## metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (Formato- $\kappa^2 O, O'$ )bis(1,10-phenanthroline- $\kappa^2 N.N'$ )manganese(II) perchlorate

### Jun Zhao,<sup>a</sup>\* Xue-Gang Zheng<sup>b</sup> and Zong-Zhi Hu<sup>a</sup>

<sup>a</sup>College of Mechanical & Material Engineering, Functional Materials Research Institute, China Three Gorges University, Yichang 443002, People's Republic of China, and <sup>b</sup>Lanzhou Institute of Biological Products, Lanzhou 730046, People's Republic of China

Correspondence e-mail: junzhao08@gmail.com

Received 15 October 2009; accepted 18 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.079; wR factor = 0.176; data-to-parameter ratio = 17.2.

In the title complex,  $[Mn(CHO_2)(C_{12}H_8N_2)_2]ClO_4$ , the Mn<sup>II</sup> cation is chelated by two 1,10-phenanthroline (phen) ligands and one formate anion in a distorted MnN<sub>4</sub>O<sub>2</sub> octahedral geometry. The two phen planes are oriented at a dihedral angle of 57.48 (11)°. The perchlorate anion links with the Mn complex cation via weak C-H···O hydrogen bonding.

### **Related literature**

For general background to manganese(II)-phen complexes and related structures, see: Zhu et al. (2008); Hao et al. (2008); Zhang (2004); Xu & Xu (2005).



### **Experimental**

#### Crystal data [Mn(CHO<sub>2</sub>)(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>]ClO<sub>4</sub> $M_r = 559.82$ Monoclinic, $P2_1/c$ a = 13.0752 (10) Åb = 10.9532 (9) Å c = 17.4811 (14) Å $\beta = 111.4950 \ (10)^{\circ}$

V = 2329.4 (3) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.73 \text{ mm}^-$ T = 293 K $0.30 \times 0.25 \times 0.16 \text{ mm}$ 

ClO<sub>4</sub>

#### Data collection

#### Bruker SMART CCD

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.803, T_{\rm max} = 0.889$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.079$ | 2 restraints                                               |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.176$               | H-atom parameters constrained                              |
| S = 1.07                        | $\Delta \rho_{\rm max} = 0.88 \text{ e} \text{ Å}^{-3}$    |
| 5752 reflections                | $\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$ |
| 334 parameters                  |                                                            |

22324 measured reflections

 $R_{\rm int} = 0.057$ 

5752 independent reflections

4237 reflections with  $I > 2\sigma(I)$ 

### Table 1

Selected bond lengths (Å).

| Mn1-N1 | 2.165 (4) | Mn1-N4 | 2.154 (4) |
|--------|-----------|--------|-----------|
| Mn1-N2 | 2.119 (4) | Mn1-O1 | 2.292 (4) |
| Mn1-N3 | 2.165 (4) | Mn1-O2 | 2.218 (4) |
|        |           |        |           |

### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------|------|-------------------------|--------------|--------------------------------------|
| $C2-H2\cdots O1^{i}$     | 0.93 | 2.57                    | 3.468 (7)    | 164                                  |
| C5-H5···O4               | 0.93 | 2.43                    | 3.355 (9)    | 174                                  |
| C6−H6···O1 <sup>ii</sup> | 0.93 | 2.42                    | 3.254 (7)    | 149                                  |
| $C18-H18\cdots O2^{iii}$ | 0.93 | 2.54                    | 3.250 (6)    | 134                                  |
|                          |      |                         |              |                                      |

Symmetry codes: (i) -x, -y + 2, -z; (ii)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (iii)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ .

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (20773104), the Program for New Century Excellent Talents in China's Universities (NCET-06-0891), the Key Project of the Ministry of Education of China (208143), the Important Project of Hubei Provincial Education Office (Z20091301) and the Natural Science Foundation of Hubei Provinces of China (2008CDB030).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2641).

### References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, T.-G. & Xu, D.-J. (2005). J. Coord. Chem. 58, 437-442.
- Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1445.

Zhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683.

# supporting information

Acta Cryst. (2009). E65, m1642 [doi:10.1107/S1600536809049277]

# (Formato- $\kappa^2 O, O'$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )manganese(II) perchlorate

### Jun Zhao, Xue-Gang Zheng and Zong-Zhi Hu

### S1. Comment

1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some manganese(II)-phen complexes have been synthesized and reported (Zhu *et al.*,2008; Hao *et al.*, 2008; Zhang *et al.*, 2004; Xu *et al.*, 2005). As a continuation of these studies, we herein report the crystal structure of the title complex (I).

As illustrated in Fig. 1,  $Mn^{II}$  ion is in a distorted octahedral geometry formed by two phen ligands and one HCOO<sup>-</sup> anion (Table 1). The dihedral angle of two phen ligands of the complex is 57.48 (11)°. In the crystal structure the weak C— H···O hydrogen bonding links the complex into a one-dimensional chains (Fig. 2). The C2—H2···O1<sup>i</sup> (symmetry code: i - x,-y + 2,-z) hydrogen bond provides additional attractive forces between adjacent chains (Table 2). Furthermore aromatic  $\pi$ - $\pi$  stacking between N2-pyridine and C18<sup>ii</sup>-benzene rings [symmetry code: (ii) x, 3/2-y, 1/2+z; centroids distance = 3.656 (3) Å] helps to form the two-dimensional supramolecular motif (Fig. 3).

### **S2. Experimental**

 $Mn(ClO_4)_2.6H_2O$  (0.0331 g, 0.1 mmol), phen (0.0198 g, 0.1 mmol), formic acid (2 ml) and water (10 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to room temperature. Single crystals were obtained from the reaction mixture.

### **S3. Refinement**

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .



### Figure 1

The structure of (I) with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level.



### Figure 2

One-dimensional chain connected by C—H…O hydrogen bonds.



### Figure 3

Supramolecular network formed by hydrogen-bonding and  $\pi$ - $\pi$  stacking.

### (Formato- $\kappa^2$ O,O')bis(1,10-phenanthroline- $\kappa^2$ N,N')manganese(II) perchlorate

| Crosstal data                      |                                                       |
|------------------------------------|-------------------------------------------------------|
| Cryslal dala                       |                                                       |
| $[Mn(CHO_2)(C_{12}H_8N_2)_2]ClO_4$ | F(000) = 1140                                         |
| $M_r = 559.82$                     | $D_{\rm x} = 1.596 { m Mg} { m m}^{-3}$               |
| Monoclinic, $P2_1/c$               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc               | Cell parameters from 5752 reflections                 |
| a = 13.0752 (10)  Å                | $\theta = 2.2 - 28.3^{\circ}$                         |
| b = 10.9532 (9)  Å                 | $\mu = 0.73 \text{ mm}^{-1}$                          |
| c = 17.4811 (14)  Å                | T = 293  K                                            |
| $\beta = 111.495 \ (1)^{\circ}$    | Prism, pink                                           |
| $V = 2329.4 (3) Å^3$               | $0.30 \times 0.25 \times 0.16 \text{ mm}$             |
| Z = 4                              |                                                       |

Data collection

| Bruker SMART CCD                                | 22324 measured reflections                                                |
|-------------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                                  | 5752 independent reflections                                              |
| Radiation source: fine-focus sealed tube        | 4237 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                          | $R_{\rm int} = 0.057$                                                     |
| $\varphi$ and $\omega$ scans                    | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ |
| Absorption correction: multi-scan               | $h = -17 \rightarrow 12$                                                  |
| (SADABS; Sheldrick, 1996)                       | $k = -14 \rightarrow 14$                                                  |
| $T_{\min} = 0.803, T_{\max} = 0.889$            | $l = -23 \rightarrow 23$                                                  |
| Refinement                                      |                                                                           |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                      | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.079$                 | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.176$                               | neighbouring sites                                                        |
| S = 1.07                                        | H-atom parameters constrained                                             |
| 5752 reflections                                | $w = 1/[\sigma^2(F_0^2) + (0.0272P)^2 + 7.2414P]$                         |
| 334 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                                            |
| 2 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.002$                                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.88 \text{ e} \text{ Å}^{-3}$                   |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$                |
|                                                 |                                                                           |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|-------------|-----------------------------|--|
| Mn1 | 0.28574 (5) | 0.75685 (6) | 0.09973 (4) | 0.03794 (18)                |  |
| C12 | 0.1291 (4)  | 0.7365 (4)  | 0.1859 (3)  | 0.0485 (11)                 |  |
| N3  | 0.4324 (3)  | 0.7221 (3)  | 0.0732 (2)  | 0.0513 (10)                 |  |
| N4  | 0.2276 (3)  | 0.6351 (4)  | -0.0041 (2) | 0.0529 (10)                 |  |
| C7  | 0.2343 (4)  | 0.6349 (4)  | 0.3166 (3)  | 0.0496 (11)                 |  |
| C23 | 0.3015 (4)  | 0.6173 (4)  | -0.0406 (3) | 0.0493 (11)                 |  |
| C11 | 0.2290 (4)  | 0.6786 (4)  | 0.2398 (3)  | 0.0442 (10)                 |  |
| N2  | 0.3142 (3)  | 0.6696 (4)  | 0.2139 (2)  | 0.0507 (10)                 |  |
| N1  | 0.1283 (3)  | 0.7782 (4)  | 0.1127 (2)  | 0.0530 (10)                 |  |
| C24 | 0.4105 (4)  | 0.6658 (4)  | -0.0005 (3) | 0.0486 (11)                 |  |
| C6  | 0.1396 (5)  | 0.6481 (5)  | 0.3396 (3)  | 0.0595 (13)                 |  |
| H6  | 0.1420      | 0.6168      | 0.3897      | 0.071*                      |  |
| C16 | 0.4886 (5)  | 0.6533 (5)  | -0.0370 (3) | 0.0582 (13)                 |  |
| C10 | 0.4052 (4)  | 0.6172 (5)  | 0.2638 (3)  | 0.0610 (14)                 |  |
| H10 | 0.4641      | 0.6098      | 0.2463      | 0.073*                      |  |
| C8  | 0.3318 (5)  | 0.5804 (5)  | 0.3676 (3)  | 0.0632 (14)                 |  |

| H8   | 0.3383        | 0.5501       | 0.4189       | 0.076*      |
|------|---------------|--------------|--------------|-------------|
| C4   | 0.0416 (4)    | 0.7523 (5)   | 0.2128 (3)   | 0.0540 (12) |
| C3   | -0.0515 (4)   | 0.8147 (6)   | 0.1588 (4)   | 0.0683 (15) |
| H3   | -0.1117       | 0.8282       | 0.1739       | 0.082*      |
| C2   | -0.0533 (5)   | 0.8549 (6)   | 0.0853 (4)   | 0.0741 (17) |
| H2   | -0.1145       | 0.8957       | 0.0495       | 0.089*      |
| C5   | 0.0484 (5)    | 0.7044 (5)   | 0.2905 (3)   | 0.0617 (14) |
| Н5   | -0.0112       | 0.7124       | 0.3071       | 0.074*      |
| C19  | 0.2753 (5)    | 0.5548 (5)   | -0.1155 (3)  | 0.0603 (14) |
| C15  | 0.5929 (5)    | 0.7011 (5)   | 0.0048 (4)   | 0.0753 (18) |
| H15  | 0.6467        | 0.6964       | -0.0182      | 0.090*      |
| C13  | 0.5328 (5)    | 0.7650 (5)   | 0.1118 (4)   | 0.0645 (14) |
| H13  | 0.5487        | 0.8034       | 0.1623       | 0.077*      |
| C22  | 0.1285 (5)    | 0.5872 (5)   | -0.0392 (4)  | 0.0679 (15) |
| H22  | 0.0778        | 0.5983       | -0.0139      | 0.082*      |
| C9   | 0.4173 (5)    | 0.5725 (5)   | 0.3409 (3)   | 0.0673 (15) |
| H9   | 0.4833        | 0.5374       | 0.3742       | 0.081*      |
| C17  | 0.4584 (6)    | 0.5935 (5)   | -0.1153 (4)  | 0.0717 (17) |
| H17  | 0.5093        | 0.5873       | -0.1409      | 0.086*      |
| C1   | 0.0378 (5)    | 0.8345 (6)   | 0.0640 (3)   | 0.0686 (16) |
| H1   | 0.0353        | 0.8616       | 0.0130       | 0.082*      |
| C20  | 0.1692 (6)    | 0.5062 (5)   | -0.1501 (4)  | 0.0750 (18) |
| H20  | 0.1485        | 0.4633       | -0.1994      | 0.090*      |
| C18  | 0.3560 (6)    | 0.5459 (5)   | -0.1523 (3)  | 0.0735 (18) |
| H18  | 0.3381        | 0.5067       | -0.2028      | 0.088*      |
| C14  | 0.6158 (5)    | 0.7550 (6)   | 0.0797 (4)   | 0.0763 (17) |
| H14  | 0.6860        | 0.7846       | 0.1090       | 0.092*      |
| C21  | 0.0962 (6)    | 0.5213 (6)   | -0.1121 (4)  | 0.0781 (18) |
| H21  | 0.0260        | 0.4881       | -0.1344      | 0.094*      |
| C11  | -0.21638 (13) | 0.81668 (17) | 0.34147 (10) | 0.0761 (5)  |
| O2   | 0.3515 (3)    | 0.9326 (3)   | 0.1610 (2)   | 0.0695 (10) |
| 01   | 0.2508 (3)    | 0.9390 (4)   | 0.0303 (2)   | 0.0709 (11) |
| C25  | 0.3023 (5)    | 0.9903 (5)   | 0.0963 (3)   | 0.0607 (13) |
| H25A | 0.3047        | 1.0752       | 0.0977       | 0.073*      |
| O6   | -0.3243 (5)   | 0.8154 (9)   | 0.3342 (5)   | 0.193 (4)   |
| O3   | -0.1958 (7)   | 0.8782 (9)   | 0.2849 (6)   | 0.243 (6)   |
| O4   | -0.1710 (10)  | 0.7089 (8)   | 0.3465 (11)  | 0.341 (10)  |
| O5   | -0.1664 (12)  | 0.856 (2)    | 0.4119 (7)   | 0.436 (12)  |
|      |               |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$     |
|-----|------------|------------|------------|-------------|------------|--------------|
| Mn1 | 0.0414 (4) | 0.0420 (3) | 0.0373 (3) | 0.0022 (3)  | 0.0225 (3) | -0.0034 (3)  |
| C12 | 0.048 (3)  | 0.048 (3)  | 0.049 (2)  | -0.006 (2)  | 0.018 (2)  | -0.008 (2)   |
| N3  | 0.054 (3)  | 0.044 (2)  | 0.059 (2)  | 0.0012 (18) | 0.023 (2)  | -0.0032 (18) |
| N4  | 0.055 (3)  | 0.053 (2)  | 0.053 (2)  | -0.003 (2)  | 0.022 (2)  | -0.0008 (19) |
| C7  | 0.058 (3)  | 0.042 (2)  | 0.048 (2)  | -0.002 (2)  | 0.020 (2)  | -0.002 (2)   |
| C23 | 0.066 (3)  | 0.039 (2)  | 0.048 (2)  | 0.005 (2)   | 0.027 (2)  | 0.0051 (19)  |

# supporting information

| C11 | 0.050 (3)   | 0.040 (2)   | 0.044 (2)   | -0.004 (2)   | 0.019 (2)   | -0.0073 (18) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| N2  | 0.046 (2)   | 0.052 (2)   | 0.055 (2)   | 0.0070 (19)  | 0.0199 (19) | -0.0019 (19) |
| N1  | 0.051 (2)   | 0.060 (3)   | 0.047 (2)   | 0.0073 (19)  | 0.0167 (19) | 0.0043 (18)  |
| C24 | 0.064 (3)   | 0.039 (2)   | 0.051 (3)   | 0.008 (2)    | 0.030 (2)   | 0.006 (2)    |
| C6  | 0.070 (4)   | 0.061 (3)   | 0.053 (3)   | -0.009 (3)   | 0.029 (3)   | -0.001 (2)   |
| C16 | 0.071 (4)   | 0.046 (3)   | 0.072 (3)   | 0.011 (3)    | 0.043 (3)   | 0.012 (2)    |
| C10 | 0.051 (3)   | 0.059 (3)   | 0.072 (3)   | 0.012 (3)    | 0.022 (3)   | -0.004 (3)   |
| C8  | 0.075 (4)   | 0.055 (3)   | 0.054 (3)   | 0.007 (3)    | 0.017 (3)   | 0.005 (2)    |
| C4  | 0.045 (3)   | 0.059 (3)   | 0.060 (3)   | -0.003 (2)   | 0.021 (2)   | -0.010 (2)   |
| C3  | 0.045 (3)   | 0.084 (4)   | 0.074 (4)   | 0.003 (3)    | 0.019 (3)   | -0.013 (3)   |
| C2  | 0.051 (3)   | 0.092 (5)   | 0.068 (4)   | 0.022 (3)    | 0.010 (3)   | 0.001 (3)    |
| C5  | 0.057 (3)   | 0.073 (4)   | 0.065 (3)   | -0.009 (3)   | 0.034 (3)   | -0.009 (3)   |
| C19 | 0.086 (4)   | 0.046 (3)   | 0.049 (3)   | 0.010 (3)    | 0.024 (3)   | 0.001 (2)    |
| C15 | 0.074 (4)   | 0.060 (3)   | 0.113 (5)   | 0.011 (3)    | 0.060 (4)   | 0.015 (4)    |
| C13 | 0.056 (3)   | 0.057 (3)   | 0.078 (4)   | -0.004 (3)   | 0.023 (3)   | -0.007 (3)   |
| C22 | 0.062 (4)   | 0.064 (3)   | 0.076 (4)   | -0.010 (3)   | 0.023 (3)   | -0.009 (3)   |
| C9  | 0.061 (4)   | 0.066 (3)   | 0.063 (3)   | 0.019 (3)    | 0.009 (3)   | 0.009 (3)    |
| C17 | 0.102 (5)   | 0.063 (3)   | 0.072 (4)   | 0.016 (3)    | 0.058 (4)   | 0.010 (3)    |
| C1  | 0.065 (4)   | 0.083 (4)   | 0.054 (3)   | 0.019 (3)    | 0.017 (3)   | 0.011 (3)    |
| C20 | 0.098 (5)   | 0.054 (3)   | 0.058 (3)   | -0.005 (3)   | 0.012 (3)   | -0.013 (3)   |
| C18 | 0.120 (6)   | 0.057 (3)   | 0.054 (3)   | 0.021 (4)    | 0.045 (4)   | 0.006 (3)    |
| C14 | 0.054 (3)   | 0.069 (4)   | 0.109 (5)   | -0.002 (3)   | 0.035 (3)   | 0.001 (4)    |
| C21 | 0.079 (5)   | 0.067 (4)   | 0.078 (4)   | -0.014 (3)   | 0.017 (4)   | -0.014 (3)   |
| Cl1 | 0.0668 (10) | 0.0934 (11) | 0.0773 (10) | 0.0128 (9)   | 0.0371 (8)  | 0.0185 (9)   |
| O2  | 0.080 (3)   | 0.062 (2)   | 0.062 (2)   | -0.0046 (19) | 0.021 (2)   | -0.0075 (17) |
| 01  | 0.088 (3)   | 0.066 (2)   | 0.058 (2)   | 0.009 (2)    | 0.026 (2)   | 0.0048 (17)  |
| C25 | 0.067 (4)   | 0.062 (3)   | 0.056 (3)   | 0.005 (3)    | 0.026 (3)   | -0.001 (3)   |
| O6  | 0.095 (5)   | 0.290 (10)  | 0.239 (8)   | 0.044 (6)    | 0.111 (6)   | 0.058 (8)    |
| O3  | 0.218 (9)   | 0.309 (11)  | 0.290 (10)  | 0.137 (8)    | 0.198 (9)   | 0.221 (9)    |
| O4  | 0.315 (13)  | 0.132 (7)   | 0.77 (3)    | 0.072 (8)    | 0.431 (18)  | 0.115 (12)   |
| O5  | 0.305 (17)  | 0.73 (4)    | 0.158 (9)   | 0.032 (19)   | -0.046 (10) | -0.180 (15)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| Mn1—N1  | 2.165 (4) | C4—C5   | 1.428 (7) |
|---------|-----------|---------|-----------|
| Mn1—N2  | 2.119 (4) | C3—C2   | 1.349 (8) |
| Mn1—N3  | 2.165 (4) | С3—Н3   | 0.9300    |
| Mn1—N4  | 2.154 (4) | C2—C1   | 1.390 (8) |
| Mn1—O1  | 2.292 (4) | C2—H2   | 0.9300    |
| Mn1—O2  | 2.218 (4) | С5—Н5   | 0.9300    |
| C12—N1  | 1.354 (6) | C19—C20 | 1.400 (8) |
| C12—C4  | 1.398 (6) | C19—C18 | 1.426 (8) |
| C12—C11 | 1.447 (6) | C15—C14 | 1.366 (9) |
| N3—C13  | 1.323 (7) | C15—H15 | 0.9300    |
| N3—C24  | 1.362 (6) | C13—C14 | 1.397 (8) |
| N4—C22  | 1.323 (7) | C13—H13 | 0.9300    |
| N4—C23  | 1.354 (6) | C22—C21 | 1.388 (8) |
| C7—C11  | 1.402 (6) | C22—H22 | 0.9300    |
|         |           |         |           |

| C7 C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 204 (7)            | C0 110                     | 0.0200    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.394 (7)            | C9—H9                      | 0.9300    |
| С7—С6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.443 (7)            | C17—C18                    | 1.360 (9) |
| C23—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.404 (6)            | C17—H17                    | 0.9300    |
| C23—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.439 (7)            | C1—H1                      | 0.9300    |
| C11—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.352 (6)            | C20—C21                    | 1.358 (9) |
| N2—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.321 (6)            | C20—H20                    | 0.9300    |
| N1—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.329 (6)            | C18—H18                    | 0.9300    |
| C24—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.396 (7)            | C14—H14                    | 0.9300    |
| C6C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 338(7)             | C21—H21                    | 0.9300    |
| С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300               | C1105                      | 1.240(10) |
| $C_{16}$ $C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 202 (8)            | $C_{11}$ $O_{2}$           | 1.240(10) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.392(0)             | C11_04                     | 1.304(0)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.430 (8)            |                            | 1.310 (8) |
| C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.387 (7)            | CII—06                     | 1.369 (6) |
| C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300               | O2—C25                     | 1.249 (6) |
| C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.363 (8)            | O1—C25                     | 1.237 (6) |
| С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300               | C25—H25A                   | 0.9300    |
| C4—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.414 (7)            |                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |           |
| N2—Mn1—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.60 (16)          | C12—C4—C5                  | 120.1 (5) |
| N2—Mn1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78.20 (15)           | C3—C4—C5                   | 123.4 (5) |
| N4—Mn1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 73 (16)           | $C_{2}-C_{3}-C_{4}$        | 120.2(5)  |
| N2-Mn1-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.00 (15)          | $C_2 - C_3 - H_3$          | 119.9     |
| NA Mp1 N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77 15 (15)           | $C_2 C_3 H_3$              | 110.0     |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ | 17.13(13)            | $C_4 = C_3 = H_3$          | 119.9     |
| NI-MII-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2.86 (15)          | $C_3 = C_2 = C_1$          | 119.0 (5) |
| N2—Mn1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.90 (15)           | С3—С2—Н2                   | 120.5     |
| N4—Mn1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154.06 (15)          | C1—C2—H2                   | 120.5     |
| N1—Mn1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.05 (16)           | C6—C5—C4                   | 120.7 (5) |
| N3—Mn1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92.23 (15)           | С6—С5—Н5                   | 119.7     |
| N2—Mn1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 145.38 (14)          | C4—C5—H5                   | 119.7     |
| N4—Mn1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.79 (15)           | C23—C19—C20                | 117.0 (5) |
| N1—Mn1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87.04 (15)           | C23—C19—C18                | 119.1 (6) |
| N3—Mn1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.45 (15)           | C20—C19—C18                | 124.0 (5) |
| $\Omega_{2}$ Mn1 $-\Omega_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.78 (14)           | C16—C15—C14                | 119.6 (6) |
| N1—C12—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123 5 (5)            | C16—C15—H15                | 120.2     |
| N1 C12 C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.5(5)<br>117.1(4) | $C_{14}$ $C_{15}$ $H_{15}$ | 120.2     |
| $C_{12}$ $C_{12}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.1(4)<br>110.2(4) | $N_2 C_{12} C_{14}$        | 120.2     |
| $C_{4} = C_{12} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.3 (4)            | $N_{3} - C_{13} - C_{14}$  | 122.0 (0) |
| C13 - N3 - C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.0 (3)            | N3-C13-H13                 | 110.7     |
| CI3—N3—Mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.3 (4)            | C14—C13—H13                | 118.7     |
| C24—N3—Mn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.8 (3)            | N4—C22—C21                 | 123.3 (6) |
| C22—N4—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.1 (5)            | N4—C22—H22                 | 118.3     |
| C22—N4—Mn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.3 (4)            | C21—C22—H22                | 118.3     |
| C23—N4—Mn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.2 (3)            | C8—C9—C10                  | 119.7 (5) |
| C11—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.2 (5)            | С8—С9—Н9                   | 120.2     |
| C11—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.1 (5)            | С10—С9—Н9                  | 120.2     |
| C8—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.7 (5)            | C18—C17—C16                | 120.5 (5) |
| N4—C23—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.5 (5)            | С18—С17—Н17                | 119.7     |
| N4—C23—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.9 (4)            | С16—С17—Н17                | 119.7     |
| C19—C23—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6 (5)            | N1—C1—C2                   | 123.5 (5) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            | (-)       |

| N2—C11—C7                                                        | 122.6 (4)        | N1—C1—H1                            | 118.2      |
|------------------------------------------------------------------|------------------|-------------------------------------|------------|
| N2—C11—C12                                                       | 118.1 (4)        | C2—C1—H1                            | 118.2      |
| C7—C11—C12                                                       | 119.3 (4)        | C21—C20—C19                         | 120.3 (5)  |
| C10—N2—C11                                                       | 117.6 (4)        | С21—С20—Н20                         | 119.8      |
| C10—N2—Mn1                                                       | 128.5 (4)        | С19—С20—Н20                         | 119.8      |
| C11—N2—Mn1                                                       | 113.7 (3)        | C17—C18—C19                         | 121.4 (5)  |
| C1—N1—C12                                                        | 117.3 (5)        | C17—C18—H18                         | 119.3      |
| C1—N1—Mn1                                                        | 129.8 (4)        | C19—C18—H18                         | 119.3      |
| C12—N1—Mn1                                                       | 112.6 (3)        | C15—C14—C13                         | 119.3 (6)  |
| N3—C24—C16                                                       | 122.8 (5)        | C15—C14—H14                         | 120.3      |
| N3—C24—C23                                                       | 117.1 (4)        | C13—C14—H14                         | 120.3      |
| C16—C24—C23                                                      | 120.1 (5)        | C20—C21—C22                         | 118.8 (6)  |
| C5—C6—C7                                                         | 121.4 (5)        | C20—C21—H21                         | 120.6      |
| С5—С6—Н6                                                         | 119.3            | C22—C21—H21                         | 120.6      |
| С7—С6—Н6                                                         | 119.3            | O5—Cl1—O3                           | 113.1 (12) |
| C15—C16—C24                                                      | 117.6 (5)        | O5—C11—O4                           | 100.6 (11) |
| C15—C16—C17                                                      | 123.1 (5)        | 03—C11—O4                           | 107.7 (6)  |
| C24—C16—C17                                                      | 119.2 (6)        | O5—C11—O6                           | 104.3 (8)  |
| N2—C10—C9                                                        | 123.3 (5)        | O3—C11—O6                           | 115.3 (5)  |
| N2-C10-H10                                                       | 118.3            | 04—C11—06                           | 115.0 (6)  |
| C9—C10—H10                                                       | 118.3            | C25-O2-Mn1                          | 91.2 (3)   |
| C9—C8—C7                                                         | 118.7 (5)        | C25—O1—Mn1                          | 88.2 (3)   |
| C9—C8—H8                                                         | 120.7            | 01-C25-O2                           | 122.6(5)   |
| C7—C8—H8                                                         | 120.7            | $01 - C_{25} - H_{25A}$             | 118 7      |
| $C_{12}$ $C_{4}$ $C_{3}$                                         | 116.5 (5)        | 02-C25-H25A                         | 118.7      |
|                                                                  |                  |                                     |            |
| N2—Mn1—N3—C13                                                    | -68.4 (5)        | Mn1—N3—C24—C23                      | -11.8(5)   |
| N4—Mn1—N3—C13                                                    | -179.7 (5)       | N4—C23—C24—N3                       | 2.5 (6)    |
| N1—Mn1—N3—C13                                                    | 175.8 (11)       | C19—C23—C24—N3                      | -178.0 (4) |
| O2—Mn1—N3—C13                                                    | 24.2 (5)         | N4—C23—C24—C16                      | -177.9(4)  |
| O1—Mn1—N3—C13                                                    | 82.1 (5)         | C19—C23—C24—C16                     | 1.6 (7)    |
| N2—Mn1—N3—C24                                                    | 123.4 (3)        | C11—C7—C6—C5                        | -2.1(7)    |
| N4—Mn1—N3—C24                                                    | 12.1 (3)         | C8-C7-C6-C5                         | 177.8 (5)  |
| N1—Mn1—N3—C24                                                    | 7.6 (14)         | N3-C24-C16-C15                      | 0.0(7)     |
| $\Omega_{2}$ Mn1 N3 $C_{24}$                                     | -144.0(3)        | $C_{23}$ $C_{24}$ $C_{16}$ $C_{15}$ | -179.5(4)  |
| O1—Mn1—N3—C24                                                    | -86.1(3)         | $N_{3}$ C24 C16 C17                 | -179.5(4)  |
| $N_2$ —Mn1—N4—C22                                                | 75 1 (5)         | $C_{23}$ $C_{24}$ $C_{16}$ $C_{17}$ | 10(7)      |
| N1— $Mn1$ — $N4$ — $C22$                                         | -45(5)           | $C_{11} = N_2 = C_{10} = C_{9}$     | -0.6(8)    |
| $N_{3}$ Mn1 $N_{4}$ C22                                          | 176.0 (5)        | Mn1 - N2 - C10 - C9                 | 173.9(4)   |
| $\Omega^2$ —Mn1—N4—C22                                           | -1162(5)         | $C_{11} - C_{7} - C_{8} - C_{9}$    | 0.2(7)     |
| 01 - Mn1 - N4 - C22                                              | -924(5)          | C6-C7-C8-C9                         | -1797(5)   |
| $N_{2}$ Mn1 $N_{4}$ C22                                          | $-111 \ 8 \ (3)$ | N1-C12-C4-C3                        | 04(7)      |
| $N_1 - M_{n_1} - N_4 - C_{23}$                                   | 168.6 (3)        | $C_{11} - C_{12} - C_{4} - C_{3}$   | 1770(4)    |
| N3—Mn1—N4—C23                                                    | -10.8(3)         | N1-C12-C4-C5                        | 179 3 (5)  |
| $\Omega_{2}^{$                                                   | 57 0 (5)         | $C_{11} - C_{12} - C_{4} - C_{5}$   | -41(7)     |
| $01_{m1}_{1}_{1}_{0}_{1}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0$ | 80 7 (3)         | C12 - C4 - C3 - C3                  | -7.1(7)    |
| $C_{22}$ N4 $C_{23}$ $C_{10}$                                    | 27(7)            | $C_{12} - C_{7} - C_{3} - C_{2}$    | -178.3(6)  |
| $M_{n1} = M_{1} = C_{23} = C_{13}$                               | -1712(4)         | $C_{3} = C_{3} = C_{2} = C_{2}$     | -0.2(0)    |
| IVIII1-IN4-023-019                                               | 1/1.2 (4)        |                                     | 0.5 (9)    |

| C22—N4—C23—C24 | -177.8 (4) | C7—C6—C5—C4     | 0.7 (8)    |
|----------------|------------|-----------------|------------|
| Mn1—N4—C23—C24 | 8.3 (5)    | C12—C4—C5—C6    | 2.5 (8)    |
| C8—C7—C11—N2   | 0.1 (7)    | C3—C4—C5—C6     | -178.7 (5) |
| C6-C7-C11-N2   | -180.0 (4) | N4-C23-C19-C20  | -2.6 (7)   |
| C8—C7—C11—C12  | -179.5 (4) | C24—C23—C19—C20 | 177.9 (5)  |
| C6-C7-C11-C12  | 0.4 (7)    | N4—C23—C19—C18  | 176.5 (4)  |
| N1-C12-C11-N2  | -0.2 (6)   | C24—C23—C19—C18 | -3.0 (7)   |
| C4—C12—C11—N2  | -177.0 (4) | C24—C16—C15—C14 | 1.6 (8)    |
| N1-C12-C11-C7  | 179.4 (4)  | C17—C16—C15—C14 | -178.9 (5) |
| C4—C12—C11—C7  | 2.7 (7)    | C24—N3—C13—C14  | 0.2 (8)    |
| C7—C11—N2—C10  | 0.1 (7)    | Mn1—N3—C13—C14  | -167.4 (4) |
| C12-C11-N2-C10 | 179.7 (4)  | C23—N4—C22—C21  | -0.9 (8)   |
| C7—C11—N2—Mn1  | -175.2 (3) | Mn1—N4—C22—C21  | 172.0 (4)  |
| C12-C11-N2-Mn1 | 4.4 (5)    | C7—C8—C9—C10    | -0.7 (8)   |
| N4—Mn1—N2—C10  | 89.4 (5)   | N2-C10-C9-C8    | 0.9 (9)    |
| N1—Mn1—N2—C10  | -179.5 (5) | C15—C16—C17—C18 | 178.4 (5)  |
| N3—Mn1—N2—C10  | 7.1 (5)    | C24—C16—C17—C18 | -2.1 (8)   |
| O2—Mn1—N2—C10  | -85.8 (4)  | C12—N1—C1—C2    | 1.7 (9)    |
| O1—Mn1—N2—C10  | -112.8 (5) | Mn1—N1—C1—C2    | -171.3 (5) |
| N4—Mn1—N2—C11  | -96.0 (3)  | C3—C2—C1—N1     | -0.9 (10)  |
| N1—Mn1—N2—C11  | -4.8 (3)   | C23-C19-C20-C21 | 0.7 (8)    |
| N3—Mn1—N2—C11  | -178.3 (3) | C18—C19—C20—C21 | -178.3 (6) |
| O2—Mn1—N2—C11  | 88.9 (3)   | C16—C17—C18—C19 | 0.7 (9)    |
| O1—Mn1—N2—C11  | 61.9 (4)   | C23-C19-C18-C17 | 1.9 (8)    |
| C4—C12—N1—C1   | -1.5 (7)   | C20-C19-C18-C17 | -179.0 (6) |
| C11—C12—N1—C1  | -178.2 (5) | C16-C15-C14-C13 | -2.2 (9)   |
| C4—C12—N1—Mn1  | 172.7 (4)  | N3—C13—C14—C15  | 1.4 (9)    |
| C11—C12—N1—Mn1 | -4.0 (5)   | C19—C20—C21—C22 | 0.9 (9)    |
| N2—Mn1—N1—C1   | 178.0 (5)  | N4—C22—C21—C20  | -0.9 (10)  |
| N4—Mn1—N1—C1   | -69.1 (5)  | N2—Mn1—O2—C25   | -159.4 (3) |
| N3—Mn1—N1—C1   | -64.7 (14) | N4—Mn1—O2—C25   | 30.9 (5)   |
| O2—Mn1—N1—C1   | 86.9 (5)   | N1—Mn1—O2—C25   | -81.1 (3)  |
| O1—Mn1—N1—C1   | 29.5 (5)   | N3—Mn1—O2—C25   | 95.5 (3)   |
| N2—Mn1—N1—C12  | 4.7 (3)    | O1—Mn1—O2—C25   | 2.8 (3)    |
| N4—Mn1—N1—C12  | 117.7 (3)  | N2—Mn1—O1—C25   | 29.6 (5)   |
| N3—Mn1—N1—C12  | 122.1 (12) | N4—Mn1—O1—C25   | -170.8 (3) |
| O2—Mn1—N1—C12  | -86.4 (3)  | N1—Mn1—O1—C25   | 93.8 (3)   |
| O1—Mn1—N1—C12  | -143.8 (3) | N3—Mn1—O1—C25   | -93.3 (3)  |
| C13—N3—C24—C16 | -0.9 (7)   | O2—Mn1—O1—C25   | -2.9 (3)   |
| Mn1-N3-C24-C16 | 168.6 (4)  | Mn1-01-C25-O2   | 5.1 (6)    |
| C13—N3—C24—C23 | 178.6 (4)  | Mn1             | -5.3 (6)   |

### Hydrogen-bond geometry (Å, °)

| D—H···A               | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------|------|-------|-----------|-------------------------|
| C2—H2…O1 <sup>i</sup> | 0.93 | 2.57  | 3.468 (7) | 164                     |
| С5—Н5…О4              | 0.93 | 2.43  | 3.355 (9) | 174                     |

|                              |      |      | supportin | supporting information |  |  |
|------------------------------|------|------|-----------|------------------------|--|--|
| С6—Н6…О1іі                   | 0.93 | 2.42 | 3.254 (7) | 149                    |  |  |
| C18—H18····O2 <sup>iii</sup> | 0.93 | 2.54 | 3.250 (6) | 134                    |  |  |

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) *x*, -*y*+3/2, *z*-1/2.