Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sodium scandium diphosphate, $\mathrm{NaScP}_{2} \mathrm{O}_{7}$, isotypic with $a-\mathrm{NaTi}(\mathrm{III}) \mathrm{P}_{2} \mathrm{O}_{7}$

Jan Cempírek, ${ }^{\text {** Radek Škoda }}{ }^{\text {b }}$ and Zdirad Žák ${ }^{\text {c }}$
${ }^{\text {a }}$ Moravian Museum, Department of Mineralogy and Petrography, Zelný trh 6, 65937 Brno, Czech Republic, ${ }^{\mathbf{b}}$ Masaryk University, Institute of Geological Sciences, Kotlářská 2, 61137 Brno, Czech Republic, and ${ }^{\text {c }}$ Masaryk University, Department of Inorganic Chemistry, Kotlárská 2, 61137 Brno, Czech Republic
Correspondence e-mail: jcemp@sci.muni.cz

Received 26 October 2009; accepted 3 November 2009

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Sc}-\mathrm{O})=0.002 \AA$;
R factor $=0.025 ; w R$ factor $=0.082$; data-to-parameter ratio $=10.1$.

Crystals of the title compound, $\mathrm{NaScP}_{2} \mathrm{O}_{7}$, were grown by a flux method. The crystal structure is isotypic with those of α $\mathrm{NaTiP}_{2} \mathrm{O}_{7}, \mathrm{NaYbP}_{2} \mathrm{O}_{7}$ and $\mathrm{NaLuP}_{2} \mathrm{O}_{7}$, and is closely related to that of $\mathrm{NaYP}_{2} \mathrm{O}_{7}$. The structural set-up consists of a threedimensional framework of $\mathrm{P}_{2} \mathrm{O}_{7}$ units that are corner-shared by ScO_{6} octahedra, forming tunnels running parallel to [010]. The Na atoms are situated in the tunnels and are surrounded by nine O atoms in a distorted environment.

Related literature

Previous X-ray powder data of $\mathrm{NaScP}_{2} \mathrm{O}_{7}$ were reported by Vitins et al. (2000). $\mathrm{NaScP}_{2} \mathrm{O}_{7}$ is isotypic with $\alpha-\mathrm{NaTiP}_{2} \mathrm{O}_{7}$ (Leclaire et al., 1988), $\mathrm{NaYbP}_{2} \mathrm{O}_{7}$ (Férid et al., 2004) and $\mathrm{NaLuP}_{2} \mathrm{O}_{7}$ (Yuan et al., 2007) and shows similar structural features as $\mathrm{NaYP}_{2} \mathrm{O}_{7}$ (Hamady \& Jouini, 1996). Both structure types are topologically related to β-cristobalite (Leclaire et al., 1988). For a detailed review on the structures of $A^{\mathrm{I}} M^{\mathrm{III}} \mathrm{P}_{2} \mathrm{O}_{7^{-}}$ type diphosphates, see: Li et al. (2005); Schwendtner \& Kolitsch (2004). For possible applications as scintillators or phosphor materials based on $A^{\mathrm{I}} M^{\mathrm{III}} \mathrm{P}_{2} \mathrm{O}_{7}$-type diphosphates, see: Hizhnyi et al. (2007, 2008). For background to structural parameters, see: Brese \& O'Keeffe (1991); Robinson et al. (1971).

Experimental

Crystal data

$\mathrm{NaScP}_{2} \mathrm{O}_{7}$
$M_{r}=241.89$
Monoclinic, $P 2_{1} / n$
$a=8.9044$ (18) \AA
$b=5.3300$ (11) \AA
$c=12.516$ (3) \AA
$\beta=104.11$ (3) ${ }^{\circ}$

$$
V=576.1(2) \AA^{3}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=1.89 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.40 \times 0.15 \times 0.05 \mathrm{~mm}$

Data collection

Kuma KM-4-CCD diffractometer
Absorption correction: multi-scan
(CrysAlis CCD; Oxford
Diffraction, 2003)
$T_{\text {min }}=0.067, T_{\text {max }}=0.093$

5082 measured reflections 1018 independent reflections 932 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.082$

> 101 parameters
> $\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$

1018 reflections

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Sc}-\mathrm{O} 3$	$2.0217(19)$	$\mathrm{P} 1-\mathrm{O} 7$	$1.5254(17)$
$\mathrm{Sc}-\mathrm{O}^{\mathrm{i}}$	$2.0770(17)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.5313(18)$
$\mathrm{Sc}-7^{\text {ii }}$	$2.1112(17)$	$\mathrm{P} 1-\mathrm{O} 5^{\text {iii }}$	$1.6114(17)$
$\mathrm{Sc}-\mathrm{O} 1$	$2.1220(16)$	$\mathrm{P} 2-\mathrm{O} 3$	$1.5013(19)$
$\mathrm{Sc}-\mathrm{O} 2$	$2.1220(16)$	$\mathrm{P} 2-\mathrm{O} 1^{\mathrm{iv}}$	$1.5278(16)$
$\mathrm{Sc}-\mathrm{O} 4$	$2.1506(18)$	$\mathrm{P} 2-\mathrm{O} 2^{\mathrm{v}}$	$1.5332(16)$
$\mathrm{P} 1-\mathrm{O} 6$	$1.5088(17)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.6151(17)$
$\mathrm{P}^{\mathrm{vi}}-\mathrm{O} 5-\mathrm{P} 2$	$125.47(10)$		

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y,-z+1$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $-x+1,-y+1,-z+1$; (v) $-x+1,-y,-z+1$; (vi) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2003); software used to prepare material for publication: SHELXL97.

The work was supported by grant MK00009486201.

> Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2274).

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Dowty, E. (2003). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Férid, M., Horchani-Naifer, K. \& Trabelsi-Ayedi, M. (2004). Z. Kristallogr. 219, 353-354.
Hamady, A. \& Jouini, T. (1996). Acta Cryst. C52, 2949-2951.
Hizhnyi, Yu., Gomenyuk, O., Nedilko, S., Oliynyk, A., Okhrimenko, B. \& Bojko, V. (2007). Radiat. Meas. 42, 719-722.
Hizhnyi, Yu., Oliynyk, A., Gomenyuk, O., Nedilko, S., Nagornyi, P., Bojko, R. \& Bojko, V. (2008). Opt. Mater. 30, 687-689.
Leclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. \& Raveau, B. (1988). J. Solid State Chem. 77, 299-305.
Li, M.-R., Liu, W., Chen, H.-H., Yang, X.-X., Wei, Z.-B., Cao, D.-H., Gu, M. \& Zhao, J.-T. (2005). Eur. J. Inorg. Chem. pp. 4693-4696.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Schwendtner, K. \& Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. \& Lusis, A. (2000). J. Solid State Electrochem. 4, 146-152.
Yuan, J.-L., Zhang, H., Chen, H.-H., Yang, X.-X., Zhao, J.-T. \& Gu, M. (2007). J. Solid State Chem. 180, 3381-3387.

supporting information

Acta Cryst. (2009). E65, i86 [doi:10.1107/S1600536809046224]

Sodium scandium diphosphate, $\mathrm{NaScP}_{2} \mathrm{O}_{7}$, isotypic with $\alpha-\mathrm{NaTi}($ III $) \mathrm{P}_{2} \mathrm{O}_{7}$

Jan Cempírek, Radek Škoda and Zdirad Žák

S1. Comment

$A^{1} M^{\mathrm{III}} \mathrm{T}_{2}^{\mathrm{V}} \mathrm{O}_{7}$-type compounds recently have received an increased attention, partly due to their possible applications as scintillators or phosphor materials (Hizhnyi et al., 2007; Hizhnyi et al., 2008). So far, the $\mathrm{A}^{\mathrm{I}} M^{\mathrm{II}} \mathrm{P}_{2} \mathrm{O}_{7}$-type diphosphates are known to adopt eight different structure types which depends on the ratio of ionic radii of the alkali metal and the rare earth element or the three-valent metal $M^{\text {III }}$. Among the eight different structure types, the $\mathrm{KAlP}_{2} \mathrm{O}_{7}$-type structures are most common. For a detailed review including also diarsenates, see: Schwendtner \& Kolitsch (2004); Li et al. (2005). In this article we present the structure of $\mathrm{NaScP}_{2} \mathrm{O}_{7}$ determined from single-crystal x-ray diffaction data. Previous X-ray powder data of $\mathrm{NaScP}_{2} \mathrm{O}_{7}$ were reported by Vitins et al. (2000). However, authors could not index all reflections at that time, probably because of by-products. The crystal structure of the title compound is isotypic with $\alpha-\mathrm{NaTiP}_{2} \mathrm{O}_{7}$ (Leclaire et al., 1988), $\mathrm{NaYbP}_{2} \mathrm{O}_{7}$ (Férid et al., 2004) and $\mathrm{NaLuP}_{2} \mathrm{O}_{7}$ (Yuan et al., 2007). It is also closely related to that of $\mathrm{NaYP}_{2} \mathrm{O}_{7}$ (Hamady and Jouini, 1996) and β-cristobalite (Leclaire et al., 1988).

All atoms in the crystal structure occupy general positions. The structure is characterized by a three-dimensional framework of PO_{4} tetrahedra (forming $\mathrm{P}_{2} \mathrm{O}_{7}$ groups via corner-sharing) and ScO_{6} octahedra leading to narrow tunnels parallel to [010] which are occupied by Na atoms (Fig. 1). One ScO_{6} octahedron is corner-linked to six tetrahedra of six different diphosphate groups, which are all oriented approximately perpendicular to (001) (Fig. 2). Tunnels are formed by stacking pseudohexagonal rings of $\left[\mathrm{Sc}_{2} \mathrm{P}_{4} \mathrm{O}_{22}\right]$ units. A cage enclosing one Na atom is formed by three $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, connected to four ScO_{6} octahedra (Fig. 3).

The $\mathrm{P}-\mathrm{O}$ bond-lengths range between 1.5088 (17) \AA and 1.5332 (16) \AA for terminal O of the diphosphate group that are connected to octahedra. The $\mathrm{P} 1-\mathrm{O} 5_{\text {bridge }}-\mathrm{P} 2$ angle is $125.47(10)^{\circ}$, and corresponding bond lengths to the bridging O atom are 1.6114 (17) \AA and 1.6151 (17) \AA for $<\mathrm{P} 1-\mathrm{O} 5>$ and $<\mathrm{P} 2-\mathrm{O} 5>$, respectively. The average $\mathrm{Sc}-\mathrm{O}$ bond length is $2.101 \AA$, corresponding well with the average value for oxide compounds ($2.105 \AA$; Brese \& O'Keeffe, 1991). The ScO_{6} octahedron is significantly less distorted (in terms of quadatic elongation; Robinson et al., 1971) in comparison with the equivalent polyhedra in $\alpha-\mathrm{NaTi}^{3+} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{NaLuP}_{2} \mathrm{O}_{7}$ and $\mathrm{NaYP}_{2} \mathrm{O}_{7}$; the polyhedral distortion is the lowest in $\mathrm{NaYbP} 2_{2} \mathrm{O}_{7}$ structure.

S2. Experimental

$\mathrm{NaScP}_{2} \mathrm{O}_{7}$ crystals were grown by the flux-growth technique. The flux, sodium hexametaphosphate $\left(\mathrm{NaPO}_{3}\right)_{6}$ (purity 3 N) was mixed together with $\mathrm{Sc}_{2} \mathrm{O}_{3}$ (purity 4 N) at a molar ratio of $6: 1$. The mixture was filled into a platinum crucible, covered by a loose fitting lid, and heated up to 1593 K within 3 h . The temperature was held for 24 h and afterwards slowly cooled down to 1503 K in the course of 72 h . The solidified flux was dissolved in hot water and crystals of $\mathrm{NaScP}_{2} \mathrm{O}_{7}$ were mechanically separated. The procedure produced transparent to translucent, colorless skeletal aggregates of tabular to acicular crystals, up to 23 mm in lengths. A fragment of a crystal was used for single-crystal structure determination.

Figure 1
Perspective view of the $\mathrm{NaScP}_{2} \mathrm{O}_{7}$ framework structure projected down [010]. Diphosphate groups are corner-linked to the deformed ScO_{6} octahedra. Tunnels parallel to [010] are occupied by nine-coordinated atoms of Na. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
View on six $\mathrm{P}_{2} \mathrm{O}_{7}$ groups corner-linked to the ScO_{6} polyhedron.

Figure 3

Cage formed by three diphosphate groups and four ScO_{6} polyhedra enclosing the Na cation.

Sodium scandium diphosphate

Crystal data

$\mathrm{NaScP}_{2} \mathrm{O}_{7}$
$M_{r}=241.89$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2 yn
$a=8.9044$ (18) \AA
$b=5.3300(11) \AA$
$c=12.516$ (3) \AA
$\beta=104.11(3)^{\circ}$
$V=576.1(2) \AA^{3}$
$Z=4$

Data collection

Kuma KM-4-CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 0.06 pixels mm^{-1}
ω scans
$F(000)=472$
$D_{\mathrm{x}}=2.789 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5348 reflections
$\theta=4.2-27.2^{\circ}$
$\mu=1.89 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Platy to fibrous fragment, colourless
$0.40 \times 0.15 \times 0.05 \mathrm{~mm}$

Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2003)
$T_{\text {min }}=0.067, T_{\text {max }}=0.093$
5082 measured reflections
1018 independent reflections
932 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.028
$$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=4.2^{\circ} \\
& h=-10 \rightarrow 10
\end{aligned}
$$

$$
\begin{aligned}
& k=-4 \rightarrow 6 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.082$
$S=1.18$
1018 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier
    map
\(w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0535 P)^{2}+0.089 P\right]\)
    where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.46\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.46\) e \(\AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick,
    2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.080 (5)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sc	$0.26720(5)$	$0.26098(7)$	$0.52783(4)$	$0.0137(2)$
P1	$-0.06473(7)$	$0.22372(11)$	$0.61678(5)$	$0.0140(2)$
P2	$0.52089(7)$	$0.25413(10)$	$0.35283(5)$	$0.0139(2)$
Na	$0.35939(11)$	$0.23101(18)$	$0.81018(9)$	$0.0278(3)$
O1	$0.39845(17)$	$0.4953(3)$	$0.65350(12)$	$0.0177(4)$
O2	$0.36250(17)$	$-0.0381(3)$	$0.63494(13)$	$0.0182(4)$
O3	$0.4256(2)$	$0.2456(3)$	$0.43658(14)$	$0.0210(4)$
O4	$0.10881(19)$	$0.2727(3)$	$0.63286(14)$	$0.0187(4)$
O5	$0.39984(18)$	$0.2187(3)$	$0.23463(13)$	$0.0175(4)$
O6	$-0.16444(17)$	$0.4047(3)$	$0.53739(12)$	$0.0220(4)$
O7	$-0.10300(18)$	$-0.0507(3)$	$0.58783(12)$	$0.0190(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sc	$0.0124(3)$	$0.0152(3)$	$0.0135(3)$	$0.00023(15)$	$0.0032(2)$	$0.00014(16)$
P1	$0.0126(4)$	$0.0155(4)$	$0.0136(4)$	$-0.0001(2)$	$0.0025(3)$	$-0.0002(2)$
P 2	$0.0127(4)$	$0.0156(4)$	$0.0134(4)$	$0.0001(2)$	$0.0033(3)$	$0.0003(2)$
Na	$0.0270(7)$	$0.0245(7)$	$0.0318(7)$	$-0.0010(4)$	$0.0069(5)$	$0.0003(4)$
O1	$0.0189(8)$	$0.0161(9)$	$0.0173(8)$	$-0.0021(6)$	$0.0028(6)$	$0.0000(6)$
O2	$0.0190(8)$	$0.0172(9)$	$0.0190(8)$	$0.0026(6)$	$0.0055(6)$	$0.0014(7)$
O3	$0.0208(8)$	$0.0240(11)$	$0.0196(10)$	$0.0009(6)$	$0.0077(7)$	$0.0001(6)$
O4	$0.0160(8)$	$0.0238(10)$	$0.0175(9)$	$-0.0013(6)$	$0.0062(7)$	$-0.0020(6)$

O5	$0.0149(9)$	$0.0220(10)$	$0.0156(9)$	$-0.0018(6)$	$0.0037(7)$	$0.0005(6)$
O6	$0.0240(9)$	$0.0188(10)$	$0.0215(8)$	$0.0020(7)$	$0.0022(7)$	$0.0026(7)$
O7	$0.0205(8)$	$0.0168(9)$	$0.0193(8)$	$-0.0009(7)$	$0.0041(6)$	$-0.0006(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sc}-\mathrm{O} 3$	2.0217 (19)	$\mathrm{P} 2-\mathrm{O} 2{ }^{\text {v }}$	1.5332 (16)
$\mathrm{Sc}-\mathrm{Ob}^{\text {i }}$	2.0770 (17)	P2-O5	1.6151 (17)
$\mathrm{Sc}-\mathrm{O}^{\text {ii }}$	2.1112 (17)	$\mathrm{Na}-\mathrm{O} 1$	2.5066 (18)
$\mathrm{Sc}-\mathrm{O} 1$	2.1220 (16)	$\mathrm{Na}-\mathrm{O}^{\text {vi }}$	2.5176 (19)
$\mathrm{Sc}-\mathrm{O} 2$	2.1220 (16)	$\mathrm{Na}-\mathrm{O} 4^{\text {vii }}$	2.5410 (19)
$\mathrm{Sc}-\mathrm{O} 4$	2.1506 (18)	$\mathrm{Na}-\mathrm{O} 2{ }^{\text {vi }}$	2.5597 (19)
P1-O6	1.5088 (17)	$\mathrm{Na}-\mathrm{O} 2$	2.6264 (19)
P1-07	1.5254 (17)	$\mathrm{Na}-\mathrm{O} 4$	2.746 (2)
P1-04	1.5313 (18)	$\mathrm{Na}-\mathrm{O} 1^{\text {vii }}$	2.7505 (19)
$\mathrm{P} 1-\mathrm{O} 5^{\text {iii }}$	1.6114 (17)	$\mathrm{Na}-\mathrm{O} 4^{\text {vi }}$	2.9710 (19)
P2-O3	1.5013 (19)	$\mathrm{Na}-\mathrm{O}^{\text {viii }}$	2.992 (2)
$\mathrm{P} 2-\mathrm{O} 1^{\text {iv }}$	1.5278 (16)		
$\mathrm{O} 3-\mathrm{Sc}-\mathrm{O6}^{\mathrm{i}}$	96.54 (6)	$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Na}-\mathrm{O} 2{ }^{\text {vi }}$	115.31 (6)
$\mathrm{O} 3-\mathrm{Sc}-\mathrm{O} 7{ }^{\text {ii }}$	93.04 (7)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 2$	67.77 (6)
$\mathrm{O} 6^{\mathrm{i}}-\mathrm{Sc}-\mathrm{O} 7^{\text {ii }}$	91.19 (6)	$\mathrm{O} 7 \mathrm{vi}-\mathrm{Na}-\mathrm{O} 2$	119.51 (6)
O3-Sc-O1	96.23 (7)	$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Na}-\mathrm{O} 2$	71.71 (6)
$\mathrm{O} 6 \mathrm{C}-\mathrm{Sc}-\mathrm{O} 1$	84.07 (7)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na}-\mathrm{O} 2$	130.74 (5)
$\mathrm{O} 7^{\text {iii-}} \mathrm{Sc}-\mathrm{O} 1$	170.01 (6)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 4$	64.06 (6)
$\mathrm{O} 3-\mathrm{Sc}-\mathrm{O} 2$	95.73 (6)	$\mathrm{O} 7 \mathrm{vi}-\mathrm{Na}-\mathrm{O} 4$	143.35 (6)
O 6 - $\mathrm{Sc}-\mathrm{O} 2$	164.29 (6)	O 4 vii- $\mathrm{Na}-\mathrm{O} 4$	108.52 (6)
$\mathrm{O} 7^{7 i}-\mathrm{Sc}-\mathrm{O} 2$	97.93 (7)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na}-\mathrm{O} 4$	69.49 (6)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{O} 2$	84.87 (7)	$\mathrm{O} 2-\mathrm{Na}-\mathrm{O} 4$	62.69 (6)
$\mathrm{O} 3-\mathrm{Sc}-\mathrm{O} 4$	176.82 (7)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{Ol}^{\text {vii }}$	131.81 (5)
O6--Sc-O4	85.62 (6)	$\mathrm{O} 7^{\text {vi}}-\mathrm{Na}-\mathrm{O} 1^{\text {vii }}$	141.08 (7)
O7ii-Sc-O4	89.25 (6)	$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Na}-\mathrm{O} 1^{\text {vii }}$	63.57 (5)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{O} 4$	81.63 (6)	$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Na}-\mathrm{O} 1^{\text {vii }}$	56.31 (6)
$\mathrm{O} 2-\mathrm{Sc}-\mathrm{O} 4$	81.75 (6)	$\mathrm{O} 2-\mathrm{Na}-\mathrm{O}^{\text {vii }}$	93.88 (6)
O6-P1-O7	113.28 (9)	$\mathrm{O} 4-\mathrm{Na}-\mathrm{O} 1^{\text {vii }}$	67.92 (5)
O6-P1-O4	112.98 (9)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O}^{\text {vi }}$	67.56 (5)
O7-P1-O4	110.77 (9)	$\mathrm{O} 7^{\mathrm{vi}}-\mathrm{Na}-\mathrm{O} 4^{\text {vi }}$	53.79 (5)
O6-P1-O5 ${ }^{\text {iii }}$	105.42 (9)	$\mathrm{O} 4{ }^{\text {vii }}-\mathrm{Na}-\mathrm{O} 4{ }^{\text {vi }}$	150.38 (8)
O7-P1-O5 ${ }^{\text {iii }}$	108.54 (9)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na}-\mathrm{O} 4^{\text {vi }}$	60.19 (5)
$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 5^{\text {iii }}$	105.29 (10)	$\mathrm{O} 2-\mathrm{Na}-\mathrm{O}^{\text {vi }}$	135.34 (6)
$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 1^{\text {iv }}$	114.55 (9)	$\mathrm{O} 4-\mathrm{Na}-\mathrm{O} 4{ }^{\text {vi }}$	97.26 (6)
$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 2^{\text {v }}$	113.07 (9)	$\mathrm{O} 1^{\text {vii }}-\mathrm{Na}-\mathrm{O} 4{ }^{\text {vi }}$	116.03 (6)
$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{P} 2-\mathrm{O} 2^{\text {v }}$	110.27 (9)	$\mathrm{O} 1-\mathrm{Na}-\mathrm{O}^{\text {viii }}$	159.25 (6)
$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 5$	105.75 (10)	$\mathrm{O} 7^{\text {vi }}-\mathrm{Na}-\mathrm{O}^{\text {viii }}$	83.21 (6)
$\mathrm{O} 1{ }^{\text {iv}}-\mathrm{P} 2-\mathrm{O} 5$	105.78 (9)	$\mathrm{O} 4^{\text {vii }}-\mathrm{Na}-\mathrm{O} 6^{\text {viii }}$	61.94 (5)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{P} 2-\mathrm{O} 5$	106.74 (9)	$\mathrm{O} 2{ }^{\text {vi}}-\mathrm{Na}-\mathrm{O}^{\text {viii }}$	67.85 (6)
$\mathrm{O} 1-\mathrm{Na}-\mathrm{O}^{\text {vi }}$	82.54 (6)	$\mathrm{O} 2-\mathrm{Na}-\mathrm{O}^{\text {viii }}$	132.80 (6)
$\mathrm{O} 1-\mathrm{Na}-\mathrm{O} 4{ }^{\text {vii }}$	137.09 (7)	$\mathrm{O} 4-\mathrm{Na}-\mathrm{O} 6^{\text {viii }}$	123.78 (6)

supporting information

$\mathrm{O} 7^{\text {vi }}-\mathrm{Na}-\mathrm{O} 4^{\text {vii }}$	$106.18(6)$	$\mathrm{O}^{\text {vii }}-\mathrm{Na}-\mathrm{O} 6^{\text {viii }}$	$58.46(5)$
$\mathrm{O} 1 — \mathrm{Na}-\mathrm{O} 2^{\text {vi }}$	$101.72(6)$	$\mathrm{O}^{\text {vi }}-\mathrm{Na}-\mathrm{O} 6^{\text {viii }}$	$91.81(5)$
$\mathrm{O} 7^{\text {vi }}-\mathrm{Na}-\mathrm{O}^{\text {vi }}$	$105.53(6)$	$\mathrm{P} 1^{\text {ix }}-\mathrm{O} 5 — \mathrm{P} 2$	$125.47(10)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x,-y,-z+1$; (iii) $x-1 / 2,-y+1 / 2, z+1 / 2$; (iv) $-x+1,-y+1,-z+1$; (v) $-x+1,-y,-z+1$; (vi) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (vii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (viii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (ix) $x+1 / 2,-y+1 / 2, z-1 / 2$.

