organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Bromo-2-[5-(4-nitrophenyl)-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl]pyrimidine

Jia Hao Goh,^a‡ Hoong-Kun Fun,^a*§ Adithya Adhikari^b and B. Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 13 November 2009; accepted 16 November 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.060; data-to-parameter ratio = 12.7.

In the title pyrazoline compound, $C_{19}H_{14}BrN_5O_2$, the essentially planar pyrazoline and pyrimidine rings [maximum deviations = 0.013 (1) and 0.009 (1) Å, respectively] are inclined slightly to one another, making a dihedral angle of 10.81 (10)°. The nitrobenzene unit is almost perpendicular to the attached pyrazoline ring, as indicated by the dihedral angle of 84.61 (8)°. In the crystal structure, intermolecular C– H···N contacts link the molecules into dimers in an antiparallel manner. These dimers are further linked into one-dimensional chains along the *b* axis *via* C–H···O contacts. The crystal structure is consolidated by three different intermolecular π – π interactions [range of centroid– centroid distances = 3.5160 (11)–3.6912 (11) Å].

Related literature

For general background to and applications of the title compound, see: Hegde *et al.* (2006); Kalluraya & Chimbalkar (2001); Kalluraya *et al.* (2001); Rai *et al.* (2008); Rathish *et al.* (2009); Tawab *et al.* (1960). For closely related structures, see: Goh *et al.* (2009*a*,*b*). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_{19}H_{14}BrN_5O_2$ $M_r = 424.26$ Triclinic, $P\overline{1}$ a = 6.9709 (1) Å b = 11.6500 (2) Å c = 12.4365 (2) Å $\alpha = 114.969$ (1)° $\beta = 103.303$ (1)°

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.510, T_{max} = 0.760$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.060$ S = 1.053804 reflections 28197 measured reflections 3804 independent reflections 3431 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

 $\nu = 91.560 \ (1)^{\circ}$

Z = 2

V = 882.12 (2) Å³

Mo $K\alpha$ radiation

 $0.33 \times 0.22 \times 0.12 \text{ mm}$

 $\mu = 2.36 \text{ mm}^-$

T = 100 K

300 parameters All H-atom parameters refined $\Delta \rho_{\rm max} = 0.49$ e Å⁻³ $\Delta \rho_{\rm min} = -0.30$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8B\cdots O2^{i}$ $C11-H11A\cdots N4^{ii}$ $C19-H19A\cdots O2^{iii}$	0.95 (2) 0.92 (2) 0.98 (2)	2.41 (2) 2.56 (2) 2.58 (2)	3.352 (2) 3.431 (2) 3.412 (3)	176.0 (17) 160.5 (18) 143.3 (17)

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/ PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2577).

[‡] Thomson Reuters ResearcherID: C-7576-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089.
- Goh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100.
- Hegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285–1290.
- Kalluraya, B. & Chimbalkar, R. M. (2001). Indian J. Heterocycl. Chem. 11, 171–174.
- Kalluraya, B., Chimbalkar, R. M., Rai, G., Gururaja, R. & Shenoy, S. (2001). J. Indian Council Chemists, 18, 1–5.
- Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.
- Rathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). *Bioorg. Med. Chem. Lett.* **19**, 255–258. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Tawab, S. A., Mustafa, A. & Kira, M. (1960). Nature (London), 186, 165-166.

supporting information

Acta Cryst. (2009). E65, o3134–o3135 [doi:10.1107/S1600536809048600]

5-Bromo-2-[5-(4-nitrophenyl)-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl]pyrimidine

Jia Hao Goh, Hoong-Kun Fun, Adithya Adhikari and B. Kalluraya

S1. Comment

Pyrazoles and pyrazoline derivatives are an important class of heterocyclic compounds (Rai *et al.*, 2008; Hegde *et al.*, 2006). The addition of aliphatic diazo compounds to olefins leads to pyrazolines. Also, the addition of hydrazine or its derivatives to α , β -unsaturated aldehydes or ketones yields pyrazoline (Kalluraya & Chimbalkar, 2001). Pyrazoline derivatives have been found to possess potential anti-pyretic, analgesic (Tawab *et al.*, 1960), anti-inflammatory (Rathish *et al.*, 2009), and anti-microbial (Kalluraya *et al.*, 2001) properties. In the present work, an X-ray crystal structure analysis has been undertaken in order to determine the 3D chemical structure and also the crystal packing of the molecules. We herein report the synthesis and crystal structure of the title compound, (I).

In (I), Fig. 1, the pyrazoline (C7-C9/N1/N2) and pyrimidine (C16-C19/N3/N4) rings are essentially planar, with maximum deviations of 0.013 (1) and 0.009 (1) Å, respectively, for atoms N1 and C16. These two rings are slightly inclined to one another, making a dihedral angle of 10.81 (10)°. The nitrobenzene moiety is almost perpendicular to the attached pyrazoline ring, as indicated by the dihedral angle formed between the mean plane through C10-C15/N5/O1/O2 and the pyrazoline ring of 84.61 (8)°. The bond lengths and angles are consistent with those closely related structures (Goh *et al.*, 2009*a*,*b*).

In the crystal structure (Fig. 2), intermolecular C11—H11A···N4 contacts (Table 1) link the molecules into dimers in an anti-parallel manner. These dimers are further linked into a 1-D chain along the *b* axis by intermolecular C8—H8B···O2 and C19—H19A···O2 contacts (Table 1). The crystal structure is consolidated by three different weak π - π interactions involving the pyrazoline (*Cg*1), pyrimidine (*Cg*2) and C1-C6 benzene (*Cg*3) rings [*Cg*1···*Cg*1^{iv} = 3.5160 (11) Å, *Cg*2···*Cg*3ⁱⁱ = 3.6912 (11) Å and *Cg*2···*Cg*3^{iv} = 3.5779 (11) Å, respectively; (ii) -x, 1-y, 1-z and (iv) 1-x, 1-y, 1-z].

S2. Experimental

A mixture of 5-bromo-2-hydrazinopyrimidine (0.01 mol) and 3-(4-nitrophenyl)-1-phenyl-prop-2-en-1-one (0.01 mol) was taken in acetic acid (20 ml), and two drops of concentrated H_2SO_4 added. The mixture was refluxed for 4 h. The precipitated solids were filtered, dried and recrystallized from ethanol. The single crystals were obtained from a mixture of ethanol and DMF by slow evaporation.

S3. Refinement

All the H atoms were located from difference Fourier map [range of C—H = 0.91 (2) - 0.995 (19) Å] and allowed to refine freely. The reflections (001) and ($\overline{011}$) were omitted as the intensities were affected by the beam-stop.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms and the atomnumbering scheme.

Figure 2

Part of the crystal structure of (I), viewed along the a axis, showing the dimers being linked into a 1-D chain along the b axis. Intermolecular contacts are shown as dashed lines.

5-Bromo-2-[5-(4-nitrophenyl)-3-phenyl-4,5-dihydro-1*H*- pyrazol-1-yl]pyrimidine

Crystal data	
$C_{19}H_{14}BrN_5O_2$	$\gamma = 91.560 \ (1)^{\circ}$
$M_r = 424.26$	$V = 882.12 (2) Å^3$
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 428
a = 6.9709 (1) Å	$D_{\rm x} = 1.597 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.6500 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.4365 (2) Å	Cell parameters from 9873 reflections
$\alpha = 114.969 \ (1)^{\circ}$	$\theta = 3.0 - 33.9^{\circ}$
$\beta = 103.303 \ (1)^{\circ}$	$\mu = 2.36 \text{ mm}^{-1}$

T = 100 KBlock, green

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	28197 measured reflections 3804 independent reflections
Radiation source: fine-focus sealed tube	3431 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2005)	$k = -14 \rightarrow 14$
$T_{\min} = 0.510, \ T_{\max} = 0.760$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from

1	1
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.060$	neighbouring sites
S = 1.05	All H-atom parameters refined
3804 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0288P)^2 + 0.5594P]$
300 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.49$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

 $0.33 \times 0.22 \times 0.12 \text{ mm}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.32778 (3)	0.891599 (17)	1.068122 (15)	0.02770 (7)	
01	-0.3115 (2)	0.02211 (12)	0.64236 (12)	0.0274 (3)	
O2	-0.0404 (2)	-0.01117 (12)	0.74511 (11)	0.0258 (3)	
N1	0.2287 (2)	0.49488 (13)	0.46957 (12)	0.0175 (3)	
N2	0.2681 (2)	0.47661 (13)	0.57546 (12)	0.0177 (3)	
N3	0.3203 (2)	0.54232 (13)	0.78176 (13)	0.0191 (3)	
N4	0.2364 (2)	0.68890 (13)	0.69321 (13)	0.0182 (3)	
N5	-0.1294 (2)	0.03714 (13)	0.68034 (13)	0.0205 (3)	
C1	0.1859 (3)	0.48220 (17)	0.22862 (16)	0.0224 (4)	
C2	0.1604 (3)	0.4683 (2)	0.10980 (17)	0.0282 (4)	
C3	0.1682 (3)	0.3501 (2)	0.01564 (17)	0.0300 (4)	
C4	0.2012 (3)	0.24641 (19)	0.04084 (17)	0.0275 (4)	

C5	0.2323 (3)	0.26060 (18)	0.16071 (16)	0.0236 (4)
C6	0.2252 (2)	0.37903 (16)	0.25600 (15)	0.0201 (3)
C7	0.2607 (2)	0.39338 (15)	0.38231 (15)	0.0176 (3)
C8	0.3349 (3)	0.29328 (16)	0.42148 (17)	0.0228 (4)
C9	0.3406 (3)	0.35347 (16)	0.55889 (15)	0.0191 (3)
C10	0.2129 (3)	0.27153 (15)	0.59130 (14)	0.0175 (3)
C11	0.0070 (3)	0.24832 (16)	0.54497 (15)	0.0188 (3)
C12	-0.1072 (3)	0.17094 (16)	0.57339 (15)	0.0191 (3)
C13	-0.0101 (3)	0.11782 (15)	0.64817 (15)	0.0178 (3)
C14	0.1942 (3)	0.13677 (16)	0.69325 (16)	0.0211 (3)
C15	0.3060 (3)	0.21486 (16)	0.66433 (16)	0.0213 (3)
C16	0.2747 (2)	0.57397 (15)	0.68747 (15)	0.0165 (3)
C17	0.3326 (3)	0.63670 (17)	0.89244 (16)	0.0207 (3)
C18	0.2999 (3)	0.75881 (16)	0.90934 (15)	0.0204 (3)
C19	0.2496 (3)	0.78065 (16)	0.80562 (16)	0.0201 (3)
H1A	0.177 (3)	0.563 (2)	0.2909 (19)	0.025 (5)*
H2A	0.138 (4)	0.540 (2)	0.092 (2)	0.038 (6)*
H3A	0.154 (3)	0.340 (2)	-0.066 (2)	0.037 (6)*
H4A	0.206 (3)	0.169 (2)	-0.020 (2)	0.024 (5)*
H5A	0.257 (3)	0.190 (2)	0.178 (2)	0.028 (5)*
H8A	0.467 (3)	0.2771 (19)	0.4110 (19)	0.024 (5)*
H8B	0.250 (3)	0.214 (2)	0.378 (2)	0.031 (6)*
H9A	0.478 (3)	0.3691 (17)	0.6123 (17)	0.013 (4)*
H11A	-0.055 (3)	0.2853 (18)	0.4970 (18)	0.019 (5)*
H12A	-0.245 (3)	0.1549 (19)	0.5429 (19)	0.024 (5)*
H14A	0.258 (3)	0.0991 (19)	0.7416 (19)	0.025 (5)*
H15A	0.446 (3)	0.2291 (19)	0.6952 (19)	0.025 (5)*
H17A	0.372 (3)	0.6149 (19)	0.9598 (19)	0.022 (5)*
H19A	0.224 (3)	0.8658 (19)	0.8141 (18)	0.019 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02884 (11)	0.02882 (11)	0.01659 (9)	0.00509 (7)	0.00679 (7)	0.00134 (7)
01	0.0263 (7)	0.0275 (7)	0.0323 (7)	0.0020 (5)	0.0112 (6)	0.0154 (6)
O2	0.0386 (8)	0.0213 (6)	0.0223 (6)	0.0044 (5)	0.0086 (6)	0.0139 (5)
N1	0.0171 (7)	0.0197 (7)	0.0145 (6)	0.0012 (5)	0.0029 (5)	0.0070 (5)
N2	0.0231 (8)	0.0155 (6)	0.0160 (7)	0.0037 (5)	0.0070 (6)	0.0073 (5)
N3	0.0199 (7)	0.0202 (7)	0.0180 (7)	0.0023 (6)	0.0060 (6)	0.0087 (6)
N4	0.0185 (7)	0.0179 (7)	0.0174 (7)	0.0043 (5)	0.0047 (6)	0.0068 (6)
N5	0.0302 (9)	0.0147 (6)	0.0173 (7)	0.0036 (6)	0.0107 (6)	0.0055 (6)
C1	0.0190 (9)	0.0260 (9)	0.0173 (8)	0.0058 (7)	0.0023 (7)	0.0061 (7)
C2	0.0244 (10)	0.0390 (11)	0.0209 (9)	0.0122 (8)	0.0031 (7)	0.0140 (8)
C3	0.0235 (10)	0.0459 (12)	0.0152 (8)	0.0112 (8)	0.0028 (7)	0.0091 (8)
C4	0.0202 (9)	0.0321 (10)	0.0173 (8)	0.0036 (8)	0.0049 (7)	-0.0012 (8)
C5	0.0185 (9)	0.0247 (9)	0.0219 (9)	0.0023 (7)	0.0063 (7)	0.0045 (7)
C6	0.0137 (8)	0.0250 (9)	0.0169 (8)	0.0010 (6)	0.0040 (6)	0.0049 (7)
C7	0.0149 (8)	0.0172 (7)	0.0179 (8)	-0.0004 (6)	0.0050 (6)	0.0051 (6)

supporting information

C8	0.0315 (10)	0.0164 (8)	0.0246 (9)	0.0043 (7)	0.0156 (8)	0.0086 (7)
C9	0.0212 (9)	0.0161 (7)	0.0209 (8)	0.0036 (6)	0.0081 (7)	0.0078 (6)
C10	0.0236 (9)	0.0140 (7)	0.0149 (7)	0.0033 (6)	0.0077 (6)	0.0050 (6)
C11	0.0225 (9)	0.0184 (8)	0.0179 (8)	0.0055 (7)	0.0056 (7)	0.0099 (7)
C12	0.0204 (9)	0.0187 (8)	0.0183 (8)	0.0046 (7)	0.0060 (7)	0.0075 (7)
C13	0.0252 (9)	0.0137 (7)	0.0153 (7)	0.0028 (6)	0.0085 (7)	0.0057 (6)
C14	0.0278 (10)	0.0197 (8)	0.0179 (8)	0.0066 (7)	0.0054 (7)	0.0103 (7)
C15	0.0194 (9)	0.0216 (8)	0.0212 (8)	0.0032 (7)	0.0030(7)	0.0092 (7)
C16	0.0136 (8)	0.0174 (8)	0.0173 (8)	0.0013 (6)	0.0048 (6)	0.0064 (6)
C17	0.0191 (9)	0.0255 (9)	0.0180 (8)	0.0028 (7)	0.0059 (7)	0.0095 (7)
C18	0.0176 (8)	0.0222 (8)	0.0152 (8)	0.0020 (7)	0.0049 (6)	0.0023 (7)
C19	0.0187 (9)	0.0192 (8)	0.0204 (8)	0.0046 (7)	0.0051 (7)	0.0067 (7)

Geometric parameters (Å, °)

Br1—C18	1.8863 (16)	C5—H5A	0.94 (2)
O1—N5	1.228 (2)	C6—C7	1.468 (2)
O2—N5	1.2337 (19)	С7—С8	1.504 (2)
N1C7	1.292 (2)	C8—C9	1.539 (2)
N1—N2	1.3886 (19)	C8—H8A	0.97 (2)
N2-C16	1.365 (2)	C8—H8B	0.95 (2)
N2—C9	1.481 (2)	C9—C10	1.519 (2)
N3—C17	1.332 (2)	С9—Н9А	0.995 (19)
N3—C16	1.346 (2)	C10-C11	1.391 (2)
N4—C19	1.334 (2)	C10—C15	1.393 (2)
N4—C16	1.348 (2)	C11—C12	1.389 (2)
N5—C13	1.471 (2)	C11—H11A	0.91 (2)
C1—C2	1.384 (3)	C12—C13	1.387 (2)
C1—C6	1.399 (3)	C12—H12A	0.93 (2)
C1—H1A	0.95 (2)	C13—C14	1.379 (3)
C2—C3	1.394 (3)	C14—C15	1.390 (2)
C2—H2A	0.96 (2)	C14—H14A	0.93 (2)
C3—C4	1.383 (3)	C15—H15A	0.94 (2)
С3—НЗА	0.95 (2)	C17—C18	1.381 (3)
C4—C5	1.392 (3)	C17—H17A	0.96 (2)
C4—H4A	0.91 (2)	C18—C19	1.388 (2)
C5—C6	1.400 (2)	С19—Н19А	0.98 (2)
C7—N1—N2	107.71 (14)	N2—C9—C10	113.23 (14)
C16—N2—N1	121.50 (13)	N2—C9—C8	101.32 (13)
C16—N2—C9	123.73 (14)	C10—C9—C8	113.11 (14)
N1—N2—C9	113.65 (13)	N2—C9—H9A	110.2 (10)
C17—N3—C16	115.56 (15)	С10—С9—Н9А	107.2 (10)
C19—N4—C16	115.45 (14)	С8—С9—Н9А	111.9 (10)
01—N5—O2	123.49 (14)	C11—C10—C15	119.99 (15)
O1—N5—C13	118.57 (14)	C11—C10—C9	121.01 (15)
O2—N5—C13	117.94 (15)	C15—C10—C9	118.95 (15)
C2—C1—C6	120.44 (17)	C12—C11—C10	120.27 (16)

C2—C1—H1A	118.6 (12)	C12—C11—H11A	119.2 (12)
C6—C1—H1A	121.0 (12)	C10-C11-H11A	120.5 (12)
C1 - C2 - C3	120 15 (19)	C13—C12—C11	118 28 (16)
C1 - C2 - H2A	120.0(14)	C_{13} C_{12} H_{12} H_{12}	120.8(12)
$C_3 C_2 H_{2\Lambda}$	110.8(14)	C_{11} C_{12} H_{12A}	120.0(12)
$C_3 = C_2 = C_2$	119.0(14)	C14 $C12$ $C12$	121.0(12) 122.77(15)
C4 - C3 - C2	119.95 (17)	C14 - C13 - C12	122.77(13)
C4—C5—H3A	119.4 (14)	C14—C13—N5	118.41 (15)
С2—С3—Н3А	120.6 (14)	C12—C13—N5	118.82 (15)
C3—C4—C5	120.16 (17)	C13—C14—C15	118.17 (16)
C3—C4—H4A	120.9 (13)	C13—C14—H14A	122.0 (13)
C5—C4—H4A	118.9 (13)	C15—C14—H14A	119.8 (13)
C4—C5—C6	120.28 (18)	C14—C15—C10	120.49 (17)
С4—С5—Н5А	120.2 (13)	C14—C15—H15A	119.0 (12)
С6—С5—Н5А	119.5 (13)	C10-C15-H15A	120.5 (12)
C1—C6—C5	118.96 (16)	N3—C16—N4	127.09 (15)
C1—C6—C7	121 19 (15)	N3—C16—N2	114 49 (14)
C_{5}	119.85 (16)	N4-C16-N2	11843(14)
N1 C7 C6	121 70 (16)	$N_{1} = C_{10} = N_{2}$ $N_{2} = C_{17} = C_{18}$	110.+3(1+) 122.24(16)
N1 = C7 = C9	121.79(10) 114.40(15)	$N_{2} = C_{17} = U_{17} A$	122.24(10)
$NI = C / = C \delta$	114.40 (13)	N_{3} C_{1} H_{1} A	113.3 (12)
	123.81 (15)		122.4 (12)
C/C8C9	102.87 (13)	C17 - C18 - C19	117.58 (15)
С7—С8—Н8А	112.2 (12)	C17—C18—Br1	121.08 (13)
С9—С8—Н8А	110.4 (12)	C19—C18—Br1	121.33 (13)
С7—С8—Н8В	112.8 (13)	N4—C19—C18	122.05 (16)
С9—С8—Н8В	111.1 (13)	N4—C19—H19A	118.1 (11)
H8A—C8—H8B	107.5 (18)	C18—C19—H19A	119.8 (11)
C7N1N2C16	170 72 (14)	C_{15} C_{10} C_{11} C_{12}	14(2)
C7 N1 N2 C9	2/12(14)	C_{10} C_{10} C_{11} C_{12}	1.7(2)
C = N = N = C	2.42(10)	C_{2}	178.02(13)
$C_0 - C_1 - C_2 - C_3$	1.8 (3)		-0.2 (2)
C1—C2—C3—C4	0.1 (3)	C11—C12—C13—C14	-1.2 (2)
C2—C3—C4—C5	-1.8 (3)	C11—C12—C13—N5	179.18 (14)
C3—C4—C5—C6	1.6 (3)	O1—N5—C13—C14	178.59 (15)
C2-C1-C6-C5	-1.9 (3)	O2—N5—C13—C14	-0.9 (2)
C2-C1-C6-C7	177.49 (16)	O1—N5—C13—C12	-1.8(2)
C4—C5—C6—C1	0.2 (3)	O2—N5—C13—C12	178.73 (14)
C4—C5—C6—C7	-179.20 (16)	C12—C13—C14—C15	1.5 (3)
N2—N1—C7—C6	177.49 (14)	N5-C13-C14-C15	-178.92(15)
N2—N1—C7—C8	-2.15(19)	C13—C14—C15—C10	-0.3(3)
C1-C6-C7-N1	104(2)	$C_{11} - C_{10} - C_{15} - C_{14}$	-1.1(2)
C_{5} C_{6} C_{7} N_{1}	-170.23(16)	C_{10} C_{10} C_{15} C_{14}	-17841(15)
$C_{1} C_{6} C_{7} C_{8}$	170.23(10) 170.01(16)	$C_{17} = N_{12} = C_{16} = N_{14}$	1/0.41(13)
$C_{1} = C_{0} = C_{1} = C_{0}$	1/0.01(10)	C17 = N2 = C16 = N2	1.0(2)
$\bigcup - \bigcup - \bigcup - \bigcup $	9.4 (2)	C17 - IN3 - C10 - IN2	1/8.34 (14)
NI-C/-C8-C9	1.11 (19)	C19—N4—C16—N3	1.4 (2)
C6—C7—C8—C9	-178.52 (15)	C19—N4—C16—N2	-178.54 (14)
C16—N2—C9—C10	68.9 (2)	N1—N2—C16—N3	-178.10 (14)
N1—N2—C9—C10	-123.07 (15)	C9—N2—C16—N3	-11.0 (2)
C16—N2—C9—C8	-169.64 (15)	N1—N2—C16—N4	1.8 (2)

N1—N2—C9—C8	-1.64 (17)	C9—N2—C16—N4	168.92 (14)
C7—C8—C9—N2	0.35 (16)	C16—N3—C17—C18	0.3 (2)
C7—C8—C9—C10	121.86 (15)	N3-C17-C18-C19	1.0 (3)
N2-C9-C10-C11	49.0 (2)	N3-C17-C18-Br1	-177.75 (12)
C8—C9—C10—C11	-65.5 (2)	C16—N4—C19—C18	0.1 (2)
N2-C9-C10-C15	-133.70 (16)	C17—C18—C19—N4	-1.2 (3)
C8—C9—C10—C15	111.76 (18)	Br1-C18-C19-N4	177.53 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C8—H8 <i>B</i> ···O2 ⁱ	0.95 (2)	2.41 (2)	3.352 (2)	176.0 (17)
C11—H11A····N4 ⁱⁱ	0.92 (2)	2.56 (2)	3.431 (2)	160.5 (18)
C19—H19A····O2 ⁱⁱⁱ	0.98 (2)	2.58 (2)	3.412 (3)	143.3 (17)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*.