## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## A polymorph of diaquabis(pyrazine-2-carboxylato- $\kappa^{2} N^{1}, O$ )copper(II)

## Guan-Hua Wang, Ren-Ling He, Fan-Jin Meng, Ning-Hai Hu* and Jing-Wei Xu*

The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
Correspondence e-mail: hunh@ciac.jl.cn, jwxu@ciac.jl.cn
Received 26 October 2009; accepted 29 October 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.024 ; w R$ factor $=0.071$; data-to-parameter ratio $=12.4$.

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is a new polymorph of the previously reported compound [Klein et al. (1982). Inorg. Chem. 21, 1891-1897]. The $\mathrm{Cu}^{\text {II }}$ atom, lying on an inversion center, is coordinated by two N atoms and two O atoms from two pyrazine-2-carboxylate ligands and by two water molecules in a distorted octahedral geometry with the water molecules occupying the axial sites. Intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the complex molecules into a two-dimensional layer parallel to ( $10 \overline{1}$ ), whereas the previously reported polymorph exhibits a three-dimensional hydrogen-bonded network.

## Related literature

For general background to metal complexes of pyrazinecarboxylates, see: Dong et al. (2000); Kubota et al. (2006); Luo et al. (2004); Ptasiewicz-Bak et al. (1995). For the previously reported polymorph, see: Klein et al. (1982). For a related structure, see: Chutia et al. (2009).


## Experimental

## Crystal data

| $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ | $c=12.030(2) \AA$ |
| :--- | :--- |
| $M_{r}=345.76$ | $\beta=105.036(2)^{\circ}$ |
| Monoclinic, $P 2_{1} / n$ | $V=615.88(19) \AA^{3}$ |
| $a=6.7066(12) \AA$ | $Z=2$ |
| $b=7.9041(14) \AA$ | Mo $K \alpha$ radiation |

$$
\mu=1.81 \mathrm{~mm}^{-1}
$$

$$
T=293 \mathrm{~K}
$$

Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.626, T_{\text {max }}=0.711$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.071$
$S=1.10$
1212 reflections
$0.29 \times 0.25 \times 0.20 \mathrm{~mm}$

3322 measured reflections 1212 independent reflections 1119 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

98 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Selected bond lengths $(\AA)$.

| $\mathrm{Cu} 1-\mathrm{O} 1$ | $1.9486(12)$ | $\mathrm{Cu} 1-\mathrm{O} 1 W$ | $2.6143(14)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | $1.9753(14)$ |  |  |

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}_{1} W-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$ | 0.82 | 1.99 | $2.796(2)$ | 168 |
| O1 $^{\mathrm{i}}-\mathrm{H} 1 B \cdots \mathrm{~N}^{2 i}$ | 0.82 | 2.33 | $3.041(2)$ | 145 |
| C1-H1 $\cdots \mathrm{O}^{2 i}$ | 0.93 | 2.42 | $3.226(2)$ | 144 |

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

The authors thank Changchun Institute of Applied Chemistry for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2480).

## References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chutia, P., Kato, S., Kojima, T. \& Satokawa, S. (2009). Polyhedron, 28, 370-380.
Dong, Y.-B., Smith, M. D. \& zur Loye, H.-C. (2000). Inorg. Chem. 39, $1943-$ 1949.

Klein, C. L., Majeste, R. J., Trefonas, L. M. \& O’Connor, C. J. (1982). Inorg. Chem. 21, 1891-1897.
Kubota, Y., Takata, M., Matsuda, R., Kitaura, R., Kitagawa, S. \& Kobayashi, T. C. (2006). Angew. Chem. Int. Ed. 45, 4932-4936.

Luo, J., Alexander, B., Wagner, T. R. \& Maggard, P. A. (2004). Inorg. Chem. 43, 5537-5542.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Ptasiewicz-Bak, H., Leciejewicz, J. \& Zachara, J. (1995). J. Coord. Chem. 36, 317-326.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supporting information

Acta Cryst. (2009). E65, m1511 [doi:10.1107/S1600536809045371]

## A polymorph of diaquabis(pyrazine-2-carboxylato- $\kappa^{2} N^{1}, O$ )copper(II)

Guan-Hua Wang, Ren-Ling He, Fan-Jin Meng, Ning-Hai Hu and Jing-Wei Xu

## S1. Comment

Pyrazinecarboxylates have been extensively studied as excellent bridging ligands in the coordination chemistry research (Dong et al., 2000; Kubota et al., 2006; Luo et al., 2004; Ptasiewicz-Bak et al., 1995). The structure and magnetic properties of a copper(II) complex with the pyrazine-2-carboxylate (pzc) ligand (polymorph I) has been reported by Klein et al. (1982). We report here the structure of a new polymorph (polymorph II) of the title compound.
The polymorph II crystallizes in the monoclinic space group $P 2_{1} / n$ (polymorph I in $P 2_{1} / c$ ). The $\mathrm{Cu}^{\mathrm{II}}$ atom, lying on an inversion center, is six-coordinated in a distorted octahedral geometry, defined by two O atoms and two N atoms from two pzc ligands in the equatorial plane and two water molecules in the axial positions (Table 1 and Fig. 1). Weak coordination exists between the $\mathrm{Cu}^{\text {II }}$ center and the coordinated water molecule, with a $\mathrm{Cu}-\mathrm{O}$ distance of 2.6143 (14) $\AA$, due to Jahn-Teller effects. The bond lengths and angles are in normal ranges (Chutia et al., 2009; Klein et al., 1982). The coordinated water molecule donates its two H atoms to an uncoordinated carboxylate O atom and a pyrazine N atom of the neighboring molecules (Table 2 and Fig. 2). One complex molecule is linked to four neighboring molecules through these $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming a two-dimensional layer in the $(10 \overline{1})$ plane. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2) stabilizes the layer structure. In the previously reported polymorph I, the water molecule forms two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with a coordinated carboxylate O atom and an uncoordinated carboxylate O atom. One complex molecule is linked to six neighboring molecules, leading to a three-dimensional network.

## S2. Experimental

Aqueous triethylamine ( 0.05 ml ) was added to a suspending solution of $\mathrm{Hpzc}(0.012 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{ml})$, followed by dropwise addition of a solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}(0.024 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was stirred and sealed in a 15 ml Teflon-lined stainless steel autoclave and heated at 413 K for 3 d under autogenous pressure. When the mixture was cooled to room temperature, blue block crystals of the title compound were obtained (yield 0.029 g, $85 \%$ based on Cu ).

## S3. Refinement

H atoms of the pyrazine ring were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms of the water molecule were located in a difference Fourier map and refined as riding, with O $-\mathrm{H}=0.82 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.


## Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the $30 \%$ probability level.
[Symmetry code: (i) $-x, 1-y, 2-z$.]


## Figure 2

A part of the two-dimensional layer structure in the title compound. Dashed lines denote hydrogen bonds.

## diaquabis(pyrazine-2-carboxylato- $\left.\kappa^{2} N^{1}, O\right) \operatorname{copper}($ II)

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

$$
\begin{aligned}
& V=615.88(19) \AA^{3} \\
& Z=2 \\
& F(000)=350 \\
& D_{\mathrm{x}}=1.864 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2148 \text { reflections } \\
& \theta=3.1-26.1^{\circ} \\
& \mu=1.81 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$
Block, blue

## Data collection

Bruker SMART APEX CCD diffractometer
Radiation source: sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.626, T_{\text {max }}=0.711$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.071$
$S=1.10$
1212 reflections
98 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$0.29 \times 0.25 \times 0.20 \mathrm{~mm}$

3322 measured reflections
1212 independent reflections
1119 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=26.1^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 9$
$l=-7 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0427 P)^{2}+0.1736 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.24$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.015 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cu1 | 0.0000 | 0.5000 | 1.0000 | $0.03498(16)$ |
| O1 | $-0.0727(2)$ | $0.61455(15)$ | $0.85150(10)$ | $0.0366(3)$ |
| O2 | $-0.1196(2)$ | $0.56084(18)$ | $0.66400(11)$ | $0.0410(3)$ |
| N1 | $0.0637(2)$ | $0.30822(17)$ | $0.90970(11)$ | $0.0281(3)$ |
| N2 | $0.0994(2)$ | $0.0660(2)$ | $0.74999(14)$ | $0.0379(4)$ |
| C1 | $0.1310(3)$ | $0.1525(2)$ | $0.94293(15)$ | $0.0323(4)$ |
| H1 | 0.1685 | 0.1252 | 1.0208 | $0.039^{*}$ |
| C2 | $0.1451(3)$ | $0.0321(2)$ | $0.86246(19)$ | $0.0388(4)$ |
| H2 | 0.1880 | -0.0765 | 0.8874 | $0.047^{*}$ |
| C3 | $0.0352(3)$ | $0.2226(2)$ | $0.71834(15)$ | $0.0334(4)$ |
| H3 | 0.0033 | 0.2509 | 0.6407 | $0.040^{*}$ |
| C4 | $0.0146(2)$ | $0.3439(2)$ | $0.79692(14)$ | $0.0277(4)$ |
| C5 | $-0.0665(3)$ | $0.5207(2)$ | $0.76592(16)$ | $0.0299(4)$ |
| O1W | $0.3669(2)$ | $0.63676(18)$ | $1.04173(12)$ | $0.0483(4)$ |
| H1A | 0.3551 | 0.7207 | 1.0796 | $0.058^{*}$ |
| H1B | 0.4636 | 0.5788 | 1.0781 | $0.058^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cu1 | $0.0529(2)$ | $0.0279(2)$ | $0.0235(2)$ | $0.00894(12)$ | $0.00891(15)$ | $-0.00016(10)$ |
| O1 | $0.0516(8)$ | $0.0285(6)$ | $0.0285(7)$ | $0.0070(5)$ | $0.0085(5)$ | $0.0008(5)$ |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O2 | $0.0550(8)$ | $0.0383(7)$ | $0.0252(7)$ | $0.0039(6)$ | $0.0022(6)$ | $0.0042(6)$ |
| N 1 | $0.0298(7)$ | $0.0275(7)$ | $0.0256(7)$ | $0.0002(5)$ | $0.0050(5)$ | $0.0003(6)$ |
| N 2 | $0.0438(9)$ | $0.0331(8)$ | $0.0380(9)$ | $0.0012(7)$ | $0.0127(7)$ | $-0.0059(7)$ |
| C1 | $0.0343(9)$ | $0.0327(9)$ | $0.0287(9)$ | $0.0030(7)$ | $0.0059(7)$ | $0.0043(7)$ |
| C2 | $0.0417(10)$ | $0.0292(9)$ | $0.0468(12)$ | $0.0066(7)$ | $0.0139(9)$ | $0.0022(8)$ |
| C3 | $0.0356(9)$ | $0.0352(9)$ | $0.0287(9)$ | $-0.0023(7)$ | $0.0073(7)$ | $-0.0023(7)$ |
| C4 | $0.0271(8)$ | $0.0292(8)$ | $0.0258(8)$ | $-0.0022(6)$ | $0.0049(6)$ | $-0.0005(6)$ |
| C5 | $0.0299(8)$ | $0.0287(8)$ | $0.0292(10)$ | $-0.0006(6)$ | $0.0039(7)$ | $0.0010(7)$ |
| O1W | $0.0578(9)$ | $0.0406(8)$ | $0.0456(8)$ | $0.0054(6)$ | $0.0116(7)$ | $-0.0037(6)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Cu}-\mathrm{O} 1$ | 1.9486 (12) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.378 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | 1.9753 (14) | C1-H1 | 0.9300 |
| Cu1-O1W | 2.6143 (14) | $\mathrm{C} 2-\mathrm{H} 2$ | 0.9300 |
| O1-C5 | 1.279 (2) | C3-C4 | 1.379 (2) |
| O2-C5 | 1.227 (2) | C3-H3 | 0.9300 |
| N1-C1 | 1.336 (2) | C4-C5 | 1.510 (2) |
| N1-C4 | 1.340 (2) | O1W-H1A | 0.82 |
| N2-C3 | 1.333 (3) | O1W-H1B | 0.82 |
| N2-C2 | 1.335 (3) |  |  |
| O1- ${ }^{\text {i }}$ - $1-\mathrm{O} 1$ | 180.0 | $\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$ | 119.8 |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | 83.73 (5) | C2- $\mathrm{C} 1-\mathrm{H} 1$ | 119.8 |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$ | 96.27 (5) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$ | 122.29 (18) |
| O1- ${ }^{\text {i }} \mathrm{Cu} 1-\mathrm{N} 1$ | 96.27 (5) | N2-C2-H2 | 118.9 |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | 83.73 (5) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 118.9 |
| N1 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$ | 180.0 | N2-C3-C4 | 122.17 (16) |
| O1W-Cu1-N1 | 95.50 (5) | N2-C3-H3 | 118.9 |
| O1W-Cu1-O1 | 89.03 (5) | $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$ | 118.9 |
| $\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$ | 84.50 (5) | N1-C4-C3 | 120.37 (16) |
| $\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{Ol}^{\text {i }}$ | 90.97 (5) | N1-C4-C5 | 115.01 (15) |
| C5-O1-Cu1 | 114.57 (11) | C3-C4-C5 | 124.60 (16) |
| C1-N1-C4 | 118.16 (14) | $\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$ | 126.37 (16) |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$ | 130.31 (12) | $\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$ | 118.61 (16) |
| C4-N1-Cu1 | 111.33 (11) | O1-C5-C4 | 115.02 (15) |
| C3-N2-C2 | 116.61 (16) | H1A-O1W-H1B | 109 |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ | 120.36 (16) |  |  |

Symmetry code: (i) $-x,-y+1,-z+2$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 W — \mathrm{H} 1 A \cdots \mathrm{O}^{2 \mathrm{ii}}$ | 0.82 | 1.99 | $2.796(2)$ | 168 |
| $\mathrm{O} 1 W — \mathrm{H} 1 B \cdots \mathrm{~N} 2^{\mathrm{iii}}$ | 0.82 | 2.33 | $3.041(2)$ | 145 |
| $\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{iii}}$ | 0.93 | 2.42 | $3.226(2)$ | 144 |

Symmetry codes: (ii) $x+1 / 2,-y+3 / 2, z+1 / 2$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$.

