organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

β-Cyclodextrin 10.41-hydrate

Rüdiger W. Seidel^a* and Bojidarka B. Koleva^b

^aLehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany, and ^bDepartment of Analytical Chemistry, University of Sofia St. Kliment Ohridski, J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria Correspondence e-mail: ruediger.seidel@rub.de

Received 7 November 2009; accepted 16 November 2009

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.004 Å; Hatom completeness 91%; disorder in main residue; R factor = 0.032; wR factor = 0.081; data-to-parameter ratio = 8.1.

The crystal structure of β -cyclodextrin, C₄₂H₇₀O₃₅·10.41H₂O, consists of truncated cone-shaped β -cyclodextrin molecules that are herringbone packed. The primary hydroxy groups form an intramolecular hydrogen-bonded array. The semipolar cavity of the cyclodextrin host is filled with water molecules, which show partial occupancy and disorder.

Related literature

For an overview of cyclodextrin chemistry, see: Atwood *et al.* (1996), Szejtli (1998). For applications of cyclodextrins, see: Del Valle (2004). For previous X-ray crystal structure determinations of various β -cyclodextrin hydrates, see: Hamilton *et al.* (1968); Szejtli & Budai (1977); Lindner & Saenger (1978, 1982); Stezowski & Maclennan (1980); Fujiwara *et al.* (1983); Betzel *et al.* (1984); Steiner & Koellner (1994); Damodharan *et al.* (2004); Kurokawa, *et al.* (2004). For a low temperature single-crystal neutron diffraction study of deutero- β -CD·11D₂O, see Zabel *et al.* (1986). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

C ₄₂ H ₇₀ O ₃₅ ·10.41H ₂ O	
$M_r = 1322.53$	
Monoclinic, $P2_1$	
a = 20.8353 (4) Å	
p = 9.9397 (1) Å	
c = 15.2043 (3) Å	
$\beta = 110.630 \ (2)^{\circ}$	

Data collection

Oxford Diffraction XcaliburTM2 diffractometer Absorption correction: multi-scan (*ABSPACK* in *CrysAlis Pro*; Oxford Diffraction, 2009) $T_{min} = 0.951, T_{max} = 0.963$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.081$ S = 0.997019 reflections 868 parameters 36 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}_{-}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

V = 2946.84 (9) Å³

Mo $K\alpha$ radiation $\mu = 0.14 \text{ mm}^{-1}$

 $0.37 \times 0.33 \times 0.28 \text{ mm}$

40031 measured reflections

7019 independent reflections

6090 reflections with $I > 2\sigma(I)$

Z = 2

T = 110 K

 $R_{\rm int} = 0.026$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
01-H1A···O7	0.84	2.36	3.065 (3)	142
$O2-H2A\cdots O45^{i}$	0.84	2.00	2.809 (3)	161
$O2-H2A\cdots O45'^{i}$	0.84	1.95	2.633 (11)	138
$O5-H5A\cdots O47$	0.84	1.76	2.578 (15)	163
$O5-H5A\cdots O45^{ii}$	0.84	2.46	3.024 (4)	125
$O5' - H5' \cdots O45^{ii}$	0.84	1.66	2.47 (3)	163
O5'-H5'···O45' ⁱⁱ	0.84	2.40	3.20 (3)	159
O6−H6C···O12	0.84	2.04	2.845 (2)	161
O6−H6C···O13	0.84	2.31	2.742 (2)	112
$O7-H7A\cdots O26^{i}$	0.84	2.14	2.956 (3)	165
O11−H11A···O40	0.84	1.78	2.595 (2)	163
$O12-H12C \cdot \cdot \cdot O31^{iii}$	0.84	1.85	2.676 (2)	167
$O15-H15A\cdots O41^{iv}$	0.84	2.04	2.870 (3)	172
$O16-H16A\cdots O38^{v}$	0.84	1.90	2.733 (3)	174
O17−H17A···O11	0.84	2.06	2.889 (2)	171
O20−H20A···O43	0.84	1.93	2.725 (3)	157
O20−H20A···O50	0.84	2.12	2.80 (3)	138
O21−H21A···O27	0.84	1.99	2.810 (2)	167
O21−H21A···O28	0.84	2.36	2.794 (2)	112
O22−H22A···O16	0.84	1.97	2.776 (2)	160
O22−H22A···O23	0.84	2.41	2.821 (2)	111
$O25-H25A\cdots O39^{vi}$	0.84	1.90	2.743 (3)	178
$O26-H26A\cdots O37^{iii}$	0.84	1.83	2.668 (3)	176
$O27 - H27A \cdots O5^{v}$	0.84	2.09	2.821 (3)	145
O30−H30C···O15 ^{vii}	0.84	2.06	2.858 (3)	158
O30−H30C···O14 ^{vii}	0.84	2.37	2.945 (2)	126
O31−H31A···O2	0.84	2.01	2.844 (2)	172
O32−H32A···O26	0.84	2.04	2.871 (2)	170
O35−H35A···O37 ⁱ	0.84	2.08	2.890 (2)	161
$O36-H36\cdots O11^{ii}$	0.84	2.02	2.854 (2)	173
O37−H37A···O6	0.824(17)	2.05(2)	2.837 (2)	160 (3)
$O37 - H37B \cdot \cdot \cdot O32^{viii}$	0.849 (17)	1.910 (18)	2.753 (2)	171 (3)
O38−H38A···O20	0.828 (17)	2.11 (2)	2.865 (3)	152 (3)
$O38-H38B\cdots O30^{ix}$	0.817 (17)	1.857 (18)	2.672 (3)	176 (3)
$O39-H39A\cdots O22^{ii}$	0.856 (18)	1.898 (18)	2.749 (3)	173 (3)
O39−H39 <i>B</i> ···O38	0.861 (18)	2.18 (2)	2.959 (3)	151 (3)
$O40-H40A\cdots O41^{x}$	0.879 (18)	2.21 (3)	2.787 (3)	123 (3)
$O40-H40B\cdots O35^{xi}$	0.869 (18)	1.91 (2)	2.770 (3)	168 (3)
O41−H41A···O20	0.844 (17)	2.134 (18)	2.976 (3)	175 (3)
O41-H41A···O19	0.844 (17)	2.63 (3)	3.048 (2)	112 (3)
O41−H41B···O25	0.840 (18)	1.95 (2)	2.769 (3)	166 (3)
$O42 - H42C \cdots O21^{ii}$	0.852 (18)	2.09 (2)	2,932 (3)	173 (3)

$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O42-H42D···O48	0.805 (18)	1.90 (4)	2.53 (3)	135 (3)
O42-H42D···O39	0.805 (18)	2.34 (3)	3.038 (3)	146 (3)

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z$; (ii) x, y + 1, z; (iii) $-x + 1, y - \frac{1}{2}, -z$; (iv) $-x + 2, y + \frac{1}{2}, -z + 1;$ (v) x, y - 1, z; (vi) $-x + 2, y - \frac{1}{2}, -z;$ (vii) x, y, z - 1; (viii) $x, y, z + 1; (ix) - x + 2, y + \frac{1}{2}, -z; (x) - x + 2, y - \frac{1}{2}, -z + \tilde{1}; (xi) x, y - 1, z + 1.$

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; method used to solve structure: initial coordinates of the β -cyclodextrin scaffold taken from Lindner & Saenger (1982); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Professor William S. Sheldrick is gratefully acknowledged for generous support. BBK would like to thank the Alexander von Humboldt Foundation for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2569).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Atwood, J. L., Davies, J. E. D., MacNicol, D. D. & Vögtle, F. (1996). Comprehensive Supramolecular Chemistry, Vol. 3, 1st ed. Oxford: Pergamon.
- Betzel, C., Saenger, W., Hingerty, B. E. & Brown, G. M. (1984). J. Am. Chem. Soc. 106, 7545-7557
- Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Damodharan, L., Pattabhi, V. & Nagarajan, K. (2004). Mol. Cryst. Liq. Cryst.
- Sci. Technol. Sect. A, 423, 17-35. Del Valle, E. M. M. (2004). Process Biochem. 39, 1033-1046.
- Fujiwara, T., Yamazaki, M., Tomizu, Y., Tokuoka, R., Tomita, K.-I., Matsuo, T., Suga, H. & Saenger, W. (1983). Nippon Kagaku Kaishi (J. Chem. Soc. Jpn), pp. 181-187.
- Hamilton, J. A., Steinrauf, L. K. & Van Etten, R. L. (1968). Acta Cryst. B24, 1560-1562.
- Kurokawa, C., Sekii, M., Ishida, T. & Nogami, T. (2004). Supramol. Chem. 16, 381-384
- Lindner, K. & Saenger, W. (1978). Angew. Chem. Int. Ed. 17, 694-695.
- Lindner, K. & Saenger, W. (1982). Carbohydr. Res. 99, 7-16.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. & Koellner, G. (1994). J. Am. Chem. Soc. 116, 5122-5128.
- Stezowski, J. J. & Maclennan, J. M. (1980). ACA Ser. 2, 7, 24.
- Szejtli, J. (1998). Chem. Rev. 98, 1743-1753.
- Szejtli, J. & Budai, Z. (1977). Acta Chim. Acad. Sci. Hung. 94, 383-390.
- Zabel, V., Saenger, W. & Mason, S. A. (1986). J. Am. Chem. Soc. 108, 3664-3673.

supporting information

Acta Cryst. (2009). E65, o3162-o3163 [doi:10.1107/S160053680904865X]

β-Cyclodextrin 10.41-hydrate

Rüdiger W. Seidel and Bojidarka B. Koleva

S1. Comment

Cyclodextrins are common, widely studied and cheaply available supramolecular hosts (Atwood *et al.*, 1996; Szejtli, 1998) with a variety of applications in the food, cosmetics and pharmaceutical industries (Del Valle, 2004).

β-Cyclodextrin (β-CD) is a cyclic oligosaccharide comprising seven *D*-glucopyranoside units, linked through 1,4glycosidic bonds. The first room temperature crystal structure determination of β-CD dodecahydrate was reported about 40 years ago (Hamilton *et al.*, 1968). A number of room temperature determinations have been reported since (Szejtli & Budai, 1977; Lindner & Saenger, 1978; Lindner & Saenger, 1982; Fujiwara *et al.*, 1983; Betzel *et al.*, 1984; Steiner & Koellner, 1994; Damodharan *et al.*, 2004). A search of the Cambridge Structural Database (CSD; Version 5.3 with September 2009 Updates) (Allen *et al.*, 2002) revealed no low temperature X-ray structure determination of a β-CD hydrate with the exception of those reported by Stezowski & Maclennan (1980) and Kurokawa *et al.* (2004). Those were apparently reported without atomic coordinates and with an *R* factor of 13.0% and without refinement details, respectively. Additionally, a neutron diffraction study of deutero-β-CD 11 D₂O at 120 K was reported by Zabel *et al.* (1986); the refinement of which converged at *R* = 0.049. Herein, we report an X-ray structural study of β-CD 10.41 hydrate at 110 K with *R* = 0.032 in order to provide an improved model of the β-CD host, (I).

Figs 1 and 2 show a displacement ellipsoid plot and an illustration of the molecular structure of the β -CD host, respectively. The shape of the molecule is a truncated cone. The geometric parameters lie within expected ranges. All *D*-glucopyranoside units exhibit the C1 chair conformation. The primary hydroxy groups at the wider end of the torus form an array of intramolecular H bonds with O—H···O contacts in the range of 2.776 (2)–3.065 (3) Å. The estimated volume of the semi-polar cavity of a β -CD host is 262 Å³ (Szejtli, 1998). In (I), the cavity was found to be statistically occupied by approximately 5.41 water molecules. Three of the water positions are each disordered over two positions, while five are considered to be partially occupied (see Refinement). In the vast number of structural studies dealing with β -CD hydrates, different solvent water contents were encountered. The solvent water content depends on the crystallization conditions and the humidity (Steiner & Koellner, 1994). In the crystal structure of (I), the β -CD molecules are arranged in herringbone-packed layers that are stacked along the *c* axis direction (Fig. 3).

S2. Experimental

Crystals of (I) were obtained unintentionally from an aqueous solution of β -cyclodextrin during an attempt to prepare an inclusion compound with an organic dye. A heterogeneous solid of (I) and the dye was obtained instead of the desired inclusion compound when the solvent was allowed to evaporate slowly. The solid was filtered off and dried over P₄O₁₀. A colourless crystal of (I) could be separated for the X-ray analysis.

S3. Refinement

In the absence of significant anomalous scattering effects, 5934 Friedel pairs were merged. Anisotropic displacement parameters were introduced for all non-hydrogen atoms with the exception of O47, O48, O49, O50 and O51, the positions of which are not fully occupied. One of the secondary hydroxy groups of the β -cyclodextrin host was found to be disordered over two positions. The ratio of occupancies of O5 and O5' was refined by means of a free variable and converged at 0.917 (5):0.083 (5). Standard similarity restraints on geometry and displacement parameters as well as rigid bond restraints were applied to the disordered group. The O44, O45 and O46 atoms of the solvent water molecules were each found to be disordered over two positions. The refinement of the occupancies by means of a free variable in each case yielded: 0.903 (5):0.097 (5), 0.803 (6):0.197 (6) and 0.884 (9):0.116 (9) for O44, O45 and O46, respectively. The parts of disordered water oxygen atoms were each refined with equivalent anisotropic displacement parameters. The site occupancy factors of O47, O48, O49, O50 and O51 were allowed to refine freely to yield 0.167 (9), 0.081 (8), 0.061 (8), 0.060 (8) and 0.039 (8), respectively. Four of the calculated intermolecular O···O distances (O43···O50 ca 2.01 Å, O44...O49 ca 1.73 Å, O45...O47 ca 2.29 Å and O46...O51 ca 2.42) indicate that the two positions cannot be occupied simultaneously in each case. The C-bound H atoms were placed at geometrically calculated positions (C-H = 0.99-1.00 Å) and refined with a riding model and with $U_{iso}(H) = 1.2 U_{co}(C)$. The hydroxy- and water-H atoms were localized in difference Fourier syntheses. The hydroxy-H atoms were subsequently refined with O-H = 0.84 Å and constrained tetrahedral C—O—H angles. The O—H bond lengths of the water molecules were restrained to a target value of 0.84 (2) Å. The 1,3-H,H distances of the water molecules were restrained to be similar with an effective standard deviation of 0.04 Å. The hydroxy- and water-H atoms were refined with $U_{iso}(H) = 1.2 U_{eq}(O)$. The positions for some of the H atoms in some of the water molecules could not be determined reliably and were therefore excluded from the refinement.

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Positions of disordered O atoms with minor occupancy and those not fully occupied are drawn as empty ellipsoids. Hydrogen atoms are omitted for clarity.

Figure 2

Molecular Structure of the β -cyclodextrin host in (I). H bonds are represented by dashed lines. H atoms attached to carbon are omitted for clarity.

Figure 3

View of the crystal structure of (I) viewed down the *c* axis, showing the herringbone packing of the β -cyclodextrin molecules. H atoms and water molecules are omitted for clarity.

β-cyclodextrin 10.41-hydrate

Crystal data
C42H70O35·10.41H2O
$M_r = 1322.53$
Monoclinic, $P2_1$
Hall symbol: P 2yb
a = 20.8353 (4) Å
b = 9.9397 (1) Å
c = 15.2043 (3) Å
$\beta = 110.630 (2)^{\circ}$
V = 2946.84 (9) Å ³
Z=2

F(000) = 1412 $D_x = 1.490 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 20832 reflections $\theta = 2.7-28.1^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 110 KPrism, colourless $0.37 \times 0.33 \times 0.28 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.4171 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (ABSPACK in <i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$T_{\min} = 0.951, T_{\max} = 0.963$ 40031 measured reflections 7019 independent reflections 6090 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.9^{\circ}$ $h = -26 \rightarrow 26$ $k = -12 \rightarrow 12$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $P[F^2 > 2\sigma(F^2)] = 0.022$	Secondary atom site location: difference Fourier map
$\frac{R[F > 20(F)] - 0.052}{wR(F^2) = 0.081}$	neighbouring sites
S = 0.99 7019 reflections 868 parameters 36 restraints Primary atom site location: the initial coordinates of the β -cyclodextrin scaffold were taken from Lindner & Saenger (1982)	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0578P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{max} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.43109 (9)	0.4795 (2)	0.06964 (12)	0.0237 (4)	
H1A	0.4451	0.4043	0.0941	0.028*	
O2	0.41763 (9)	0.4374 (2)	-0.12954 (12)	0.0238 (4)	
H2A	0.3885	0.3942	-0.1142	0.029*	
O3	0.54177 (8)	0.39543 (17)	-0.15508 (11)	0.0154 (3)	
O4	0.59435 (9)	0.59993 (18)	0.05896 (11)	0.0207 (4)	
O5	0.64406 (13)	0.6978 (2)	-0.07616 (17)	0.0368 (7)	0.917 (5)
H5A	0.6758	0.7505	-0.0465	0.044*	0.917 (5)
C6	0.65945 (15)	0.5684 (3)	-0.03927 (19)	0.0294 (6)	0.917 (5)
H6A	0.7026	0.5711	0.0158	0.035*	0.917 (5)
H6B	0.6669	0.5091	-0.0871	0.035*	0.917 (5)
O5′	0.7150 (11)	0.620 (3)	0.0298 (15)	0.040 (5)	0.083 (5)
H5′	0.7025	0.6822	0.0573	0.059*	0.083 (5)
C6′	0.65945 (15)	0.5684 (3)	-0.03927 (19)	0.0294 (6)	0.083 (5)
H6A′	0.6756	0.4974	-0.0722	0.035*	0.083 (5)

H6B′	0.6391	0.6408	-0.0854	0.035*	0.083 (5)
O6	0.58391 (8)	0.16416 (19)	0.41646 (12)	0.0189 (4)	
H6C	0.6091	0.1016	0.4102	0.023*	
O7	0.49901 (9)	0.3003 (2)	0.24149 (13)	0.0260 (4)	
H7A	0.4845	0.3179	0.2853	0.031*	
08	0.57078 (8)	0.42611 (17)	0.14463 (11)	0.0157 (3)	
O9	0.70256 (8)	0.41357 (17)	0.38138 (11)	0.0166 (4)	
011	0.77159 (9)	-0.27659 (17)	0.45930 (12)	0.0177 (4)	
H11A	0.7667	-0.3267	0.5010	0.021*	
O12	0.66776 (8)	-0.06812 (18)	0.43729 (12)	0.0178 (4)	
H12C	0.6448	-0.1177	0.3926	0.021*	
O13	0.70736 (8)	0.18126 (17)	0.39046 (11)	0.0146 (3)	
O14	0.87332 (8)	0.03010 (17)	0.53239 (11)	0.0152 (3)	
O15	0.84497 (9)	0.26449 (19)	0.60728 (12)	0.0232 (4)	
H15A	0.8597	0.3377	0.6346	0.028*	
O16	0.92260 (9)	-0.49406 (17)	0.26437 (12)	0.0186 (4)	
H16A	0.9550	-0.5406	0.2600	0.022*	
017	0.87877 (8)	-0.40676 (18)	0.41115 (11)	0.0179 (4)	
H17A	0.8453	-0.3770	0.4238	0.022*	
O18	0.86032 (8)	-0.11803 (17)	0.40904 (11)	0.0139 (3)	
O19	0.99620 (8)	-0.15637 (17)	0.31140 (11)	0.0154 (3)	
O20	0.99809 (10)	0.12933 (19)	0.33502 (15)	0.0297 (4)	
H20A	0.9622	0.1707	0.3035	0.045*	
O21	0.79734 (9)	-0.43799 (18)	-0.12551 (11)	0.0195 (4)	
H21A	0.7657	-0.3839	-0.1532	0.023*	
O22	0.85197 (9)	-0.47175 (18)	0.07245 (12)	0.0198 (4)	
H22A	0.8666	-0.4645	0.1313	0.024*	
O23	0.91264 (8)	-0.24262 (17)	0.17883 (11)	0.0150 (3)	
O24	0.91996 (8)	-0.15919 (18)	-0.05281 (11)	0.0175 (4)	
O25	1.04195 (9)	-0.1142 (2)	0.11668 (12)	0.0235 (4)	
H25A	1.0516	-0.1317	0.0687	0.028*	
O26	0.57670 (8)	-0.12304 (18)	-0.36578 (12)	0.0212 (4)	
H26A	0.5657	-0.1960	-0.3951	0.025*	
O27	0.68202 (9)	-0.29122 (18)	-0.23675 (13)	0.0230 (4)	
H27A	0.6554	-0.3069	-0.2073	0.035*	
O28	0.80158 (8)	-0.15711 (17)	-0.12746 (11)	0.0147 (3)	
O29	0.73057 (8)	0.07842 (18)	-0.32427 (11)	0.0159 (3)	
O30	0.87316 (9)	0.0327 (2)	-0.27399 (13)	0.0238 (4)	
H30C	0.8677	0.0859	-0.3190	0.036 (9)*	
O31	0.42147 (8)	0.30039 (18)	-0.29183 (12)	0.0194 (4)	
H31A	0.4242	0.3384	-0.2413	0.023*	
O32	0.48828 (8)	0.09599 (17)	-0.36044 (11)	0.0174 (3)	
H32A	0.5137	0.0286	-0.3554	0.021*	
O33	0.63304 (8)	0.11283 (16)	-0.28602 (11)	0.0137 (3)	
O34	0.58413 (8)	0.46343 (16)	-0.27119 (11)	0.0153 (3)	
O35	0.65236 (8)	0.44776 (18)	-0.39480 (11)	0.0178 (4)	
H35A	0.6216	0.5041	-0.3976	0.021*	
O36	0.70072 (9)	0.65475 (19)	0.26713 (13)	0.0251 (4)	

110 (0.5100	0.6717	0.00.00	0.000
H36	0.7188	0.6715	0.3248	0.030*
C1	0.54900 (12)	0.5510 (3)	0.10087 (16)	0.0164 (5)
H1	0.5462	0.6171	0.1489	0.020*
C2	0.47733 (12)	0.5308 (3)	0.02720 (16)	0.0170 (5)
H2	0.4599	0.6208	-0.0002	0.020*
C3	0.48101 (11)	0.4415 (3)	-0.05196 (15)	0.0163 (5)
Н3	0.4935	0.3481	-0.0274	0.020*
C4	0.53467 (12)	0.4933 (2)	-0.08968 (16)	0.0162 (5)
H4	0.5197	0.5815	-0.1221	0.019*
C5	0.60351 (12)	0.5095 (3)	-0.00976(16)	0.0181 (5)
H5	0.6187	0.4199	0.0202	0.022*
C7	0 68164 (12)	0.2994(2)	0 41849 (16)	0.0161 (5)
H7	0.6998	0.3052	0 4886	0.019*
C8	0.0990 0.60300(12)	0.3032 0.2877 (3)	0.38360 (16)	0.0159 (5)
H8	0.5850	0.3637	0.4113	0.019*
C9	0.57234(12)	0.2008 (3)	0.7710 (16)	0.019
	0.57234 (12)	0.2998 (3)	0.27719(10)	0.0100 (3)
П9 С10	0.3070	0.2200	0.2499	0.019^{-1}
C10	0.00044(12)	0.4234 (3)	0.24349 (13)	0.0137(3)
HI0	0.5800	0.5080	0.2719	0.019*
	0.67885 (12)	0.4133 (3)	0.28019 (16)	0.0164 (5)
HII	0.6908	0.3246	0.2590	0.020*
C12	0.71698 (13)	0.5221 (3)	0.24961 (18)	0.0209 (5)
H12A	0.7668	0.5079	0.2822	0.025*
H12B	0.7073	0.5122	0.1813	0.025*
C13	0.85802 (12)	-0.1031 (2)	0.49974 (16)	0.0142 (5)
H13	0.8922	-0.1654	0.5436	0.017*
C14	0.78611 (12)	-0.1431 (2)	0.49470 (16)	0.0151 (5)
H14	0.7839	-0.1397	0.5593	0.018*
C15	0.73386 (11)	-0.0454 (2)	0.43193 (16)	0.0142 (5)
H15	0.7313	-0.0574	0.3655	0.017*
C16	0.75377 (11)	0.0987 (2)	0.46217 (16)	0.0140 (5)
H16	0.7475	0.1162	0.5234	0.017*
C17	0.82787 (12)	0.1293 (2)	0.47187 (16)	0.0142 (5)
H17	0.8322	0.1264	0.4084	0.017*
C18	0.85261 (13)	0.2635 (3)	0.51694 (17)	0.0188 (5)
H18A	0.9013	0.2770	0.5244	0.023*
H18B	0.8253	0.3369	0.4772	0.023*
C19	0.97083(12)	-0.2731(2)	0.25883(16)	0.0146(5)
H19	1 0073	-0.3129	0.2382	0.0118
C20	0.94960 (12)	-0.3762(2)	0.2382	0.0152(5)
H20	0.94900 (12)	-0.4010	0.3740	0.0192 (5)
C21	0.9903	-0.2156(2)	0.5749 0.25012 (15)	0.013
U21	0.85310 (11)	-0.3130(2)	0.33013 (13)	0.0138 (3)
П21 С22	0.0330	-0.3000	0.2930	0.017°
022	0.91912 (11)	-0.1011(2)	0.39004 (13)	0.0129(3)
П22 С22	0.9331	-0.1901	0.4020	0.0120 (7)
023	0.94635 (11)	-0.0876 (2)	0.34095 (16)	0.0139 (5)
H23	0.9074	-0.0573	0.2842	0.01/*
C24	0.98264 (13)	0.0341 (3)	0.39539 (18)	0.0198 (5)

11244	0.0522	0.0772	0.42(1	0.024*
H24A	0.9532	0.0773	0.4201	0.024*
H24B	1.0257	0.0054	0.4451	0.024*
C25	0.86255 (12)	-0.2313 (2)	-0.11112 (16)	0.0152 (5)
H25	0.8683	-0.2489	-0.1727	0.018*
C26	0.85543 (12)	-0.3653 (2)	-0.06681 (16)	0.0162 (5)
H26	0.8971	-0.4200	-0.0604	0.019*
C27	0.85369 (12)	-0.3433 (2)	0.03141 (16)	0.0150 (5)
H27	0.8115	-0.2916	0.0270	0.018*
C28	0.91664 (12)	-0.2633(2)	0.08818 (16)	0.0143 (5)
H28	0.9589	-0.3157	0.0942	0.017*
C29	0.91743 (12)	-0.1305(3)	0.03929 (16)	0.0166 (5)
H29	0.8745	-0.0795	0.0321	0.020*
C30	0.0719	-0.0434(3)	0.08004 (18)	0.020
	0.97900 (12)	0.0434 (3)	0.03994 (18)	0.0200 (3)
1130A	0.9807	0.0325	0.0405	0.025*
H30B	0.9734	-0.0030	0.1408	0.023
C31	0.66024 (11)	0.0500 (2)	-0.34856 (16)	0.014/(5)
H31	0.6349	0.0818	-0.4141	0.018*
C32	0.64881 (12)	-0.1005 (3)	-0.34219 (16)	0.0163 (5)
H32	0.6648	-0.1489	-0.3883	0.020*
C33	0.68954 (12)	-0.1496 (2)	-0.24365 (16)	0.0156 (5)
H33	0.6725	-0.1033	-0.1977	0.019*
C34	0.76454 (12)	-0.1134 (2)	-0.22174 (15)	0.0135 (5)
H34	0.7824	-0.1603	-0.2666	0.016*
C35	0.77121 (11)	0.0386 (2)	-0.22966 (16)	0.0148 (5)
H35	0.7525	0.0837	-0.1850	0.018*
C36	0.84314 (12)	0.0888(3)	-0.21093(17)	0.0185 (5)
H36A	0.8422	0 1881	-0.2169	0.022*
H36B	0.8721	0.0659	-0.1456	0.022*
C37	0.5721 0.52490 (12)	0.0039 0.4371(2)	-0.24926(15)	0.022
U37	0.32490 (12)	0.4371 (2)	-0.2508	0.017+(3)
П37 С29	0.4904	0.3200	-0.2396	0.017°
C38	0.48255 (11)	0.3247 (2)	-0.31085 (16)	0.0145 (5)
H38	0.4692	0.3534	-0.3780	0.01/*
C39	0.52559 (12)	0.1989 (2)	-0.297/1 (16)	0.0139 (5)
H39	0.5379	0.1666	-0.2315	0.017*
C40	0.59077 (11)	0.2293 (2)	-0.31679 (16)	0.0125 (4)
H40	0.5799	0.2433	-0.3856	0.015*
C41	0.62916 (12)	0.3508 (2)	-0.26224 (16)	0.0138 (5)
H41	0.6515	0.3266	-0.1944	0.017*
C42	0.68285 (12)	0.3999 (2)	-0.30030 (16)	0.0157 (5)
H42A	0.7096	0.4734	-0.2599	0.019*
H42B	0.7149	0.3255	-0.2986	0.019*
O37	0.45907 (9)	0.13938 (19)	0.45062 (12)	0.0208 (4)
H37A	0.4952 (11)	0.126 (3)	0.4413 (19)	0.025*
H37B	0 4700 (14)	0 134 (3)	0 5099 (13)	0.025*
038	1 02376 (10)	0.3565(2)	0.23620 (13)	0.0248 (4)
H38A	1.02370 (10)	0.3303(2)	0.23020(13)	0.0240(4)
1130A 1120D	1.0511(13) 1.0561(13)	0.270(2)	0.2/1(2)	0.030*
ПЭ0D	1.0301(13)	0.409(3)	0.230(2)	0.0300
039	0.92858 (10)	0.3215 (2)	0.04040 (14)	0.0299 (4)

H39A	0.9075 (15)	0.387 (3)	0.055 (2)	0.036*	
H39B	0.9646 (12)	0.311 (3)	0.0898 (17)	0.036*	
O40	0.75974 (10)	-0.3861 (2)	0.60776 (14)	0.0293 (4)	
H40A	0.7851 (14)	-0.456 (3)	0.607 (2)	0.035*	
H40B	0.7227 (11)	-0.433 (3)	0.599 (2)	0.035*	
O41	1.11226 (10)	0.0083 (2)	0.28708 (14)	0.0282 (4)	
H41A	1.0788 (13)	0.038 (3)	0.300 (2)	0.034*	
H41B	1.0977 (15)	-0.029 (3)	0.2341 (16)	0.034*	
O42	0.77658 (12)	0.2871 (2)	-0.07080 (17)	0.0400 (5)	
H42C	0.7787 (17)	0.367 (2)	-0.090 (2)	0.048*	
H42D	0.8137 (12)	0.263 (4)	-0.036 (2)	0.048*	
O43	0.87096 (13)	0.2433 (3)	0.2749 (2)	0.0585 (7)	
O44	0.74718 (14)	0.1038 (3)	0.1869 (2)	0.0523 (8)	0.903 (5)
O44′	0.7000 (14)	0.109 (3)	0.1997 (19)	0.0523 (8)	0.097 (5)
O45	0.70193 (13)	-0.1792 (3)	0.1178 (2)	0.0287 (7)	0.803 (6)
O45′	0.7106 (6)	-0.1310 (13)	0.1604 (9)	0.0287 (7)	0.197 (6)
O46	0.68237 (15)	0.1660 (4)	0.0002 (3)	0.0502 (11)	0.884 (9)
O46′	0.6883 (13)	0.103 (3)	-0.033 (2)	0.0502 (11)	0.116 (9)
O47	0.7268 (7)	0.8957 (15)	-0.0091 (10)	0.044 (5)*	0.167 (9)
O48	0.8452 (15)	0.143 (3)	0.068 (2)	0.043 (11)*	0.081 (8)
O49	0.7843 (16)	0.013 (3)	0.120 (2)	0.030 (12)*	0.062 (8)
O50	0.8898 (15)	0.167 (3)	0.164 (2)	0.022 (11)*	0.060 (8)
O51	0.744 (3)	0.337 (5)	0.111 (3)	0.029 (18)*	0.039 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0206 (9)	0.0320 (11)	0.0213 (9)	0.0035 (8)	0.0110 (8)	-0.0001 (8)
O2	0.0146 (8)	0.0375 (11)	0.0167 (9)	0.0022 (8)	0.0023 (7)	-0.0030 (8)
03	0.0204 (8)	0.0150 (8)	0.0118 (7)	0.0038 (7)	0.0069 (6)	0.0017 (6)
O4	0.0256 (9)	0.0228 (9)	0.0144 (8)	-0.0058 (8)	0.0081 (7)	-0.0017 (7)
05	0.0467 (15)	0.0275 (13)	0.0468 (15)	-0.0080 (11)	0.0296 (12)	0.0026 (11)
C6	0.0291 (15)	0.0368 (16)	0.0245 (14)	-0.0102 (13)	0.0123 (12)	-0.0028 (12)
O5′	0.027 (8)	0.047 (9)	0.041 (9)	-0.010 (8)	0.007 (7)	0.001 (8)
C6′	0.0291 (15)	0.0368 (16)	0.0245 (14)	-0.0102 (13)	0.0123 (12)	-0.0028 (12)
06	0.0178 (8)	0.0206 (9)	0.0211 (9)	0.0032 (7)	0.0105 (7)	0.0046 (7)
O7	0.0140 (8)	0.0407 (11)	0.0233 (9)	0.0001 (8)	0.0064 (7)	0.0040 (8)
08	0.0183 (8)	0.0170 (8)	0.0108 (8)	0.0007 (7)	0.0040 (6)	-0.0001 (7)
09	0.0181 (8)	0.0151 (8)	0.0139 (8)	-0.0009 (7)	0.0022 (7)	-0.0002 (7)
011	0.0233 (9)	0.0139 (8)	0.0186 (9)	-0.0024 (7)	0.0108 (7)	0.0014 (7)
O12	0.0117 (8)	0.0208 (9)	0.0222 (9)	-0.0050 (7)	0.0076 (7)	-0.0038 (7)
013	0.0135 (8)	0.0162 (8)	0.0116 (7)	0.0030 (7)	0.0014 (6)	0.0004 (6)
O14	0.0124 (8)	0.0178 (8)	0.0135 (8)	0.0002 (7)	0.0022 (6)	0.0000 (7)
015	0.0275 (10)	0.0203 (9)	0.0218 (9)	-0.0042 (8)	0.0087 (8)	-0.0072 (7)
016	0.0202 (9)	0.0157 (8)	0.0190 (8)	0.0029 (7)	0.0059 (7)	-0.0017 (7)
O17	0.0179 (8)	0.0180 (9)	0.0205 (8)	0.0006 (7)	0.0099 (7)	0.0040 (7)
O18	0.0115 (8)	0.0187 (9)	0.0121 (7)	0.0017 (7)	0.0048 (6)	0.0017 (6)
019	0.0112 (8)	0.0188 (8)	0.0176 (8)	-0.0009 (7)	0.0068 (6)	-0.0027 (7)

O20	0.0291 (10)	0.0207 (10)	0.0408 (11)	-0.0065 (8)	0.0140 (9)	0.0032 (8)
O21	0.0190 (9)	0.0173 (9)	0.0159 (8)	0.0014 (7)	-0.0016 (7)	-0.0001 (7)
O22	0.0260 (9)	0.0171 (9)	0.0135 (8)	-0.0046 (8)	0.0034 (7)	0.0003 (7)
O23	0.0124 (8)	0.0206 (9)	0.0113 (8)	0.0028 (7)	0.0032 (6)	-0.0001 (7)
O24	0.0137 (8)	0.0253 (9)	0.0125 (8)	-0.0029 (7)	0.0032 (6)	0.0035 (7)
O25	0.0164 (8)	0.0309 (11)	0.0211 (9)	-0.0048 (8)	0.0040 (7)	0.0014 (8)
O26	0.0126 (8)	0.0187 (9)	0.0267 (9)	-0.0005 (7)	0.0002 (7)	-0.0049 (7)
O27	0.0184 (9)	0.0159 (9)	0.0314 (10)	-0.0015 (7)	0.0047 (8)	0.0052 (8)
O28	0.0140 (8)	0.0190 (8)	0.0108 (7)	0.0036 (7)	0.0043 (6)	0.0025 (6)
O29	0.0122 (8)	0.0206 (9)	0.0151 (8)	0.0015 (7)	0.0048 (6)	0.0050 (7)
O30	0.0195 (9)	0.0308 (11)	0.0241 (9)	0.0047 (8)	0.0115 (7)	0.0090 (8)
O31	0.0135 (8)	0.0268 (10)	0.0194 (8)	0.0015 (7)	0.0075 (7)	-0.0013 (7)
O32	0.0146 (8)	0.0156 (8)	0.0216 (8)	-0.0011 (7)	0.0058 (7)	-0.0012(7)
033	0.0156 (8)	0.0132 (8)	0.0130 (8)	0.0046 (7)	0.0059 (6)	0.0029 (6)
034	0.0174 (8)	0.0130 (8)	0.0177 (8)	0.0011 (7)	0.0091 (7)	0.0014 (7)
035	0.0177 (8)	0.0200 (9)	0.0171 (8)	0.0030 (7)	0.0077 (7)	0.0030(7)
036	0.0263(10)	0.0200(3)	0.0235(9)	-0.0020(8)	0.0039(8)	0.0030(7)
C1	0.0205(10)	0.0211(10) 0.0173(12)	0.0235(3)	-0.0020(0)	0.0086 (9)	-0.0013(9)
C^2	0.0203(12) 0.0204(12)	0.0170(12)	0.0150(11) 0.0155(11)	0.0000 (10)	0.0000(0)	-0.0013(9)
C3	0.0201(12)	0.0170(12) 0.0195(12)	0.0125(11) 0.0124(11)	0.0029(10) 0.0032(10)	0.0023 (9)	-0.0003(9)
C4	0.0101(11) 0.0202(12)	0.0199(12) 0.0149(12)	0.0124(11) 0.0140(11)	0.0032(10) 0.0035(10)	0.0025(9)	0.0003(9)
C5	0.0202(12)	0.0145(12) 0.0225(13)	0.0140(11) 0.0134(11)	-0.0017(10)	0.0005(9)	-0.0005(9)
C7	0.0190(12) 0.0167(11)	0.0225(13) 0.0175(12)	0.0134(11) 0.0125(11)	0.0017(10)	0.0070(10)	-0.0010(10)
C8	0.0107(11)	0.0175(12)	0.0123(11) 0.0153(11)	0.0009(10)	0.0051(9)	0.0011(9)
	0.0149(11) 0.0123(11)	0.0175(12) 0.0217(12)	0.0133(11) 0.0142(11)	0.0032(10)	0.0034(9)	-0.0013(9)
C9	0.0123(11) 0.0154(11)	0.0217(12)	0.0142(11)	0.0007(10)	0.0049(9)	-0.0013(10)
C10 C11	0.0134(11)	0.0199(12)	0.0108(11)	-0.0011(10)	0.0035(9)	-0.0008(9)
	0.0140(11)	0.0164(12)	0.0147(11) 0.0175(12)	-0.0011(10)	0.0033(9)	-0.0022(9)
C12	0.0100(12)	0.0268(14)	0.0175(12)	-0.0034(11)	0.0032(10)	0.0008(10)
C13	0.0139(11)	0.01/8(12)	0.0110(10)	0.0023 (9)	0.0045 (9)	0.0003 (9)
C14	0.0166 (11)	0.0160 (11)	0.0144 (11)	-0.0012 (9)	0.0075 (9)	0.0000 (9)
	0.0104 (10)	0.0190 (12)	0.0139 (11)	-0.0009 (9)	0.0053 (9)	0.0007 (9)
C16	0.0119 (11)	0.0163 (12)	0.0130 (10)	0.0001 (9)	0.0036 (8)	0.0017 (9)
CI7	0.0130 (11)	0.0169 (12)	0.0120 (10)	0.0005 (9)	0.0037 (9)	0.0012 (9)
C18	0.0182 (12)	0.0176 (12)	0.0194 (12)	-0.0037 (10)	0.0051 (10)	-0.0018 (10)
C19	0.0115 (11)	0.0177 (12)	0.0135 (11)	0.0015 (9)	0.0030 (9)	-0.0014 (9)
C20	0.0150 (11)	0.0159 (12)	0.0130 (11)	0.0016 (9)	0.0029 (9)	0.0000 (9)
C21	0.0121 (10)	0.0164 (12)	0.0123 (10)	-0.0004 (9)	0.0036 (9)	0.0019 (9)
C22	0.0093 (10)	0.0162 (12)	0.0127 (10)	0.0020 (9)	0.0030 (8)	0.0001 (9)
C23	0.0114 (10)	0.0157 (11)	0.0155 (11)	-0.0005 (9)	0.0058 (9)	-0.0011 (9)
C24	0.0168 (12)	0.0188 (12)	0.0252 (13)	-0.0043 (10)	0.0093 (10)	-0.0028 (10)
C25	0.0127 (11)	0.0206 (13)	0.0125 (11)	0.0006 (9)	0.0045 (9)	0.0015 (9)
C26	0.0160 (11)	0.0164 (12)	0.0144 (11)	0.0030 (9)	0.0031 (9)	-0.0005 (9)
C27	0.0157 (11)	0.0140 (11)	0.0148 (11)	-0.0001 (9)	0.0049 (9)	0.0007 (9)
C28	0.0137 (11)	0.0166 (11)	0.0129 (11)	0.0001 (9)	0.0049 (9)	-0.0015 (9)
C29	0.0157 (12)	0.0186 (12)	0.0144 (11)	-0.0010 (10)	0.0040 (9)	0.0000 (9)
C30	0.0198 (12)	0.0188 (13)	0.0212 (12)	-0.0037 (10)	0.0046 (10)	0.0033 (10)
C31	0.0124 (11)	0.0181 (12)	0.0135 (11)	0.0039 (9)	0.0045 (9)	0.0000 (9)
C32	0.0118 (11)	0.0179 (12)	0.0171 (11)	0.0010 (9)	0.0023 (9)	-0.0025 (10)

C33	0.0173 (12)	0.0120 (11)	0.0177 (11)	-0.0014 (9)	0.0065 (9)	0.0006 (9)
C34	0.0143 (11)	0.0163 (12)	0.0099 (10)	0.0020 (9)	0.0041 (8)	0.0015 (9)
C35	0.0139 (11)	0.0160 (12)	0.0137 (11)	0.0028 (9)	0.0039 (9)	0.0018 (9)
C36	0.0173 (12)	0.0161 (12)	0.0207 (12)	-0.0007 (10)	0.0051 (9)	0.0033 (10)
C37	0.0154 (11)	0.0177 (12)	0.0123 (10)	0.0048 (9)	0.0076 (9)	0.0036 (9)
C38	0.0107 (11)	0.0201 (12)	0.0135 (11)	0.0022 (9)	0.0053 (9)	0.0031 (9)
C39	0.0138 (11)	0.0143 (11)	0.0124 (10)	-0.0004 (9)	0.0033 (9)	0.0006 (9)
C40	0.0120 (11)	0.0121 (11)	0.0141 (11)	0.0028 (9)	0.0053 (9)	0.0025 (9)
C41	0.0153 (11)	0.0132 (11)	0.0118 (10)	0.0019 (9)	0.0035 (9)	0.0011 (9)
C42	0.0157 (11)	0.0137 (11)	0.0163 (11)	-0.0007 (9)	0.0039 (9)	-0.0001 (9)
O37	0.0183 (9)	0.0247 (10)	0.0182 (9)	0.0013 (8)	0.0051 (7)	-0.0002 (7)
O38	0.0228 (10)	0.0224 (10)	0.0311 (11)	-0.0006 (8)	0.0118 (8)	0.0028 (8)
O39	0.0258 (10)	0.0335 (12)	0.0287 (10)	0.0057 (9)	0.0074 (8)	-0.0002 (9)
O40	0.0235 (10)	0.0296 (11)	0.0358 (11)	-0.0020 (9)	0.0115 (9)	0.0132 (9)
O41	0.0213 (10)	0.0391 (12)	0.0237 (10)	-0.0036 (9)	0.0074 (8)	-0.0022 (9)
O42	0.0337 (12)	0.0314 (12)	0.0432 (13)	-0.0093 (10)	-0.0011 (10)	0.0006 (11)
O43	0.0398 (14)	0.0378 (14)	0.094 (2)	-0.0030 (11)	0.0194 (14)	0.0242 (14)
O44	0.0400 (16)	0.0510 (17)	0.0615 (18)	-0.0047 (14)	0.0123 (13)	-0.0022 (14)
O44′	0.0400 (16)	0.0510 (17)	0.0615 (18)	-0.0047 (14)	0.0123 (13)	-0.0022 (14)
O45	0.0278 (12)	0.0282 (16)	0.0290 (16)	-0.0001 (11)	0.0088 (12)	0.0024 (12)
O45′	0.0278 (12)	0.0282 (16)	0.0290 (16)	-0.0001 (11)	0.0088 (12)	0.0024 (12)
O46	0.0424 (15)	0.046 (2)	0.055 (2)	-0.0070 (15)	0.0087 (14)	0.0050 (17)
O46′	0.0424 (15)	0.046 (2)	0.055 (2)	-0.0070 (15)	0.0087 (14)	0.0050 (17)

Geometric parameters (Å, °)

01—C2	1.429 (3)	C8—H8	1.0000
O1—H1A	0.8400	C9—C10	1.527 (3)
O2—C3	1.428 (3)	С9—Н9	1.0000
O2—H2A	0.8400	C10-C11	1.534 (3)
O3—C37	1.411 (3)	C10—H10	1.0000
O3—C4	1.436 (3)	C11—C12	1.509 (3)
O4—C1	1.400 (3)	C11—H11	1.0000
O4—C5	1.441 (3)	C12—H12A	0.9900
O5—C6	1.395 (4)	C12—H12B	0.9900
O5—H5A	0.8400	C13—C14	1.526 (3)
C6—C5	1.507 (4)	C13—H13	1.0000
С6—Н6А	0.9900	C14—C15	1.519 (3)
С6—Н6В	0.9900	C14—H14	1.0000
O5'—H5'	0.8400	C15—C16	1.517 (3)
O6—C8	1.433 (3)	C15—H15	1.0000
O6—H6C	0.8400	C16—C17	1.529 (3)
О7—С9	1.430 (3)	C16—H16	1.0000
O7—H7A	0.8400	C17—C18	1.506 (3)
O8—C1	1.406 (3)	C17—H17	1.0000
O8—C10	1.437 (3)	C18—H18A	0.9900
O9—C7	1.403 (3)	C18—H18B	0.9900
O9—C11	1.441 (3)	C19—C20	1.536 (3)

O11—C14	1.424 (3)	С19—Н19	1.0000
O11—H11A	0.8400	C20—C21	1.505 (3)
O12—C15	1.426 (3)	С20—Н20	1.0000
O12—H12C	0.8400	C21—C22	1.525 (3)
Q13—C7	1,417 (3)	C21—H21	1.0000
013 - C16	1 433 (3)	C^{22} C^{23}	1.520 (3)
014 $C13$	1.435(3)	$\begin{array}{c} C22 \\ C22 \\ H22 \end{array}$	1.0000
014 017	1.410(3)	C22—1122	1.0000
	1.449 (3)	C23—C24	1.310 (3)
015	1.437 (3)	C23—H23	1.0000
O15—H15A	0.8400	C24—H24A	0.9900
O16—C20	1.429 (3)	C24—H24B	0.9900
O16—H16A	0.8400	C25—C26	1.523 (3)
O17—C21	1.421 (3)	С25—Н25	1.0000
O17—H17A	0.8400	C26—C27	1.522 (3)
O18—C13	1.405 (3)	C26—H26	1.0000
O18—C22	1.432 (3)	C27—C28	1.517 (3)
019 - C19	1402(3)	C27_H27	1,0000
019 - 023	1.402(3)	C_2 C_2 C_2	1.0000
019-025	1.441(3)	$C_{20} = C_{20}$	1.518 (5)
020-024	1.432 (3)	C28—H28	1.0000
O20—H20A	0.8400	C29—C30	1.515 (3)
O21—C26	1.422 (3)	С29—Н29	1.0000
O21—H21A	0.8400	С30—Н30А	0.9900
O22—C27	1.427 (3)	С30—Н30В	0.9900
O22—H22A	0.8400	C31—C32	1.524 (4)
O23—C19	1.415 (3)	C31—H31	1.0000
O23—C28	1.425 (3)	C32—C33	1.519 (3)
O24—C25	1.408 (3)	C32—H32	1.0000
024-C29	1.448(3)	C_{33} C_{34}	1 522 (3)
$024 \ 025 \ 030$	1.446(3) 1.415(3)	C33 H33	1.0000
025 1125 4	0.8400	C34 C25	1.0000
025—H25A	0.8400	C34—C33	1.320 (3)
026-032	1.434 (3)	C34—H34	1.0000
O26—H26A	0.8400	C35—C36	1.508 (3)
O27—C33	1.424 (3)	С35—Н35	1.0000
O27—H27A	0.8400	С36—Н36А	0.9900
O28—C25	1.413 (3)	С36—Н36В	0.9900
O28—C34	1.435 (3)	C37—C38	1.524 (3)
O29—C31	1.408 (3)	С37—Н37	1.0000
O29—C35	1.444 (3)	C38—C39	1.510 (3)
O30-C36	1430(3)	C38—H38	1 0000
030—H30C	0.8400	C_{39} $-C_{40}$	1 516 (3)
O_{21} O_{28}	1 422 (3)	C_{20} H_{20}	1.0000
021 1121 A	0.8400	C40 C41	1.0000
031—II31A	0.0400	C40 - C41	1.323 (3)
032-039	1.428 (3)	C40—H40	1.0000
032—H32A	0.8400	C41—C42	1.510(3)
O33—C31	1.412 (3)	C41—H41	1.0000
O33—C40	1.430 (3)	C42—H42A	0.9900
O34—C37	1.411 (3)	C42—H42B	0.9900
O34—C41	1.436 (3)	O37—H37A	0.824 (17)

1.432 (3)	O37—H37B	0.849 (17)
0.8400	O38—H38A	0.828 (17)
1.410 (3)	O38—H38B	0.817 (17)
0.8400	O39—H39A	0.856 (18)
1.532 (3)	O39—H39B	0.861 (18)
1.0000	O40—H40A	0.879 (18)
1.519 (3)	O40—H40B	0.869 (18)
1.0000	O41—H41A	0.844 (17)
1 515 (3)	O41—H41B	0.840(18)
1.0000	O42—H42C	0.852(18)
1.527 (3)	O42—H42D	0.802(18)
1.0000	042 - 044'	1.07(3)
1.0000	044-049	1.07(3) 1.73(3)
1.539 (3)	045-045'	0.774(13)
1.0000	045 - 045'	0.774(13)
1.501 (3)	$O_{40} = O_{40}$	1.46(4)
1.521 (5)	048-050	1.40 (4)
109.5	O23—C19—H19	109.3
109.5	C_{20} C_{19} H_{19}	109.3
117 01 (18)	016-C20-C21	108.93 (18)
113 34 (18)	016-C20-C19	109.99 (18)
109 5	C_{21} C_{20} C_{19}	109.15(19)
112.7(2)	016-C20-H20	109.6
109.1	C_{21} C_{20} H_{20}	109.6
109.1	C_{19} C_{20} H_{20}	109.6
109.1	017 - C21 - C20	109.46 (19)
109.1	017-C21-C22	110 80 (18)
107.8	C_{20} C_{21} C_{22}	110.00(10) 110.51(18)
109.5	017 - C21 - H21	108.7
109.5	C_{20} C_{21} H_{21}	108.7
117 08 (18)	C^{22} C^{21} H^{21}	108.7
117.00 (10)	$018-C^{2}-C^{2}$	107.67 (18)
109 5	$018 - C^{22} - C^{21}$	107.07(10) 106.81(17)
109.5	C_{23} C_{22} C_{21}	112 33 (18)
118 09 (17)	$018 - C^{22} - H^{22}$	110.0
113.50(17)	C^{23} C^{22} H^{22}	110.0
109.5	C_{21} C_{22} H_{22}	110.0
109.5	019-023-024	105.01 (18)
109.5	019 - 023 - 024	100.91(10) 110.36(10)
118 62 (16)	C_{24} C_{23} C_{22}	112.89 (19)
113.68(17)	$019 - C^{23} - H^{23}$	109.2
109.5	C_{24} C_{23} H_{23}	109.2
109.5	C^{22} C^{23} H^{23}	109.2
109.5	020 - C24 - C23	107.2
118.45 (17)	O20-C24-H24A	109.4
113.37 (17)	C23—C24—H24A	109.4
109.5	O20—C24—H24B	109.4
100 5		100.4
	1.432 (3) 0.8400 1.410 (3) 0.8400 1.532 (3) 1.0000 1.519 (3) 1.0000 1.515 (3) 1.0000 1.527 (3) 1.0000 1.539 (3) 1.0000 1.539 (3) 1.0000 1.521 (3) 109.5 109.5 117.01 (18) 113.34 (18) 109.5 112.7 (2) 109.1 109.1 109.1 109.1 109.1 109.5 117.08 (18) 112.94 (18) 109.5 109.5 117.08 (18) 112.94 (18) 109.5 109.5 109.5 118.09 (17) 113.50 (17) 109.5 109.5 109.5 118.62 (16) 113.68 (17) 109.5 1	1.432 (3) $037-H37B$ 0.8400 $038-H38A$ $1.410 (3)$ $038-H38B$ 0.8400 $039-H39A$ $1.532 (3)$ $039-H39B$ 1.0000 $040-H40A$ $1.519 (3)$ $040-H40B$ 1.0000 $041-H41A$ $1.515 (3)$ $041-H41B$ 1.0000 $042-H42C$ $1.527 (3)$ $042-H42C$ $1.527 (3)$ $042-H42D$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-044'$ 1.0000 $044-046'$ $1.521 (3)$ $048-050$ 109.5 $C20-C21-H19$ 109.5 $C21-C20-H20$ 109.1 $C1-C20-H20$ 109.1 $C1-C20-H20$ 109.1 $C1-C21-C22$ 109.5 $C20-C21-H21$

С33—О27—Н27А	109.5	H24A—C24—H24B	108.0
C25—O28—C34	117.86 (17)	O24—C25—O28	110.90 (19)
C31—O29—C35	113.41 (17)	O24—C25—C26	111.10 (18)
C36—O30—H30C	109.5	O28—C25—C26	108.21 (18)
C38—O31—H31A	109.5	O24—C25—H25	108.9
C39—O32—H32A	109.5	O28—C25—H25	108.9
C31—O33—C40	118.99 (16)	C26—C25—H25	108.9
C37—O34—C41	115.44 (17)	O21—C26—C27	112.28 (19)
C42—O35—H35A	109.5	O21—C26—C25	111.14 (18)
С12—О36—Н36	109.5	C27—C26—C25	110.38 (19)
O4—C1—O8	111.42 (19)	O21—C26—H26	107.6
O4—C1—C2	110.68 (18)	С27—С26—Н26	107.6
O8—C1—C2	107.42 (19)	С25—С26—Н26	107.6
O4—C1—H1	109.1	O22—C27—C28	111.73 (19)
O8—C1—H1	109.1	O22—C27—C26	108.29 (19)
C2—C1—H1	109.1	C28—C27—C26	108.59 (19)
O1—C2—C3	112.3 (2)	O22—C27—H27	109.4
O1—C2—C1	110.80 (18)	С28—С27—Н27	109.4
C3—C2—C1	110.34 (19)	С26—С27—Н27	109.4
O1—C2—H2	107.7	O23—C28—C27	107.03 (18)
С3—С2—Н2	107.7	O23—C28—C29	111.26 (19)
C1—C2—H2	107.7	C27—C28—C29	109.50 (19)
O2—C3—C4	106.73 (18)	O23—C28—H28	109.7
O2—C3—C2	112.39 (19)	C27—C28—H28	109.7
C4—C3—C2	110.6 (2)	C29—C28—H28	109.7
O2—C3—H3	109.0	O24—C29—C30	106.93 (19)
С4—С3—Н3	109.0	O24—C29—C28	108.22 (19)
С2—С3—Н3	109.0	C30—C29—C28	113.7 (2)
O3—C4—C3	107.56 (19)	O24—C29—H29	109.3
O3—C4—C5	109.00 (19)	С30—С29—Н29	109.3
C3—C4—C5	110.25 (18)	С28—С29—Н29	109.3
O3—C4—H4	110.0	O25—C30—C29	113.3 (2)
C3—C4—H4	110.0	O25—C30—H30A	108.9
C5—C4—H4	110.0	С29—С30—Н30А	108.9
O4—C5—C6	106.7 (2)	O25—C30—H30B	108.9
O4—C5—C4	108.40 (19)	С29—С30—Н30В	108.9
C6—C5—C4	114.3 (2)	H30A—C30—H30B	107.7
O4—C5—H5	109.1	O29—C31—O33	111.25 (18)
С6—С5—Н5	109.1	O29—C31—C32	110.58 (19)
C4—C5—H5	109.1	O33—C31—C32	106.41 (19)
O9—C7—O13	110.19 (18)	O29—C31—H31	109.5
O9—C7—C8	111.52 (19)	O33—C31—H31	109.5
O13—C7—C8	107.64 (19)	С32—С31—Н31	109.5
O9—C7—H7	109.2	O26—C32—C33	111.62 (19)
О13—С7—Н7	109.2	O26—C32—C31	108.11 (19)
С8—С7—Н7	109.2	C33—C32—C31	109.44 (19)
O6—C8—C9	112.0 (2)	O26—C32—H32	109.2
O6—C8—C7	109.72 (19)	С33—С32—Н32	109.2

C9—C8—C7	110.97 (18)	С31—С32—Н32	109.2
O6—C8—H8	108.0	O27—C33—C32	110.6 (2)
С9—С8—Н8	108.0	O27—C33—C34	110.42 (19)
С7—С8—Н8	108.0	C32—C33—C34	108.28 (19)
O7—C9—C8	113.35 (18)	O27—C33—H33	109.2
O7—C9—C10	110.8 (2)	С32—С33—Н33	109.2
C8—C9—C10	109.68 (19)	С34—С33—Н33	109.2
О7—С9—Н9	107.6	O28—C34—C33	107.25 (18)
С8—С9—Н9	107.6	O28—C34—C35	110.28 (19)
С10—С9—Н9	107.6	C33—C34—C35	109.39 (19)
O8—C10—C9	105.82 (18)	O28—C34—H34	110.0
O8—C10—C11	111.88 (18)	С33—С34—Н34	110.0
C9—C10—C11	107.94 (19)	С35—С34—Н34	110.0
O8—C10—H10	110.4	O29—C35—C36	107.00 (18)
С9—С10—Н10	110.4	O29—C35—C34	108.20 (19)
C11—C10—H10	110.4	C36—C35—C34	115.1 (2)
O9—C11—C12	107.95 (19)	O29—C35—H35	108.8
O9—C11—C10	106.86 (18)	С36—С35—Н35	108.8
C12—C11—C10	116.8 (2)	С34—С35—Н35	108.8
O9—C11—H11	108.3	O30—C36—C35	112.6 (2)
C12—C11—H11	108.3	O30—C36—H36A	109.1
C10—C11—H11	108.3	С35—С36—Н36А	109.1
O36—C12—C11	115.1 (2)	O30—C36—H36B	109.1
O36—C12—H12A	108.5	С35—С36—Н36В	109.1
C11—C12—H12A	108.5	H36A—C36—H36B	107.8
O36—C12—H12B	108.5	O3—C37—O34	111.60 (18)
C11—C12—H12B	108.5	O3—C37—C38	106.94 (18)
H12A—C12—H12B	107.5	O34—C37—C38	110.84 (18)
O18—C13—O14	111.31 (19)	O3—C37—H37	109.1
O18—C13—C14	107.20 (18)	O34—C37—H37	109.1
O14—C13—C14	111.02 (19)	С38—С37—Н37	109.1
O18—C13—H13	109.1	O31—C38—C39	111.40 (19)
O14—C13—H13	109.1	O31—C38—C37	111.44 (18)
C14—C13—H13	109.1	C39—C38—C37	109.72 (18)
O11—C14—C15	110.39 (19)	O31—C38—H38	108.0
O11—C14—C13	109.65 (19)	С39—С38—Н38	108.0
C15—C14—C13	109.79 (19)	С37—С38—Н38	108.0
O11—C14—H14	109.0	O32—C39—C38	110.27 (18)
C15—C14—H14	109.0	O32—C39—C40	109.19 (18)
C13—C14—H14	109.0	C38—C39—C40	109.88 (19)
O12-C15-C16	107.38 (18)	О32—С39—Н39	109.2
O12—C15—C14	110.84 (18)	С38—С39—Н39	109.2
C16—C15—C14	110.75 (18)	С40—С39—Н39	109.2
O12—C15—H15	109.3	O33—C40—C39	105.44 (17)
C16—C15—H15	109.3	O33—C40—C41	108.61 (17)
C14—C15—H15	109.3	C39—C40—C41	112.83 (18)
O13—C16—C15	105.71 (17)	O33—C40—H40	110.0
013 C16 C17	110 33 (18)	C39_C40_H40	110.0
013-010-017	110.55 (10)	037 040 1140	110.0

C15—C16—C17	112.08 (19)	C41—C40—H40	110.0
O13—C16—H16	109.5	O34—C41—C42	105.01 (18)
C15—C16—H16	109.5	O34—C41—C40	111.49 (18)
С17—С16—Н16	109.5	C42—C41—C40	111.44 (19)
O14—C17—C18	105.75 (18)	O34—C41—H41	109.6
O14—C17—C16	109.75 (18)	C42—C41—H41	109.6
C18—C17—C16	113.1 (2)	C40—C41—H41	109.6
O14—C17—H17	109.4	O35—C42—C41	111.42 (18)
C18—C17—H17	109.4	O35—C42—H42A	109.3
С16—С17—Н17	109.4	C41—C42—H42A	109.3
O15—C18—C17	107.79 (19)	O35—C42—H42B	109.3
O15-C18-H18A	110.1	C41—C42—H42B	109.3
C17—C18—H18A	110.1	H42A—C42—H42B	108.0
O15-C18-H18B	110.1	Н37А—О37—Н37В	105 (2)
C17—C18—H18B	110.1	H38A—O38—H38B	113 (3)
H18A—C18—H18B	108.5	H39A—O39—H39B	103 (3)
O19—C19—O23	110.45 (19)	H40A—O40—H40B	95 (2)
O19—C19—C20	110.13 (18)	H41A—O41—H41B	109 (3)
O23—C19—C20	108.29 (18)	H42C—O42—H42D	111 (3)
O19—C19—H19	109.3	O44′—O44—O49	139.5 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1A…07	0.84	2.36	3.065 (3)	142
O2— $H2A$ ···O45 ⁱ	0.84	2.00	2.809 (3)	161
O2—H2 <i>A</i> ···O45′ ⁱ	0.84	1.95	2.633 (11)	138
O5—H5 <i>A</i> ···O47	0.84	1.76	2.578 (15)	163
O5—H5 <i>A</i> ···O45 ⁱⁱ	0.84	2.46	3.024 (4)	125
O5'—H5'…O45 ⁱⁱ	0.84	1.66	2.47 (3)	163
O5'—H5'····O45' ⁱⁱ	0.84	2.40	3.20 (3)	159
O6—H6C···O12	0.84	2.04	2.845 (2)	161
O6—H6C···O13	0.84	2.31	2.742 (2)	112
O7—H7A···O26 ⁱ	0.84	2.14	2.956 (3)	165
O11—H11A···O40	0.84	1.78	2.595 (2)	163
O12—H12C···O31 ⁱⁱⁱ	0.84	1.85	2.676 (2)	167
O15—H15A····O41 ^{iv}	0.84	2.04	2.870 (3)	172
O16—H16A····O38 ^v	0.84	1.90	2.733 (3)	174
O17—H17A…O11	0.84	2.06	2.889 (2)	171
O20—H20A···O43	0.84	1.93	2.725 (3)	157
O20—H20A···O50	0.84	2.12	2.80 (3)	138
O21—H21A···O27	0.84	1.99	2.810 (2)	167
O21—H21A···O28	0.84	2.36	2.794 (2)	112
O22—H22A···O16	0.84	1.97	2.776 (2)	160
O22—H22A···O23	0.84	2.41	2.821 (2)	111
O25—H25A···O39 ^{vi}	0.84	1.90	2.743 (3)	178
O26—H26A···O37 ⁱⁱⁱ	0.84	1.83	2.668 (3)	176
O27—H27 <i>A</i> ···O5 ^v	0.84	2.09	2.821 (3)	145

O30—H30 <i>C</i> ···O15 ^{vii}	0.84	2.06	2.858 (3)	158
O30—H30 <i>C</i> ···O14 ^{vii}	0.84	2.37	2.945 (2)	126
O31—H31A···O2	0.84	2.01	2.844 (2)	172
O32—H32A···O26	0.84	2.04	2.871 (2)	170
O35—H35A····O37 ⁱ	0.84	2.08	2.890 (2)	161
O36—H36…O11 ⁱⁱ	0.84	2.02	2.854 (2)	173
O37—H37A···O6	0.82 (2)	2.05 (2)	2.837 (2)	160 (3)
O37—H37 <i>B</i> ···O32 ^{viii}	0.85 (2)	1.91 (2)	2.753 (2)	171 (3)
O38—H38A····O20	0.83 (2)	2.11 (2)	2.865 (3)	152 (3)
O38—H38 <i>B</i> ···O30 ^{ix}	0.82 (2)	1.86 (2)	2.672 (3)	176 (3)
O39—H39A…O22 ⁱⁱ	0.86 (2)	1.90 (2)	2.749 (3)	173 (3)
O39—H39 <i>B</i> ···O38	0.86 (2)	2.18 (2)	2.959 (3)	151 (3)
O40—H40A····O41 ^x	0.88 (2)	2.21 (3)	2.787 (3)	123 (3)
O40—H40 <i>B</i> ···O35 ^{xi}	0.87 (2)	1.91 (2)	2.770 (3)	168 (3)
O41—H41A····O20	0.84 (2)	2.13 (2)	2.976 (3)	175 (3)
O41—H41A····O19	0.84 (2)	2.63 (3)	3.048 (2)	112 (3)
O41—H41 <i>B</i> ···O25	0.84 (2)	1.95 (2)	2.769 (3)	166 (3)
O42—H42 <i>C</i> ···O21 ⁱⁱ	0.85 (2)	2.09 (2)	2.932 (3)	173 (3)
O42—H42 <i>D</i> ···O48	0.81 (2)	1.90 (4)	2.53 (3)	135 (3)
O42—H42D····O39	0.81 (2)	2.34 (3)	3.038 (3)	146 (3)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*-1/2, -*z*; (iv) -*x*+2, *y*+1/2, -*z*+1; (v) *x*, *y*-1, *z*; (vi) -*x*+2, *y*-1/2, -*z*; (vii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*+1; (ix) -*x*+2, *y*+1/2, -*z*; (x) -*x*+2, *y*-1/2, -*z*; (vii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*+1; (ix) -*x*+2, *y*+1/2, -*z*; (x) -*x*+2, *y*-1/2, -*z*; (viii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*+1; (ix) -*x*+2, *y*+1/2, -*z*; (vi) -*x*+2, *y*-1/2, -*z*; (viii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*, *z*, (viii) *z*, *z*, *z*, (viii) *z*, *z*, (viii) *z*, *z*, (viii) *z*, *z*, *z*, (viii) *z*, *z*, *z*, *z*, (viii) *z*, *z*, *z*, *z*, (viii) *z*,