2.78 (1)	160
$O3w - H3w2 \cdots O3w^{vi}$	0.84	2.39	3.01 (2)	132
N2-H2n···O3 w^{vii}	0.88	2.07	2.75 (1)	134

Symmetry codes: (i) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 2, -z + 1; (v) x, y, z - 1; (vi) -x + 1, -y, -z + 2; (vii) x, y + 1, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank Guangdong Ocean University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2672).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.

Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658

 $\mu = 4.54 \text{ mm}^{-1}$

 $0.31 \times 0.24 \times 0.20 \text{ mm}$

5799 measured reflections

2695 independent reflections 2339 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.075$

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009*a*). *Acta Cryst.* E65, m702.

Song, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009b). Acta Cryst. E**65**, m672.

Spek, A. L. (2009). Acta Cryst. D65, 148-155. Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, m1643-m1644 [doi:10.1107/S1600536809048284]

Poly[[diaqua(μ_4 -1*H*-benzimidazole-5,6-dicarboxylato)strontium] monohydrate]

Wen-Dong Song, Hao Wang, Juan-Hua Liu, Xiao-Tian Ma and Seik Weng Ng

S1. Experimental

Strontium dichloride hexahydrate (0.027 g, 0.1 mmol), 1*H*-benzimidazole-5,6-dicarboxylic acid (0.021 g, 0.1 mmol) and water (15 ml) along with a few drops of sodium hydroxide solution that adjusted the pH to about 7 were placed in a 25 ml glass vessel, which was kept at 277 K for several weeks. Colorless block-shaped crystals were obtained in 60% yield.

S2. Refinement

Carbon- and nitrogen bound H-atoms were generated geometrically, and were constrained to ride on their parent atoms (C–H = 0.93 Å, $U = 1.5U_{eq}$ (C); N–H 0.88 Å, $U = 1.2U_{eq}$ (N)).

For the two coordinated water molecules, their H-atoms rotated to fit the electron density. For the free water molecule, their H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding interactions; O-H = 0.84 Å. Their temperature factors were similarly tied. The short intermolecular H3w2…H3w2 contact of < 2.0 Å may be an artifact of possible disorder in the O3w water molecule. However, it was not necessary, to split it into two components.

The structure is a non-merohedral twin; the diffraction intensities were split into two components by *PLATON* (Spek, 2009).

The final difference Fourier map had a large peak/deep hole in the vicinity of Sr1.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of $Sr(H_2O)_2(C_9H_4N_2O_2)H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Detail of the geometry of Sr1.

Figure 3

OLEX (Dolomanov et al., 2003) depiction of the layer motif.

Poly[[diaqua(µ4-1H-benzimidazole-5,6-dicarboxylato)strontium] monohydrate]

Crystal data

Z = 2 $[Sr(C_9H_4N_2O_4)(H_2O)_2] \cdot H_2O$ $M_r = 345.81$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.909 (1) Åb = 7.093 (1) Å c = 13.037 (2) Å $\alpha = 80.860 (5)^{\circ}$ $\beta = 83.974 \ (5)^{\circ}$ $\gamma = 71.795 (4)^{\circ}$ V = 598.2 (2) Å³ Data collection Rigaku R-AXIS RAPID IP diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan $h = -8 \rightarrow 8$ Absorption correction: multi-scan $k = -9 \rightarrow 9$ (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.334, \ T_{\rm max} = 0.464$

Z = 2 F(000) = 344 $D_x = 1.920 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5129 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 4.54 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.31 \times 0.24 \times 0.20 \text{ mm}$

5799 measured reflections 2695 independent reflections 2339 reflections with $I > 2\sigma(I)$ $R_{int} = 0.075$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 9$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.076$	Hydrogen site location: inferred from
$wR(F^2) = 0.214$	neighbouring sites
S = 1.05	H-atom parameters constrained
2695 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1352P)^2 + 1.3937P]$
173 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.69 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.12 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sr1	0.25457 (8)	0.25734 (8)	0.46107 (4)	0.0207 (3)
O1	0.4011 (8)	0.3453 (8)	0.6171 (5)	0.0353 (13)
O2	0.1154 (7)	0.5758 (7)	0.5744 (4)	0.0261 (10)
O3	0.3642 (7)	0.8869 (7)	0.5721 (4)	0.0268 (10)
O4	0.0729 (8)	1.0928 (8)	0.6225 (5)	0.0401 (14)
O1w	0.2542 (8)	0.5682 (8)	0.3316 (4)	0.0327 (12)
H11	0.3596	0.6002	0.3370	0.049*
H12	0.1502	0.6631	0.3443	0.049*
O2w	0.2942 (10)	0.0310 (10)	0.3189 (6)	0.0502 (17)
H21	0.3087	0.0953	0.2602	0.075*
H22	0.1896	-0.0064	0.3213	0.075*
O3w	0.3469 (12)	0.0350 (11)	1.0913 (6)	0.0594 (19)
H3w1	0.3165	0.1485	1.0555	0.089*
H3w2	0.4687	-0.0248	1.0740	0.089*
N1	0.2543 (11)	0.4413 (11)	1.0195 (5)	0.0378 (16)
N2	0.1892 (12)	0.7679 (11)	1.0241 (5)	0.0387 (16)
H2N	0.1640	0.8830	1.0480	0.046*
C1	0.2549 (10)	0.4986 (9)	0.6338 (5)	0.0198 (12)
C2	0.2500 (9)	0.5836 (9)	0.7336 (5)	0.0192 (12)
C3	0.2665 (11)	0.4524 (10)	0.8249 (6)	0.0254 (14)
Н3	0.2916	0.3160	0.8239	0.031*
C4	0.2448 (11)	0.5298 (11)	0.9184 (6)	0.0281 (15)
C5	0.2019 (11)	0.7366 (11)	0.9214 (6)	0.0276 (14)
C6	0.1836 (11)	0.8687 (10)	0.8295 (6)	0.0267 (14)
Н6	0.1550	1.0055	0.8308	0.032*
C7	0.2086 (9)	0.7926 (9)	0.7361 (5)	0.0190 (12)
C8	0.2165 (9)	0.9307 (9)	0.6363 (5)	0.0216 (13)
C10	0.2225 (14)	0.5909 (14)	1.0781 (6)	0.042 (2)
H10	0.2243	0.5692	1.1503	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U^{13}	<i>U</i> ²³
Sr1	0.0175 (4)	0.0190 (4)	0.0219 (4)	-0.0002 (2)	-0.0012 (2)	-0.0025 (3)

supporting information

01	0.027 (3)	0.032 (3)	0.042 (3)	0.008 (2)	-0.010 (2)	-0.017 (2)
O2	0.022 (2)	0.028 (2)	0.026 (3)	-0.0030 (18)	-0.0043 (19)	-0.007 (2)
03	0.020 (2)	0.026 (2)	0.029 (3)	-0.0029 (18)	0.0065 (19)	-0.002 (2)
O4	0.030 (3)	0.026 (3)	0.045 (3)	0.011 (2)	0.010 (2)	0.005 (2)
O1w	0.026 (3)	0.030 (3)	0.039 (3)	-0.006 (2)	0.004 (2)	-0.004 (2)
O2w	0.047 (4)	0.051 (4)	0.057 (4)	-0.009 (3)	-0.012 (3)	-0.024 (3)
O3w	0.066 (5)	0.045 (4)	0.066 (5)	-0.016 (3)	-0.013 (4)	0.001 (4)
N1	0.049 (4)	0.045 (4)	0.020 (3)	-0.018 (3)	-0.005 (3)	0.000 (3)
N2	0.055 (4)	0.039 (4)	0.024 (3)	-0.011 (3)	0.000 (3)	-0.017 (3)
C1	0.018 (3)	0.020 (3)	0.022 (3)	-0.004 (2)	0.000 (2)	-0.005 (2)
C2	0.014 (3)	0.019 (3)	0.022 (3)	-0.001 (2)	-0.002 (2)	-0.005 (2)
C3	0.032 (4)	0.020 (3)	0.027 (4)	-0.009 (2)	-0.002 (3)	-0.005 (3)
C4	0.035 (4)	0.030 (4)	0.021 (4)	-0.012 (3)	-0.005 (3)	-0.001 (3)
C5	0.033 (4)	0.027 (3)	0.025 (4)	-0.011 (3)	-0.003 (3)	-0.005 (3)
C6	0.034 (4)	0.019 (3)	0.026 (4)	-0.007 (3)	0.000 (3)	-0.004 (3)
C7	0.020 (3)	0.015 (3)	0.021 (3)	-0.004 (2)	0.002 (2)	-0.003 (2)
C8	0.016 (3)	0.021 (3)	0.025 (3)	0.000 (2)	-0.001 (2)	-0.008 (3)
C10	0.049 (5)	0.058 (5)	0.018 (4)	-0.013 (4)	-0.006 (3)	0.000 (3)

Geometric parameters (Å, °)

Sr1-01	2.604 (5)	O2w—H22	0.8400
Sr1—O2	2.760 (5)	O3w—H3w1	0.8400
Sr1-O2 ⁱ	2.516 (5)	O3w—H3w2	0.8400
Sr1—O3 ⁱⁱ	2.711 (5)	N1—C10	1.354 (11)
Sr1—O3 ⁱⁱⁱ	2.528 (5)	N1—C4	1.366 (9)
Sr1—O4 ⁱⁱ	2.635 (6)	N2—C10	1.302 (11)
Srl—Olw	2.554 (5)	N2—C5	1.381 (9)
Sr1—O2w	2.579 (6)	N2—H2N	0.8800
01—C1	1.262 (8)	C1—C2	1.511 (9)
O2—C1	1.233 (8)	C2—C3	1.382 (10)
O2—Srl ⁱ	2.516 (5)	C2—C7	1.424 (8)
O3—C8	1.242 (8)	C3—C4	1.390 (10)
O3—Sr1 ⁱⁱⁱ	2.528 (5)	С3—Н3	0.9300
O3—Sr1 ^{iv}	2.711 (5)	C4—C5	1.409 (9)
O4—C8	1.264 (8)	C5—C6	1.390 (10)
O4—Sr1 ^{iv}	2.635 (6)	C6—C7	1.383 (9)
O1w—H11	0.8400	С6—Н6	0.9300
O1w—H12	0.8400	C7—C8	1.506 (9)
O2w—H21	0.8400	С10—Н10	0.9300
O2 ⁱ —Sr1—O3 ⁱⁱⁱ	159.81 (17)	Sr1—O1w—H12	109.5
O2 ⁱ —Sr1—O1w	75.51 (17)	H11—O1w—H12	109.5
O3 ⁱⁱⁱ —Sr1—O1w	90.53 (16)	Sr1—O2w—H21	109.5
O2 ⁱ —Sr1—O2w	90.93 (18)	Sr1—O2w—H22	109.5
O3 ⁱⁱⁱ —Sr1—O2w	75.39 (19)	H21—O2w—H22	109.5
O1w—Sr1—O2w	94.2 (2)	H3w1—O3w—H3w2	107.1
O2 ⁱ —Sr1—O1	118.96 (15)	C10—N1—C4	106.1 (7)

O3 ⁱⁱⁱ —Sr1—O1	77.00 (17)	C10—N2—C5	105.4 (7)
O1w—Sr1—O1	98.63 (19)	C10—N2—H2N	127.3
O2w—Sr1—O1	149.54 (18)	C5—N2—H2N	127.3
O2 ⁱ —Sr1—O4 ⁱⁱ	78.71 (17)	O2—C1—O1	122.9 (6)
O3 ⁱⁱⁱ —Sr1—O4 ⁱⁱ	118.75 (16)	O2—C1—C2	119.6 (6)
O1w—Sr1—O4 ⁱⁱ	148.09 (16)	O1—C1—C2	117.4 (6)
O2w—Sr1—O4 ⁱⁱ	104.7 (2)	C3—C2—C7	120.5 (6)
O1—Sr1—O4 ⁱⁱ	77.8 (2)	C3—C2—C1	117.0 (5)
O2 ⁱ —Sr1—O3 ⁱⁱ	118.90 (16)	C7—C2—C1	122.2 (6)
O3 ⁱⁱⁱ —Sr1—O3 ⁱⁱ	73.35 (17)	C2—C3—C4	118.1 (6)
O1w—Sr1—O3 ⁱⁱ	163.41 (16)	С2—С3—Н3	120.9
O2w—Sr1—O3 ⁱⁱ	78.2 (2)	С4—С3—Н3	120.9
O1—Sr1—O3 ⁱⁱ	81.86 (17)	N1—C4—C3	132.1 (7)
O4 ⁱⁱ —Sr1—O3 ⁱⁱ	48.37 (14)	N1—C4—C5	106.2 (6)
$O2^{i}$ —Sr1—O2	72.84 (17)	C3—C4—C5	121.7 (7)
O3 ⁱⁱⁱ —Sr1—O2	117.87 (16)	N2—C5—C6	131.4 (7)
O1w—Sr1—O2	74.33 (16)	N2—C5—C4	108.4 (6)
O2w—Sr1—O2	161.91 (19)	C6—C5—C4	120.1 (7)
O1—Sr1—O2	48.13 (14)	C7—C6—C5	118.6 (6)
O4 ⁱⁱ —Sr1—O2	80.35 (17)	С7—С6—Н6	120.7
O3 ⁱⁱ —Sr1—O2	116.38 (15)	С5—С6—Н6	120.7
O1—Sr1—C8 ⁱⁱ	76.73 (18)	C6—C7—C2	121.0 (6)
C1—O1—Sr1	97.5 (4)	C6—C7—C8	118.7 (5)
$C1 - O2 - Sr1^i$	152.2 (5)	C2—C7—C8	119.9 (6)
C1—O2—Sr1	90.8 (4)	O3—C8—O4	122.0 (7)
Sr1 ⁱ —O2—Sr1	107.16 (17)	O3—C8—C7	120.0 (5)
C8—O3—Sr1 ⁱⁱⁱ	148.1 (5)	O4—C8—C7	117.9 (6)
C8—O3—Sr1 ^{iv}	92.8 (4)	N2-C10-N1	113.9 (7)
Sr1 ⁱⁱⁱ —O3—Sr1 ^{iv}	106.65 (17)	N2-C10-H10	123.0
C8—O4—Sr1 ^{iv}	95.9 (4)	N1—C10—H10	123.0
Sr1—O1w—H11	109.5		
$O2^{i}$ —Sr1—O1—C1	-13.7 (5)	C1—C2—C3—C4	-174.6 (6)
O3 ⁱⁱⁱ —Sr1—O1—C1	153.0 (5)	C10—N1—C4—C3	179.6 (8)
O1w—Sr1—O1—C1	64.5 (5)	C10—N1—C4—C5	-1.3 (9)
O2w—Sr1—O1—C1	178.4 (4)	C2—C3—C4—N1	-179.4 (8)
$O4^{ii}$ —Sr1—O1—C1	-83.2 (4)	C2—C3—C4—C5	1.6 (10)
O3 ⁱⁱ —Sr1—O1—C1	-132.3 (5)	C10—N2—C5—C6	-178.7(9)
O2—Sr1—O1—C1	4.7 (4)	C10—N2—C5—C4	0.0 (9)
$O2^{i}$ —Sr1—O2—C1	158.5 (5)	N1-C4-C5-N2	0.8 (9)
O3 ⁱⁱⁱ —Sr1—O2—C1	-40.1 (4)	C3—C4—C5—N2	-180.0 (7)
O1w—Sr1—O2—C1	-122.2 (4)	N1—C4—C5—C6	179.7 (7)
O2w—Sr1—O2—C1	-174.5 (6)	C3—C4—C5—C6	-1.1 (11)
O1—Sr1—O2—C1	-4.8 (4)	N2—C5—C6—C7	178.5 (8)
$O4^{ii}$ —Sr1—O2—C1	77.4 (4)	C4—C5—C6—C7	-0.1 (11)
$O3^{ii}$ —Sr1—O2—C1	44.2 (4)	C5—C6—C7—C2	0.7 (10)
$O2^{i}$ —Sr1—O2—Sr1 ⁱ	0.0	С5—С6—С7—С8	-172.0 (6)
O3 ⁱⁱⁱ —Sr1—O2—Sr1 ⁱ	161.42 (17)	C3—C2—C7—C6	-0.2 (9)
			(*)

O1w—Sr1—O2—Sr1 ⁱ	79.3 (2)	C1—C2—C7—C6	173.1 (6)
O2w—Sr1—O2—Sr1 ⁱ	27.0 (7)	C3—C2—C7—C8	172.4 (6)
$O1$ — $Sr1$ — $O2$ — $Sr1^i$	-163.2 (3)	C1—C2—C7—C8	-14.3 (9)
$O4^{ii}$ — $Sr1$ — $O2$ — $Sr1^{i}$	-81.1 (2)	Sr1 ⁱⁱⁱ —O3—C8—O4	138.1 (7)
$O3^{ii}$ —Sr1—O2—Sr1 ⁱ	-114.29 (18)	Sr1 ^{iv} —O3—C8—O4	9.6 (7)
Sr1 ⁱ O2C1O1	139.9 (8)	Sr1 ⁱⁱⁱ —O3—C8—C7	-39.6 (12)
Sr1-02-C1-01	8.8 (7)	Sr1 ^{iv} —O3—C8—C7	-168.1 (5)
Sr1 ⁱ —O2—C1—C2	-37.6 (12)	Sr1 ^{iv} —O4—C8—O3	-9.9 (7)
Sr1	-168.8 (5)	Sr1 ^{iv} —O4—C8—C7	167.8 (5)
Sr1—O1—C1—O2	-9.4 (8)	C6—C7—C8—O3	125.0 (7)
Sr1—O1—C1—C2	168.3 (5)	C2—C7—C8—O3	-47.8 (9)
O2—C1—C2—C3	125.8 (7)	C6—C7—C8—O4	-52.8 (9)
O1—C1—C2—C3	-51.9 (9)	C2C7C8O4	134.4 (7)
O2—C1—C2—C7	-47.7 (9)	C5—N2—C10—N1	-0.9 (10)
O1—C1—C2—C7	134.6 (7)	C4—N1—C10—N2	1.4 (10)
C7—C2—C3—C4	-0.9 (9)		

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01 <i>w</i> —H11…O1 ⁱⁱⁱ	0.84	1.98	2.81 (1)	167
O1 <i>w</i> —H12····O4 ^v	0.84	2.00	2.83 (1)	173
$O2w$ —H21···O3 w^{vi}	0.84	2.28	2.95 (1)	136
O2w—H22···O4 ⁱ	0.84	2.12	2.93 (1)	162
O3 <i>w</i> —H3 <i>w</i> 1…N1	0.84	1.97	2.78 (1)	160
O3 <i>w</i> —H3 <i>w</i> 2···O3 <i>w</i> ^{vii}	0.84	2.39	3.01 (2)	132
N2—H2n···O3 w^{iv}	0.88	2.07	2.75 (1)	134

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*, *y*+1, *z*; (v) -*x*, -*y*+2, -*z*+1; (vi) *x*, *y*, *z*-1; (vii) -*x*+1, -*y*, -*z*+2.