Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Guanidinium guinoline-2-carboxylate

Graham Smith* and Urs D. Wermuth

School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Old 4001, Australia. Correspondence e-mail: g.smith@qut.edu.au

Received 16 November 2009: accepted 20 November 2009

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.069; *wR* factor = 0.162; data-to-parameter ratio = 11.2.

In the structure of the guanidinium salt of quinaldic acid, $CH_6N_3^+ \cdot C_{10}H_6NO_2^-$, the asymmetric unit contains two independent cations and anions having similar inter-species hydrogen-bonding environments, which include cyclic $R_2^2(8)$, $R_2^{1}(6)$ and $R_1^{2}(5)$ associations. These and additional weak aromatic ring $\pi - \pi$ interactions [minimum ring-centroid] separation = 3.662(2) Å] give a two-dimensional layered structure.

Related literature

For guanidinium salts of aromatic acids, see: Parthasarathi et al. (1982); Schürmann et al. (1998); Najafpour et al. (2007); Pereira Silva et al. (2007). For quinaldic acid structures, see: Dobrzyńska & Jerzykiewicz (2004); Smith et al. (2004, 2007, 2008a,b).

Experimental

Crystal data $CH_6N_3^+ \cdot C_{10}H_6NO_2^ M_{r} = 232.25$ Monoclinic, $P2_1/c$ a = 7.4318 (3) Å b = 42.2105 (18) Å c = 7.3035 (4) Å $\beta = 94.045 \ (4)^{\circ}$

Data collection

Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.740,\;T_{\rm max}=0.870$

 $V = 2285.40 (18) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 297 K $0.35\,\times\,0.20\,\times\,0.18~\text{mm}$

10626 measured reflections 3981 independent reflections 2931 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	H atoms treated by a mixture of
$wR(F^2) = 0.162$	independent and constrained
S = 1.04	refinement
3981 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
355 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1C-H11C\cdots O21B$	0.82 (4)	2.12 (4)	2.937 (5)	176 (3)
$N1C - H12C \cdot \cdot \cdot O21A^{i}$	0.92 (4)	2.03 (4)	2.852 (5)	149 (3)
$N1D - H11D \cdots O22A$	0.87 (4)	2.04 (4)	2.902 (4)	177 (4)
$N1D - H12D \cdots O21B^{ii}$	0.85 (5)	2.47 (5)	3.312 (5)	173 (4)
$N2C - H21C \cdot \cdot \cdot O22A$	0.94 (4)	1.87 (4)	2.784 (4)	166 (4)
$N2C-H22C\cdots O21A^{i}$	0.91 (4)	2.57 (4)	3.163 (5)	124 (4)
$N2C-H22C\cdots N1A^{i}$	0.91 (4)	2.08 (5)	2.964 (4)	165 (4)
$N2D - H21D \cdots O21B^{iii}$	0.84 (4)	2.11 (4)	2.899 (5)	155 (3)
$N2D - H22D \cdots O21A$	0.89 (4)	2.01 (5)	2.890 (4)	173 (4)
N3C−H31C···O22B	0.93 (5)	1.96 (5)	2.891 (4)	173 (4)
$N3C - H32C \cdot \cdot \cdot O22A$	0.84 (4)	2.57 (5)	3.216 (5)	135 (4)
$N3D - H31D \cdots O21B^{iii}$	0.93 (4)	2.60 (4)	3.268 (5)	130 (3)
$N3D - H31D \cdot \cdot \cdot N1B^{iii}$	0.93 (4)	2.12 (4)	3.000 (4)	159 (3)
$N3D - H32D \cdots O22B^{ii}$	0.93 (4)	1.95 (4)	2.826 (4)	157 (4)

Symmetry codes: (i) x - 1, y, z; (ii) x, y, z - 1; (iii) x + 1, y, z - 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrvsAlis RED: program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology,

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2367).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M.(1994). J. Appl. Cryst. 27, 435.
- Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51-55. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Najafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, 03727.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1982). Cryst. Struct. Commun. 11, 1519-1524.
- Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, 02783.
- Schürmann, D.-C., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 581-582.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687-o689. Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, 0867-0868. Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. E64, 0132-0133. Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o180-o183. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o3220 [doi:10.1107/S1600536809049733]

Guanidinium quinoline-2-carboxylate

Graham Smith and Urs D. Wermuth

S1. Comment

The guanidinium salts of aromatic and heteroaromatic carboxylic acids have proved to be a particularly useful means of generating stable hydrogen-bonded supramolecular framework structures. Three-dimensional structures are most common, largely the result of the interactive efficiency of the symmetrical guanidinium cation in commonly forming cyclic $R_2^2(8)$ hydrogen-bonding associations with carboxylate-O acceptors. Among the known structures are the guanidinium salts with the aromatic monocarboxylic acids, 4-chloro-3-nitrobenzoic acid (a monohydrate) (Najafpour *et al.*, 2007), and the anhydrous salts with benzoic acid (Pereira Silva *et al.*, 2007), 4-nitrobenzoic acid (Schürmann *et al.*, 1998), 3,5-dinitrobenzoic acid (Smith *et al.*, 2007) and 4-amino-3,5,6-trichloropicolinic acid (Parthasarathi *et al.*, 1982).

Our 1:1 stoichiometric reaction of quinoline-2-carboxylic acid (quinaldic acid) in 50% 2-propanol-water gave large chemically stable crystals of the title compound, anhydrous guanidinium quinoline-2-carboxylate, $CH_6N_3^+ C_{10}H_6NO_2^-$ and the structure is reported here. Quinaldic acid in the solid state exists as a zwitterionic hydrogen-bonded dimer (Dobrzyńska & Jerzykiewicz, 2004) and is commonly found in that form as an adduct species in some proton-transfer compounds where it acts as a Lewis base rather than an acid. Examples are the 1/1/1 quinolinium salt adducts with 5-sulfosalicylic acid (Smith *et al.*, 2004), picrylsulfonic acid (Smith *et al.*, 2008*a*) and 4,5-dichlorophthalic acid (Smith *et al.*, 2008*b*).

In the structure of the title compound the asymmetric unit contains two guanidinium cations (*C* and *D*) and two quinoline-2-carboxylate anions (*A* and *B*) (Fig. 1). The H atom donors of the two cations form similar cyclic hydrogenbonding interactions with carboxylate O and quinoline N acceptors (Table 1) (Fig. 2), both pairs having two guanidinium-N–H, N'–H'···O associations [graph set $R_2^1(6)$] and one N–H, N'–H'···O,O' association [$R_2^2(8)$]. In addition, each has an $R_1^2(5)$ guanidinium *N*–H···N, $O_{quinoline-carboxyl}$ association. A two-dimensional layered structure is generated (Fig. 3), in which some aromatic ring overlap down the *c* cell direction gives weak π – π interactions [minimum ring centroid separation,for the six-membered ring N1*B*–C5*B*, 3.662 (2) Å]. The quinoline-2-carboxylate cations are conformationally similar with only minor differences in the N1–C2–C21–O22 torsion angles [170.3 (3)° (*A*), 163.6 (3)° (*B*)].

S2. Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of quinoline-2-carboxylic acid and guanidine carbonate in 50 ml of 50% aqueous propan-2-ol. After concentration to *ca* 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless prisms [m.p. 543–544 K].

S3. Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C—H = 0.93 Å) using a riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular configuration and atom naming scheme for the two guanidinium cations (C and D) and the two quinoline-2carboxylate anions (A and B) in the asymmetric unit. Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

The hydrogen-bonding extensions of the asymmetric unit, showing hydrogen-bonds as dashed lines. For symmetry codes, see Table 1.

Figure 3

The two-dimensional hydrogen-bonded layered structure, viewed down the c axial direction, showing also quinoline ring overlap. Non-interactive hydrogen atoms are omitted. For symmetry codes, see Table 1.

Guanidinium quinoline-2-carboxylate

Crystal data

CH₆N₃⁺·C₁₀H₆NO₂⁻ $M_r = 232.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.4318 (3) Å b = 42.2105 (18) Å c = 7.3035 (4) Å $\beta = 94.045$ (4)° V = 2285.40 (18) Å³ Z = 8

Data collection

Oxford Diffraction Gemini-S Ultra CCDdetector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.740, T_{\max} = 0.870$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.162$ S = 1.043981 reflections 355 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 976 $D_x = 1.350 \text{ Mg m}^{-3}$ Melting point = 543–544 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4234 reflections $\theta = 2.9-28.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 297 KPrism, colourless $0.35 \times 0.20 \times 0.18 \text{ mm}$

10626 measured reflections 3981 independent reflections 2931 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 8$ $k = -50 \rightarrow 49$ $l = -8 \rightarrow 8$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0614P)^2 + 2.2259P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O21A	0.8508 (4)	0.09058 (6)	0.2611 (3)	0.0621 (10)
O22A	0.5996 (3)	0.07308 (6)	0.1162 (4)	0.0645 (10)
N1A	0.9927 (3)	0.03079 (6)	0.2631 (3)	0.0344 (8)
C2A	0.8222 (4)	0.03520 (7)	0.2056 (4)	0.0347 (9)
C3A	0.7048 (4)	0.01015 (8)	0.1538 (4)	0.0432 (11)
C4A	0.7670 (5)	-0.02006 (8)	0.1610 (4)	0.0470 (11)
C5A	1.0237 (5)	-0.05662 (8)	0.2320 (5)	0.0526 (14)
C6A	1.1980 (6)	-0.06067 (9)	0.2937 (5)	0.0607 (14)
C7A	1.3053 (5)	-0.03505 (10)	0.3470 (5)	0.0573 (14)
C8A	1.2375 (4)	-0.00486 (8)	0.3367 (4)	0.0463 (11)
C9A	1.0562 (4)	0.00047 (7)	0.2721 (4)	0.0350 (10)
C10A	0.9469 (4)	-0.02599 (7)	0.2209 (4)	0.0386 (10)
C21A	0.7531 (5)	0.06891 (8)	0.1948 (4)	0.0434 (11)
O21B	0.2113 (4)	0.16103 (6)	0.7760 (4)	0.0595 (9)
O22B	0.4256 (3)	0.17922 (6)	0.6099 (3)	0.0547 (9)
N1B	0.0628 (3)	0.22063 (6)	0.7787 (3)	0.0337 (8)
C2B	0.2260 (4)	0.21671 (7)	0.7234 (4)	0.0331 (9)
C3B	0.3404 (4)	0.24202 (7)	0.6830 (4)	0.0383 (10)
C4B	0.2823 (4)	0.27223 (7)	0.7016 (4)	0.0399 (10)
C5B	0.0359 (5)	0.30838 (8)	0.7780 (4)	0.0467 (11)
C6B	-0.1343 (5)	0.31222 (9)	0.8310 (5)	0.0521 (12)
C7B	-0.2392 (5)	0.28594 (9)	0.8685 (5)	0.0500 (11)
C8B	-0.1739 (4)	0.25609 (8)	0.8528 (4)	0.0417 (11)
C9B	0.0024 (4)	0.25108 (7)	0.7961 (4)	0.0326 (9)
C10B	0.1082 (4)	0.27776 (7)	0.7584 (4)	0.0360 (10)
C21B	0.2913 (4)	0.18309 (8)	0.7021 (4)	0.0389 (10)
N1C	0.1537 (5)	0.11364 (9)	0.4833 (5)	0.0598 (12)
N2C	0.2735 (5)	0.08075 (8)	0.2766 (5)	0.0671 (14)
N3C	0.4496 (5)	0.11943 (9)	0.4200 (5)	0.0622 (12)
C1C	0.2924 (5)	0.10473 (8)	0.3933 (5)	0.0506 (11)
N1D	0.6118 (5)	0.13337 (8)	-0.0734 (5)	0.0553 (11)
N2D	0.9196 (5)	0.13416 (8)	-0.0311 (5)	0.0500 (11)
N3D	0.7754 (5)	0.17077 (7)	-0.2190 (4)	0.0554 (11)
C1D	0.7690 (5)	0.14616 (7)	-0.1083 (4)	0.0415 (11)
H3A	0.58520	0.01430	0.11490	0.0520*
H4A	0.69050	-0.03680	0.12620	0.0560*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H5A	0.95370	-0.07410	0.19660	0.0630*
H6A	1.24640	-0.08100	0.30040	0.0730*
H7A	1.42460	-0.03830	0.39020	0.0680*
H8A	1.31110	0.01220	0.37240	0.0560*
H3B	0.45460	0.23800	0.64390	0.0460*
H4B	0.35710	0.28910	0.67710	0.0480*
H5B	0.10530	0.32610	0.75450	0.0560*
H6B	-0.18120	0.33250	0.84230	0.0630*
H7B	-0.35550	0.28890	0.90470	0.0600*
H8B	-0.24530	0.23880	0.87940	0.0500*
H11C	0.165 (4)	0.1267 (8)	0.567 (5)	0.070 (10)*
H12C	0.046 (6)	0.1036 (9)	0.454 (5)	0.066 (12)*
H21C	0.376 (6)	0.0750 (10)	0.217 (6)	0.079 (13)*
H22C	0.173 (6)	0.0684 (11)	0.272 (6)	0.084 (14)*
H31C	0.448 (6)	0.1394 (11)	0.475 (6)	0.089 (15)*
H32C	0.540 (6)	0.1136 (11)	0.367 (6)	0.081 (15)*
H11D	0.611 (5)	0.1156 (10)	-0.014 (5)	0.068 (13)*
H12D	0.514 (6)	0.1421 (11)	-0.114 (7)	0.091 (17)*
H21D	1.022 (5)	0.1409 (8)	-0.055 (5)	0.064 (10)*
H22D	0.908 (6)	0.1206 (11)	0.060 (6)	0.083 (15)*
H31D	0.882 (5)	0.1819 (9)	-0.227 (5)	0.060 (11)*
H32D	0.670 (6)	0.1793 (10)	-0.273 (6)	0.074 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O21A	0.087 (2)	0.0395 (15)	0.0588 (15)	0.0029 (13)	-0.0028 (14)	0.0009 (11)
O22A	0.0422 (15)	0.0608 (17)	0.092 (2)	0.0122 (12)	0.0149 (14)	0.0230 (14)
N1A	0.0365 (15)	0.0328 (14)	0.0346 (13)	-0.0010 (11)	0.0068 (11)	0.0000 (10)
C2A	0.0352 (17)	0.0373 (17)	0.0327 (15)	-0.0018 (13)	0.0111 (13)	0.0042 (12)
C3A	0.0356 (18)	0.051 (2)	0.0428 (18)	-0.0015 (15)	0.0006 (14)	0.0001 (15)
C4A	0.053 (2)	0.043 (2)	0.0449 (19)	-0.0100 (16)	0.0020 (16)	-0.0061 (15)
C5A	0.076 (3)	0.038 (2)	0.0444 (19)	0.0035 (18)	0.0089 (18)	-0.0019 (15)
C6A	0.085 (3)	0.048 (2)	0.050(2)	0.021 (2)	0.011 (2)	0.0060 (17)
C7A	0.055 (2)	0.070 (3)	0.047 (2)	0.021 (2)	0.0044 (17)	0.0106 (18)
C8A	0.044 (2)	0.053 (2)	0.0422 (18)	0.0029 (16)	0.0050 (15)	0.0034 (15)
C9A	0.0405 (18)	0.0378 (18)	0.0275 (15)	0.0017 (14)	0.0073 (13)	0.0031 (12)
C10A	0.052 (2)	0.0339 (18)	0.0306 (15)	-0.0008 (14)	0.0090 (14)	-0.0004 (12)
C21A	0.046 (2)	0.044 (2)	0.0421 (18)	0.0062 (16)	0.0173 (15)	0.0097 (15)
O21B	0.0687 (17)	0.0414 (14)	0.0712 (16)	0.0055 (13)	0.0246 (13)	0.0069 (12)
O22B	0.0368 (13)	0.0508 (15)	0.0783 (17)	0.0036 (11)	0.0159 (12)	-0.0133 (12)
N1B	0.0309 (14)	0.0378 (15)	0.0322 (13)	0.0010 (11)	0.0002 (10)	-0.0030 (10)
C2B	0.0286 (16)	0.0401 (17)	0.0304 (15)	0.0018 (13)	-0.0002 (12)	-0.0051 (12)
C3B	0.0292 (16)	0.048 (2)	0.0376 (16)	-0.0003 (14)	0.0027 (13)	-0.0049 (14)
C4B	0.0376 (18)	0.0414 (19)	0.0407 (17)	-0.0082 (14)	0.0023 (14)	-0.0013 (13)
C5B	0.055 (2)	0.0376 (19)	0.0469 (19)	0.0029 (16)	0.0004 (16)	0.0021 (14)
C6B	0.059 (2)	0.044 (2)	0.053 (2)	0.0182 (18)	0.0010 (17)	-0.0025 (16)
C7B	0.043 (2)	0.061 (2)	0.0462 (19)	0.0124 (17)	0.0039 (15)	-0.0062 (16)

C8B	0.0366 (18)	0.048 (2)	0.0406 (18)	0.0015 (15)	0.0027 (14)	-0.0039 (14)
C9B	0.0301 (16)	0.0402 (18)	0.0268 (14)	0.0026 (13)	-0.0032 (12)	-0.0033 (12)
C10B	0.0382 (17)	0.0405 (18)	0.0286 (15)	0.0010 (14)	-0.0028 (12)	-0.0013 (12)
C21B	0.0332 (17)	0.0404 (19)	0.0425 (17)	0.0017 (14)	-0.0007 (14)	-0.0025 (14)
N1C	0.060 (2)	0.054 (2)	0.068 (2)	-0.0068 (18)	0.0225 (18)	-0.0130 (17)
N2C	0.055 (2)	0.052 (2)	0.098 (3)	-0.0159 (17)	0.032 (2)	-0.0300 (18)
N3C	0.055 (2)	0.050(2)	0.084 (2)	-0.0109 (17)	0.0209 (18)	-0.0184 (17)
C1C	0.056 (2)	0.0367 (19)	0.061 (2)	-0.0033 (17)	0.0166 (18)	0.0032 (16)
N1D	0.050 (2)	0.0452 (19)	0.071 (2)	-0.0032 (16)	0.0071 (16)	0.0158 (16)
N2D	0.047 (2)	0.0478 (19)	0.0550 (19)	-0.0004 (16)	0.0023 (15)	0.0055 (15)
N3D	0.047 (2)	0.0462 (19)	0.072 (2)	-0.0081 (16)	-0.0022 (16)	0.0205 (15)
C1D	0.046 (2)	0.0344 (18)	0.0445 (18)	-0.0033 (15)	0.0051 (15)	-0.0031 (14)

Geometric parameters (Å, °)

O21A—C21A	1.245 (4)	C4A—C10A	1.400 (5)
O22A—C21A	1.253 (4)	C5A—C6A	1.352 (6)
O21B—C21B	1.248 (4)	C5A—C10A	1.413 (5)
O22B—C21B	1.253 (4)	C6A—C7A	1.383 (6)
N1A—C2A	1.320 (4)	C7A—C8A	1.371 (5)
N1A—C9A	1.364 (4)	C8A—C9A	1.414 (4)
N1B—C2B	1.316 (4)	C9A—C10A	1.416 (4)
N1B—C9B	1.370 (4)	СЗА—НЗА	0.9300
N1C—C1C	1.316 (5)	C4A—H4A	0.9300
N2C—C1C	1.324 (5)	C5A—H5A	0.9300
N3C—C1C	1.325 (5)	С6А—Н6А	0.9300
N1C—H11C	0.82 (4)	C7A—H7A	0.9300
N1C—H12C	0.92 (4)	C8A—H8A	0.9300
N2C—H21C	0.94 (4)	C2B—C21B	1.511 (4)
N2C—H22C	0.91 (4)	C2B—C3B	1.410 (4)
N3C—H32C	0.84 (4)	C3B—C4B	1.356 (4)
N3C—H31C	0.93 (5)	C4B—C10B	1.406 (4)
N1D—C1D	1.328 (5)	C5B—C10B	1.411 (5)
N2D—C1D	1.318 (5)	C5B—C6B	1.358 (5)
N3D—C1D	1.319 (4)	C6B—C7B	1.394 (5)
N1D—H11D	0.87 (4)	C7B—C8B	1.358 (5)
N1D—H12D	0.85 (5)	C8B—C9B	1.418 (4)
N2D—H21D	0.84 (4)	C9B—C10B	1.412 (4)
N2D—H22D	0.89 (4)	C3B—H3B	0.9300
N3D—H31D	0.93 (4)	C4B—H4B	0.9300
N3D—H32D	0.93 (4)	C5B—H5B	0.9300
C2A—C21A	1.513 (5)	C6B—H6B	0.9300
C2A—C3A	1.406 (4)	C7B—H7B	0.9300
C3A—C4A	1.356 (5)	C8B—H8B	0.9300
021 A., NI A	2725(4)		2 455 (4)
O21A N1Ci	2.735 (4)	$C10B \cdots C2B'$	3.433 (4) 2.541 (4)
O21A···NIC·	2.852 (5)		3.541 (4)
021AN2C ¹	3.163 (5)	C21BC2B	3.333 (4)

O21A…N2D	2.890 (4)	C1D····H6A ^x	3.0900
O21A…C1C ⁱ	3.408 (5)	C2A····H22C ⁱ	2.97 (5)
O21B···N1C	2.937 (5)	C2B····H31D ⁱⁱ	2.99 (4)
O21B····N2D ⁱⁱ	2.899 (5)	C3A····H3A ^{xiii}	2.9900
O21B…N1B	2.748 (4)	C4B····H7B ⁱ	3.0600
O21B···N3D ⁱⁱ	3.268 (5)	C9A····H22C ⁱ	3.00 (5)
O22A…N3C	3.216 (5)	C9B····H31D ⁱⁱ	3.06 (4)
O22A…N1D	2.902 (4)	C21A…H21C	2.83 (4)
O22A…N2C	2.784 (4)	C21A…H32C	2.82 (5)
O22B····N1D ⁱⁱⁱ	3.250 (4)	C21A…H11D	2.66 (4)
O22B···N3C	2.891 (4)	C21A…H22D	2.69 (5)
O22B····N3D ⁱⁱⁱ	2.826 (4)	C21B…H11C	2.72 (3)
O21A···H12C ⁱ	2.03 (4)	C21B…H31C	2.79 (5)
O21A…H11D	2.80 (4)	C21B····H32D ⁱⁱⁱ	2.81 (4)
O21A···H22C ⁱ	2.57 (4)	C21B····H12D ⁱⁱⁱ	2.69 (5)
O21A…H32C	2.67 (5)	H3A…O22A	2.4800
O21A…H22D	2.01 (5)	H3A····C3A ^{xiii}	2.9900
O21B····H21D ⁱⁱ	2.11 (4)	H3A…H3A ^{xiii}	2.3600
O21B····H31D ⁱⁱ	2.60 (4)	H3B…H7B ^{iv}	2.5800
O21B…H11C	2.12 (4)	H3B…O22B	2.5000
O21B····H12D ⁱⁱⁱ	2.47 (5)	Н4А…Н5А	2.5400
O22A…H3A	2.4800	H4B…H5B	2.5300
O22A…H32C	2.57 (5)	Н5А…Н4А	2.5400
O22A…H11D	2.04 (4)	H5B…H4B	2.5300
O22A…H21C	1.87 (4)	H5B…N2D ^{xii}	2.9400
O22B····H12D ⁱⁱⁱ	2.60 (5)	H6A…C1D ^x	3.0900
O22B····H7B ^{iv}	2.6500	H7B…H3B ^{xii}	2.5800
O22B…H31C	1.96 (5)	H7B…C4B ^{vi}	3.0600
O22B····H32D ⁱⁱⁱ	1.95 (4)	H7B····O22B ^{xii}	2.6500
O22B…H3B	2.5000	H11C…C21B	2.72 (3)
N1A…O21A	2.735 (4)	H11C…O21B	2.12 (4)
N1A…N2C ⁱ	2.964 (4)	H11C…H31C	2.32 (5)
N1B…O21B	2.748 (4)	H11D…H22D	2.25 (6)
N1B…N3D ⁱⁱ	3.000 (4)	H11D····C21A	2.66 (4)
N1B····C4B ^v	3.403 (4)	H11D…O21A	2.80 (4)
N1C···O21B	2.937 (5)	H11D…O22A	2.04 (4)
N1C…O21A ^{vi}	2.852 (5)	H12C…H22C	2.25 (6)
N1D…O22A	2.902 (4)	H12C····O21A ^{vi}	2.03 (4)
N1D…O22B ^{vii}	3.250 (4)	H12D····O21B ^{vii}	2.47 (5)
N2C…N1A ^{vi}	2.964 (4)	H12D····C21B ^{vii}	2.69 (5)
N2C…O21A ^{vi}	3.163 (5)	H12D…H32D	2.31 (6)
N2C…O22A	2.784 (4)	H12D····O22B ^{vii}	2.60 (5)
N2D····C5B ^{iv}	3.384 (5)	H21C…C21A	2.83 (4)
N2D…O21B ^{viii}	2.899 (5)	H21C…H32C	2.27 (6)
N2D…O21A	2.890 (4)	H21C…O22A	1.87 (4)
N3C…O22B	2.891 (4)	H21D····O21B ^{viii}	2.11 (4)
N3C····O22A	3.216 (5)	H21D…H31D	2.34 (5)
N3D…O22B ^{vii}	2.826 (4)	H22C····C2A ^{vi}	2.97 (5)

NOD COLDU	2 2 (2 (5)		2 00 (5)
N3D····O21B ^{vin}	3.268 (5)	H22CC9A ^{vi}	3.00 (5)
N3D…N1B ^{vm}	3.000 (4)	H22C···H12C	2.25 (6)
N1A···H22C ¹	2.08 (5)	H22C···N1A ^{v1}	2.08 (5)
N1B···H31D ⁱⁱ	2.12 (4)	H22C···O21A ^{vi}	2.57 (4)
N2D····H5B ^{iv}	2.9400	H22D…O21A	2.01 (5)
C1C····O21A ^{vi}	3.408 (5)	H22D····C21A	2.69 (5)
C2A…C7A ^{ix}	3.466 (5)	H22D…H11D	2.25 (6)
C2A····C5A ^x	3.586 (5)	H31C…C21B	2.79 (5)
C2B···C10B ^{xi}	3.455 (4)	H31C…H11C	2.32 (5)
C2B····C4B ^v	3.519 (4)	H31C…O22B	1.96 (5)
C3B····C4B ^{xi}	3.563 (4)	H31D…H21D	2.34 (5)
C3B····C10B ^{xi}	3.541 (4)	H31D…O21B ^{viii}	2.60 (4)
C4B…C2B ^{xi}	3.519 (4)	H31D…N1B ^{viii}	2.12 (4)
C4B···C3B ^v	3.563 (4)	H31D····C9B ^{viii}	3.06 (4)
C4B…N1B ^{xi}	3.403 (4)	H31D····C2B ^{viii}	2.99 (4)
C5A····C2A ^x	3 586 (5)	H32C···C21A	2.82(5)
$C5B\cdots C21B^{v}$	3 535 (4)	H32C···H21C	2.02(5)
$C5B \cdots N2D^{xii}$	3 384 (5)	H32C 022A	2.27(0)
$C7A = C2A^{ix}$	2.364 (5)	H32C 022A	2.57(5)
CPD CODY	3.400(3)		2.07(3)
COA COAix	5.419 (4) 2.480 (4)	$H_{32}D_{11}O_{22}B^{11}$	1.95 (4)
	5.489 (4) 2.410 (4)		2.81 (4)
C9B···C8B*	3.419 (4)	H32D····H12D	2.31 (6)
	110.0.(2)		120.00
C2A—NIA—C9A	118.0 (3)	C6A—C5A—H5A	120.00
C2B—NIB—C9B	117.5 (3)	С/А—С6А—Н6А	120.00
C1C—N1C—H11C	121 (2)	С5А—С6А—Н6А	119.00
C1C—N1C—H12C	117 (3)	С8А—С7А—Н7А	120.00
H11C—N1C—H12C	122 (3)	С6А—С7А—Н7А	120.00
C1C—N2C—H21C	116 (3)	С7А—С8А—Н8А	120.00
C1C—N2C—H22C	121 (3)	C9A—C8A—H8A	120.00
H21C—N2C—H22C	122 (4)	N1B—C2B—C21B	117.4 (3)
C1C—N3C—H31C	117 (3)	C3B—C2B—C21B	119.2 (3)
C1C—N3C—H32C	122 (3)	N1B-C2B-C3B	123.5 (3)
H31C—N3C—H32C	120 (4)	C2B—C3B—C4B	119.4 (3)
C1D—N1D—H11D	119 (2)	C3B—C4B—C10B	119.5 (3)
C1D—N1D—H12D	120 (3)	C6B-C5B-C10B	120.5 (3)
H11D—N1D—H12D	121 (4)	C5B—C6B—C7B	120.4 (3)
C1D—N2D—H22D	116 (3)	C6B—C7B—C8B	120.9 (3)
$H_{21D} = N_{2D} = H_{22D}$	121 (4)	C7B-C8B-C9B	120.3(3)
C1D - N2D - H21D	121(1) 122(2)	C8B-C9B-C10B	120.1(3) 1185(3)
C1D - N3D - H31D	122(2) 120(2)	N1B_C9B_C8B	118.9(3)
C1D = N3D = H32D	120(2) 120(3)	NIB COB CIOB	110.7(3)
$\begin{array}{c} \text{CID} - \text{N3D} - \text{II32D} \\ \text{H21D} \text{N2D} \text{H22D} \end{array}$	120(3)	$\begin{array}{cccc} \text{NID} & \text{C3D} & \text{C10D} \\ \text{C4P} & \text{C10P} & \text{C0P} \\ \end{array}$	122.7(3)
$H_{31}D - H_{32}D - H_{32}D$	119(4)	C4B - C10B - C9B	117.3(3)
NIA = C2A = C2A	117.7(3)		119.5 (3)
N1A - U2A - U3A	122.9 (3)		125.2 (3)
C3A—C2A—C2IA	119.4 (3)	021B—C21B—C2B	119.3 (3)
C2A—C3A—C4A	119.6 (3)	O21B—C21B—O22B	123.8 (3)
C3A—C4A—C10A	119.7 (3)	O22B—C21B—C2B	116.8 (3)

C6A-C5A-C10A	120.6 (3)	С2В—С3В—Н3В	120.00
C5A—C6A—C7A	121.0 (4)	C4B—C3B—H3B	120.00
C6A—C7A—C8A	120.6 (3)	C10B—C4B—H4B	120.00
C7A—C8A—C9A	120.3 (3)	C3B—C4B—H4B	120.00
N1A—C9A—C10A	122.5 (3)	C6B—C5B—H5B	120.00
N1A—C9A—C8A	118.9 (3)	C10B—C5B—H5B	120.00
C8A—C9A—C10A	118.6 (3)	C7B—C6B—H6B	120.00
C5A-C10A-C9A	119.0 (3)	C5B—C6B—H6B	120.00
C4A—C10A—C9A	117.3 (3)	C8B—C7B—H7B	120.00
C4A—C10A—C5A	123.7 (3)	C6B—C7B—H7B	120.00
O21A—C21A—C2A	119.0 (3)	C9B—C8B—H8B	120.00
O21A—C21A—O22A	124.2 (3)	C7B—C8B—H8B	120.00
O22A—C21A—C2A	116.8 (3)	N2C—C1C—N3C	120.3 (4)
С2А—С3А—Н3А	120.00	N1C—C1C—N2C	119.3 (4)
С4А—С3А—Н3А	120.00	N1C—C1C—N3C	120.4 (3)
C3A—C4A—H4A	120.00	N2D—C1D—N3D	119.9 (3)
C10A—C4A—H4A	120.00	N1D—C1D—N2D	119.6 (3)
C10A—C5A—H5A	120.00	N1D—C1D—N3D	120.5 (3)
C9A—N1A—C2A—C3A	0.0 (4)	N1A—C9A—C10A—C5A	179.2 (3)
C9A—N1A—C2A—C21A	-179.6 (2)	C8A—C9A—C10A—C4A	178.7 (3)
C2A—N1A—C9A—C8A	-178.8 (3)	C8A—C9A—C10A—C5A	-1.5 (4)
C2A—N1A—C9A—C10A	0.6 (4)	N1A—C9A—C10A—C4A	-0.6 (4)
C2B—N1B—C9B—C8B	179.1 (3)	N1B—C2B—C3B—C4B	0.2 (5)
C2B—N1B—C9B—C10B	-0.4 (4)	C21B—C2B—C3B—C4B	179.9 (3)
C9B—N1B—C2B—C3B	0.4 (4)	N1B-C2B-C21B-O21B	-16.7 (4)
C9B—N1B—C2B—C21B	-179.3 (2)	N1B-C2B-C21B-O22B	163.6 (3)
C3A—C2A—C21A—O21A	171.5 (3)	C3B—C2B—C21B—O21B	163.6 (3)
N1A—C2A—C21A—O21A	-8.9 (4)	C3B—C2B—C21B—O22B	-16.1 (4)
N1A—C2A—C21A—O22A	170.3 (3)	C2B-C3B-C4B-C10B	-0.9 (4)
N1A—C2A—C3A—C4A	-0.5 (5)	C3B—C4B—C10B—C5B	-178.8 (3)
C21A—C2A—C3A—C4A	179.1 (3)	C3B-C4B-C10B-C9B	0.9 (4)
C3A—C2A—C21A—O22A	-9.4 (4)	C10B-C5B-C6B-C7B	0.6 (5)
C2A-C3A-C4A-C10A	0.4 (4)	C6B-C5B-C10B-C4B	179.1 (3)
C3A—C4A—C10A—C9A	0.1 (4)	C6B-C5B-C10B-C9B	-0.6 (5)
C3A—C4A—C10A—C5A	-179.7 (3)	C5B—C6B—C7B—C8B	-0.1 (5)
C6A—C5A—C10A—C4A	-179.0 (3)	C6B—C7B—C8B—C9B	-0.6 (5)
C6A—C5A—C10A—C9A	1.2 (5)	C7B—C8B—C9B—N1B	-178.9 (3)
C10A—C5A—C6A—C7A	-0.1 (6)	C7B-C8B-C9B-C10B	0.6 (4)
C5A—C6A—C7A—C8A	-0.6 (6)	N1B—C9B—C10B—C4B	-0.2 (4)
C6A—C7A—C8A—C9A	0.3 (5)	N1B—C9B—C10B—C5B	179.5 (3)
C7A—C8A—C9A—N1A	-179.9 (3)	C8B—C9B—C10B—C4B	-179.7 (3)
C7A—C8A—C9A—C10A	0.8 (4)	C8B-C9B-C10B-C5B	0.0 (4)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*+1; (iii) *x*, *y*, *z*+1; (iv) *x*+1, -*y*+1/2, *z*-1/2; (v) *x*, -*y*+1/2, *z*+1/2; (vi) *x*-1, *y*, *z*; (vii) *x*, *y*, *z*-1; (viii) *x*+1, *y*, *z*-1; (ix) -*x*+2, -*y*, -*z*+1; (x) -*x*+2, -*y*, -*z*; (xi) *x*, -*y*+1/2, *z*-1/2; (xii) *x*-1, -*y*+1/2, *z*+1/2; (viii) -*x*+1, -*y*, -*z*.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1C—H11C…O21B	0.82 (4)	2.12 (4)	2.937 (5)	176 (3)
N1 <i>C</i> —H12 <i>C</i> ···O21 <i>A</i> ^{vi}	0.92 (4)	2.03 (4)	2.852 (5)	149 (3)
N1 <i>D</i> —H11 <i>D</i> ···O22 <i>A</i>	0.87 (4)	2.04 (4)	2.902 (4)	177 (4)
N1 <i>D</i> —H12 <i>D</i> ····O21 <i>B</i> ^{vii}	0.85 (5)	2.47 (5)	3.312 (5)	173 (4)
N2C—H21C···O22A	0.94 (4)	1.87 (4)	2.784 (4)	166 (4)
N2C—H22C···O21A ^{vi}	0.91 (4)	2.57 (4)	3.163 (5)	124 (4)
N2C—H22C···N1A ^{vi}	0.91 (4)	2.08 (5)	2.964 (4)	165 (4)
$N2D$ — $H21D$ ···O $21B^{viii}$	0.84 (4)	2.11 (4)	2.899 (5)	155 (3)
N2D—H22D…O21A	0.89 (4)	2.01 (5)	2.890 (4)	173 (4)
N3C—H31C···O22B	0.93 (5)	1.96 (5)	2.891 (4)	173 (4)
N3C—H32C···O22A	0.84 (4)	2.57 (5)	3.216 (5)	135 (4)
N3D—H31D····O21B ^{viii}	0.93 (4)	2.60 (4)	3.268 (5)	130 (3)
$N3D$ — $H31D$ ··· $N1B^{viii}$	0.93 (4)	2.12 (4)	3.000 (4)	159 (3)
N3D—H32D…O22B ^{vii}	0.93 (4)	1.95 (4)	2.826 (4)	157 (4)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (vi) *x*-1, *y*, *z*; (vii) *x*, *y*, *z*-1; (viii) *x*+1, *y*, *z*-1.