metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-*u*-iodido-bis[acetyl(4-methyl-2,6,7trioxa-1-phosphabicvclo[2.2.2]octane)- $(N-nitroso-N-oxidoaniline-\kappa^2 O.O')$ rhodium(III)]

Johan A. Venter,* W. Purcell and H. G. Visser

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300 South Africa

Correspondence e-mail: venterja.sci@ufs.ac.za

Received 12 October 2009; accepted 19 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.013 Å; R factor = 0.033; wR factor = 0.075; data-to-parameter ratio = 19.7.

The title compound, $[Rh_2(C_6H_5N_2O_2)_2(C_2H_3O)_2I_2(C_5H_9-$ O₃P)₂], contains a binuclear centrosymmetric Rh^{III} dimer bridged by iodide anions, with respective Rh...Rh and I...I distances of 4.1437 (5) and 3.9144 (5) Å. The Rh^{III} atom is in a distorted octahedral RhCI2O2P coordination with considerably different Rh-I distances to the bridging iodide anions. There are no classical hydrogen-bonding interactions observed for this complex.

Related literature

For the synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984; 1986a,b; 1987, 1992); Roodt & Steyn (2000); Smit et al. (1994); Steyn et al. (1992); Van Leewen & Roobeeck (1981).

Experimental

Crystal data

[Rh₂(C₆H₅N₂O₂)₂(C₂H₃O)₂I₂- $(\tilde{C}_5H_9O_3P)_2]$ $M_r = 1116.14$ Monoclinic, $P2_1/c$ a = 10.055 (2) Å b = 16.944 (3) Å c = 11.149 (2) Å

Data collection

Bruker SMART CCD 1K diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.763, \ T_{\max} = 0.847$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	1 restraint
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.93 \ {\rm e} \ {\rm \AA}^{-3}$
4344 reflections	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
220 parameters	

Table 1

Selected geometric parameters (Å, °).

C1-Rh	2.040 (8)	Rh-O2	2.052 (5)
I-Rh	2.6351 (8)	Rh-P	2.186 (2)
Rh-O3	2.044 (5)	$Rh-I^{i}$	3.0511 (9)
$Rh-I-Rh^{i}$ C1-Rh-O3 C1-Rh-O2 O3-Rh-O2	93.30 (2) 92.9 (3) 92.2 (3) 78.74 (19)	O2-Rh-P C1-Rh-I O3-Rh-I $C1-Rh-I^i$	172.54 (15) 93.9 (2) 168.12 (14) 172.7 (2)
	. ,		()

 $\beta = 112.75 \ (3)^{\circ}$

Z = 2

V = 1751.7 (7) Å³

Mo $K\alpha$ radiation

 $0.10 \times 0.08 \times 0.06 \; \mathrm{mm}$

12035 measured reflections

4344 independent reflections

3129 reflections with $I > 2\sigma(I)$

 $\mu = 2.86 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.051$

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

The University of the Witwatersrand (Professor D. Levendis and Dr D. G. Billing) is thanked for the use of its diffractometer. Financial assistance by the South African National Research Foundation (grant No. 2038915), the Central Research Fund of the University of the Free State, THRIP and Sasol is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Research Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2267).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167-169.
- Basson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171–173.
- Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1986a). Inorg. Chim. Acta, 118, 45–46.
- Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1987). *Inorg. Chim.* Acta, **128**, 31–37.
- Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986b). *Inorg. Chim. Acta*, **119**, 35–38.

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Roodt, A. & Steyn, G. J. J. (2000). Res. Dev. Inorg. Chem. 2, 1-23.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7–8, 12– 14.
- Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.
- Van Leewen, P. W. N. M. & Roobeeck, C. F. (1981). *Tetrahedron*, **37**, 1973–1975.

supporting information

Acta Cryst. (2009). E65, m1528-m1529 [doi:10.1107/S1600536809043050]

Di- μ -iodido-bis[acetyl(4-methyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane)(*N*-nitroso-*N*-oxidoaniline- $\kappa^2 O, O'$)rhodium(III)]

Johan A. Venter, W. Purcell and H. G. Visser

S1. Comment

The title compound (Fig. 1) is the product of the oxidative addition of $CH_{3}I$ to $[Rh(cupf)(CO){P(OCH_{2})_{3}CCH_{3}}]$ (cupf = cupferrate, $(C_6H_5N_2O_2)$ (Basson *et al.*, 1992) which forms part of a series of rhodium complexes used in the kinetic studies of these reactions (Basson et al., 1984; 1986b; Steyn et al., 1992; Smit et al., 1994; Roodt & Steyn, 2000). In the structure, the Rh^{III} metal centre is coordinated to two bridging iodide ligands, an acyl ligand, a cyclic phosphite ligand (P(OCH₂)₃CCH₃) and an O,O'-bidentate cupferrate ligand. The coordination sphere around the metal is somewhat distorted from the octahedral geometry and a number of angles deviate significantly from the ideal (see Table 1). This is probably due to the small bite angle of 78.74 (19) ° formed by the cupferrate ligand and the metal centre. The angles, P-Rh—O2 of 172.54 (15)°, P—Rh—I of 96.21 (6)° and P—Rh—C1 of 87.2 (2)° clearly support the visual impression of Fig. 1 showing the phosphite ligand bent outward to minimise steric interaction. The respective Rh—Rh and I—I distances were calculated as 4.1437 (5) and 3.9144 (5) Å. At 2.186 (2) Å the Rh-P bond lenght is short, compared to the 2.327 (4) Å of [Rh(cupf)(CO)(CH₃)(I)(PPh₃)] (Basson et al., 1987). This stems from the nature of phosphites to be excellent π -acceptors, causing stronger back donation from rhodium resulting in a shorter Rh—P bond. Also, the sterically small cyclic phosphite ligand allows for a closer fit in the coordination sphere. The Rh-I' distance (symmetry operator -x+1, -y, -z+1), the one *trans* to the acyl ligand, is significantly longer than the other Rh—I distance, demonstrating the large *trans*-influence of the acyl ligand. The formation of $[Rh(cupf)(COCH_3)(\mu-I){P(OCH_2)_3CCH_3}]_2$ can most probably be attributed to the minor steric requirements of both the cupferrate ligand with its narrow bite angle and even more importantly the small cone angle of the phosphite. No classical hydrogen-bonding interactions are observed in the title compound.

S2. Experimental

The bicyclic phosphite ester, $P(OCH_2)_3CCH_3$, and $[Rh(C_6H_5N_2O_2)(CO)_2]$ was prepared according to the respective methods reported previously (Van Leewen & Roobeeck, 1981; Basson et al., 1986a). Equimolar amounts of the cyclic phosphite was mixed with $[Rh(C_6H_5N_2O_2)(CO)_2]$ in acetone to form $[Rh(C_6H_5N_2O_2)(CO)(P(OCH_2)_3CCH_3)]$. The reaction mixture was concentrated by evaporation after which a tenfold excess of CH_3I was added. The container was covered with a perforated plastic film and left to stand for two days at 271 K after which brown-red single crystals of the title compound were isolated.

S3. Refinement

The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 - 0.98 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene and aromatic protons and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl protons respectively. The highest residual electron density was located 0.93 Å from I.

Figure 1

View of the dimeric compex present in the title compound. Probability level for displacement ellipsoids is 50%. Symmetry-related atoms are generated by the symmetry operator i) -x+1, -y, -z+1.

$\label{eq:constraint} Di-\mu-iodido-bis[acetyl(4-methyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane)(N-nitroso-N-oxidoaniline-\kappa^2O,O')rhodium(III)]$

Crystal data	
$[Rh_2(C_6H_5N_2O_2)_2(C_2H_3O)_2I_2(C_5H_9O_3P)_2]$	$\beta = 112.75 \ (3)^{\circ}$
$M_r = 1116.14$	V = 1751.7 (7) Å ³
Monoclinic, $P2_1/c$	Z = 2
Hall symbol: -P 2ybc	F(000) = 1080
a = 10.055 (2) Å	$D_{\rm x} = 2.116 {\rm ~Mg} {\rm ~m}^{-3}$
b = 16.944 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.149(2) Å	Cell parameters from 859 reflections

 $\theta = 2.3 - 28.1^{\circ}$ $\mu = 2.86 \text{ mm}^{-1}$ T = 293 K

...

Data collection	
Bruker SMART CCD 1K	12035 measured reflections
diffractometer	4344 independent reflections
Radiation source: fine-focus sealed tube	3129 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 11$
(SADABS; Bruker, 2004)	$k = -22 \rightarrow 14$
$T_{\min} = 0.763, \ T_{\max} = 0.847$	$l = -12 \rightarrow 14$
Refinement	
Refinement on F^2	1 restraint

Refinement on F ²	1 restraint
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$
$wR(F^2) = 0.075$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{\rm max} < 0.001$
4344 reflections	$\Delta \rho_{\rm max} = 0.93 \ { m e} \ { m \AA}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data were collected on a Bruker SMART CCD 1 K diffractometer using an exposure time of 20 s/frame. A total of 1315 frames were collected with a frame width of 0.3° covering up to $\theta = 28.29^{\circ}$ with 99.8% completeness accomplished. The first 50 frames were recollected at the end of the data collection to check for decay; none was found.

Cuboid, brown-red

 $0.10\times0.08\times0.06~mm$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C6	0.3530 (9)	0.3279 (4)	0.4556 (7)	0.0389 (18)	
C5	0.3479 (11)	0.2939 (5)	0.5784 (8)	0.053 (2)	
H1A	0.4329	0.3102	0.6522	0.064*	
H1B	0.2637	0.314	0.5908	0.064*	
C4	0.4801 (10)	0.2932 (5)	0.4347 (9)	0.050 (2)	
H2A	0.4849	0.3154	0.3563	0.06*	
H2B	0.568	0.3073	0.5072	0.06*	
C7	0.3688 (11)	0.4178 (5)	0.4674 (9)	0.060 (3)	
H5A	0.4549	0.431	0.5408	0.091*	
H5B	0.2867	0.4399	0.479	0.091*	
H5C	0.3747	0.4389	0.3897	0.091*	
01	0.1009(7)	0.0872 (4)	0.5202 (7)	0.0698 (19)	
C1	0.1039 (9)	0.0605 (5)	0.4219 (9)	0.045 (2)	
C2	-0.0248 (11)	0.0383 (7)	0.3093 (10)	0.074 (3)	
H9A	-0.0107	-0.0129	0.279	0.111*	
H9B	-0.0418	0.0763	0.2412	0.111*	

H9C	-0.1064	0.0366	0.3338	0.111*
Ι	0.43362 (5)	-0.00049 (3)	0.64352 (4)	0.03779 (16)
Rh	0.29476 (7)	0.04485 (4)	0.40073 (6)	0.03779 (16)
Р	0.3320 (2)	0.17126 (11)	0.43763 (19)	0.0342 (4)
O2	0.2452 (6)	-0.0699 (3)	0.3412 (5)	0.0382 (12)
N1	0.1775 (7)	-0.0076 (4)	0.1406 (6)	0.0433 (16)
O3	0.2017 (6)	0.0583 (3)	0.2034 (5)	0.0413 (13)
N2	0.1995 (7)	-0.0702 (3)	0.2114 (6)	0.0366 (14)
C11	0.1793 (8)	-0.1465 (4)	0.1476 (7)	0.0355 (17)
O6	0.4702 (6)	0.2079 (3)	0.4228 (6)	0.0495 (14)
O4	0.2045 (6)	0.2201 (3)	0.3337 (5)	0.0511 (15)
O5	0.3416 (7)	0.2073 (3)	0.5719 (5)	0.0535 (16)
C15	0.2426 (11)	-0.2819 (5)	0.1644 (10)	0.061 (3)
H010	0.292	-0.3249	0.2131	0.073*
C16	0.2521 (10)	-0.2091 (5)	0.2224 (8)	0.050 (2)
H011	0.3069	-0.2026	0.3107	0.061*
C13	0.0867 (11)	-0.2264 (6)	-0.0368 (10)	0.068 (3)
H012	0.0298	-0.2321	-0.1248	0.082*
C12	0.0962 (10)	-0.1545 (5)	0.0197 (8)	0.058 (2)
H013	0.0463	-0.1114	-0.0288	0.07*
C14	0.1587 (11)	-0.2907 (6)	0.0322 (10)	0.065 (3)
H014	0.1518	-0.3393	-0.0083	0.078*
C3	0.2178 (10)	0.3068 (4)	0.3415 (9)	0.051 (2)
H01A	0.1346	0.3297	0.3522	0.061*
H01B	0.2222	0.3275	0.262	0.061*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.059 (5)	0.025 (4)	0.037 (4)	0.005 (4)	0.022 (4)	0.005 (3)
C5	0.086 (7)	0.039 (5)	0.042 (5)	0.001 (4)	0.033 (5)	-0.008 (4)
C4	0.064 (6)	0.030 (4)	0.064 (6)	-0.013 (4)	0.034 (5)	-0.010 (4)
C7	0.097 (8)	0.035 (5)	0.056 (6)	0.003 (5)	0.036 (5)	0.007 (4)
01	0.070 (5)	0.070 (5)	0.085 (5)	0.003 (4)	0.047 (4)	-0.006 (4)
C1	0.050 (5)	0.040 (5)	0.053 (5)	0.010 (4)	0.027 (4)	0.004 (4)
C2	0.060 (7)	0.091 (8)	0.076 (7)	0.000 (6)	0.032 (6)	0.008 (6)
Ι	0.0466 (3)	0.0360 (2)	0.0325 (2)	0.00276 (18)	0.01725 (17)	0.00362 (16)
Rh	0.0466 (3)	0.0360 (2)	0.0325 (2)	0.00276 (18)	0.01725 (17)	0.00362 (16)
Р	0.0421 (11)	0.0291 (10)	0.0324 (10)	0.0012 (8)	0.0155 (8)	0.0015 (8)
O2	0.058 (3)	0.024 (2)	0.035 (3)	-0.008 (2)	0.021 (3)	-0.002 (2)
N1	0.043 (4)	0.051 (4)	0.029 (3)	0.001 (3)	0.007 (3)	0.005 (3)
O3	0.054 (3)	0.024 (3)	0.044 (3)	0.001 (2)	0.017 (3)	0.007 (2)
N2	0.046 (4)	0.028 (3)	0.035 (3)	-0.003 (3)	0.015 (3)	0.001 (3)
C11	0.040 (4)	0.030 (4)	0.038 (4)	-0.004 (3)	0.017 (3)	-0.006 (3)
O6	0.051 (3)	0.032 (3)	0.076 (4)	-0.004 (3)	0.036 (3)	-0.007 (3)
O4	0.056 (4)	0.030 (3)	0.052 (3)	0.009 (3)	0.004 (3)	0.002 (3)
05	0.100 (5)	0.032 (3)	0.038 (3)	-0.001 (3)	0.038 (3)	0.000 (2)
C15	0.078 (7)	0.039 (5)	0.064 (6)	0.004 (5)	0.025 (5)	-0.002 (4)

supporting information

C16	0.067 (6)	0.038 (4)	0.041 (5)	0.002 (4)	0.016 (4)	-0.006 (4)	
C13	0.071 (7)	0.066 (7)	0.053 (6)	-0.016 (5)	0.008 (5)	-0.022 (5)	
C12	0.062 (6)	0.055 (6)	0.041 (5)	0.002 (5)	0.001 (4)	-0.005 (4)	
C14	0.067 (7)	0.053 (6)	0.079 (7)	-0.021 (5)	0.033 (6)	-0.030 (5)	
C3	0.072 (6)	0.026 (4)	0.054 (5)	0.010 (4)	0.022 (5)	0.003 (4)	

Geometric parameters (Å, °)

C6—C5	1.504 (10)	Rh—P	2.186 (2)
C6—C4	1.504 (11)	Rh — I^i	3.0511 (9)
С6—С3	1.502 (12)	P06	1.588 (6)
С6—С7	1.533 (10)	P05	1.585 (5)
C5—O5	1.468 (9)	P04	1.589 (5)
C5—H1A	0.97	O2—N2	1.339 (7)
C5—H1B	0.97	N1—O3	1.290 (8)
C4—O6	1.451 (8)	N1—N2	1.289 (8)
C4—H2A	0.97	N2—C11	1.451 (9)
C4—H2B	0.97	C11—C12	1.352 (10)
C7—H5A	0.96	C11—C16	1.374 (11)
С7—Н5В	0.96	O4—C3	1.474 (9)
C7—H5C	0.96	C15—C16	1.379 (11)
01—C1	1.196 (10)	C15—C14	1.394 (13)
C1—C2	1.461 (13)	C15—H010	0.93
C1—Rh	2.040 (8)	C16—H011	0.93
С2—Н9А	0.96	C13—C14	1.368 (14)
С2—Н9В	0.96	C13—C12	1.358 (12)
С2—Н9С	0.96	C13—H012	0.93
I—Rh	2.6351 (8)	C12—H013	0.93
I—Rh ⁱ	3.0511 (9)	C14—H014	0.93
Rh—O3	2.044 (5)	C3—H01A	0.97
Rh—O2	2.052 (5)	C3—H01B	0.97
C5—C6—C4	108.7 (7)	C1—Rh—I ⁱ	172.7 (2)
C5—C6—C3	110.0 (7)	O3—Rh—I ⁱ	85.36 (16)
C4—C6—C3	108.7 (7)	O2—Rh—I ⁱ	80.51 (15)
C5—C6—C7	110.0 (6)	P—Rh—I ⁱ	99.96 (6)
C4—C6—C7	109.6 (7)	I—Rh—I ⁱ	86.70 (2)
C3—C6—C7	109.8 (6)	O6—P—O5	102.2 (3)
O5—C5—C6	110.7 (6)	O6—P—O4	102.2 (3)
O5—C5—H1A	109.5	O5—P—O4	103.0 (3)
C6—C5—H1A	109.5	O6—P—Rh	117.2 (2)
O5—C5—H1B	109.5	O5—P—Rh	120.0 (2)
C6—C5—H1B	109.5	O4—P—Rh	110.0 (2)
H1A—C5—H1B	108.1	N2—O2—Rh	107.0 (4)
O6—C4—C6	111.8 (6)	O3—N1—N2	115.4 (6)
O6—C4—H2A	109.3	N1—O3—Rh	113.5 (4)
C6—C4—H2A	109.3	N1—N2—O2	124.3 (6)
O6—C4—H2B	109.3	N1—N2—C11	118.3 (6)
	107.0		110.0 (0)

109.3 107.9	02—N2—C11	117.3 (6)
107.9	G10 G11 G1(
	C12—C11—C16	122.0 (7)
109.5	C12—C11—N2	121.2 (7)
109.5	C16—C11—N2	116.7 (7)
109.5	C4—O6—P	114.3 (5)
109.5	C3—O4—P	116.6 (5)
109.5	C5—O5—P	114.7 (4)
109.5	C16—C15—C14	119.7 (9)
123.8 (9)	С16—С15—Н010	120.2
120.9 (7)	С14—С15—Н010	120.2
115.3 (7)	C11—C16—C15	118.8 (8)
109.5	C11—C16—H011	120.6
109.5	С15—С16—Н011	120.6
109.5	C14—C13—C12	121.8 (9)
109.5	С14—С13—Н012	119.1
109.5	С12—С13—Н012	119.1
109.5	C11—C12—C13	118.9 (9)
93.30 (2)	С11—С12—Н013	120.6
92.9 (3)	С13—С12—Н013	120.6
92.2 (3)	C13—C14—C15	118.8 (8)
78.74 (19)	С13—С14—Н014	120.6
87.2 (2)	С15—С14—Н014	120.6
93.85 (14)	O4—C3—C6	108.6 (6)
172.54 (15)	O4—C3—H01A	110
93.9 (2)	C6—C3—H01A	110
168.12 (14)	O4—C3—H01B	110
91.25 (14)	С6—С3—Н01В	110
96.21 (6)	H01A—C3—H01B	108.4
	107.9 109.5 109.5 109.5 109.5 109.5 109.5 109.5 $123.8 (9)$ $120.9 (7)$ $115.3 (7)$ 109.5	107.5 $C12-C11-C10$ 109.5 $C12-C11-N2$ 109.5 $C16-C11-N2$ 109.5 $C4-O6-P$ 109.5 $C3-O4-P$ 109.5 $C5-O5-P$ 109.5 $C16-C15-C14$ 123.8 (9) $C16-C15-H010$ 120.9 (7) $C14-C15-H010$ 115.3 (7) $C11-C16-C15$ 109.5 $C15-C16-H011$ 109.5 $C15-C16-H011$ 109.5 $C14-C13-C12$ 109.5 $C14-C13-H012$ 109.5 $C14-C13-H012$ 109.5 $C12-C13-H012$ 109.5 $C11-C12-C13$ 93.30 (2) $C13-C12-H013$ 92.9 (3) $C13-C14-C15$ 78.74 (19) $C13-C14-H014$ 87.2 (2) $C15-C14-H014$ 93.85 (14) $04-C3-C6$ 172.54 (15) $04-C3-H01A$ 93.9 (2) $C6-C3-H01A$ 168.12 (14) $04-C3-H01B$ 91.25 (14) $C6-C3-H01B$ 96.21 (6) $H01A-C3-H01B$

Symmetry code: (i) -x+1, -y, -z+1.