

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(Z)-N-Isopropyl-O-methylthiocarbamato-κS](tri-p-tolylphosphine-κP)gold(I)

Primjira P. Tadbuppa^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, National University of Singapore, Singapore 117543, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 5 November 2009; accepted 6 November 2009

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.009 Å; *R* factor = 0.040; *wR* factor = 0.089; data-to-parameter ratio = 21.6.

In the title compound, $[Au(C_5H_{10}NOS)(C_{21}H_{21}P)]$, two independent molecules comprise the asymmetric unit, and these are connected by an aurophilic interaction $[Au \cdot \cdot \cdot Au =$ 3.1351 (3) Å]. Each Au^I atom is linearly coordinated within a *S*,*P*-donor set with the distortion from ideal linear geometry [S-Au-P = 175.31 (5) and 176.45 (5)°] ascribed to an intramolecular Au···O contact in each case [2.974 (4) and 3.027 (4) Å].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho *et al.* (2006); Ho & Tiekink (2007); Kuan *et al.* (2008). For the synthesis, see Hall *et al.* (1993). For related structures, see: Bott *et al.* (2004); Cookson & Tiekink (1994).

Experimental

Crystal data [Au(C₅H₁₀NOS)(C₂₁H₂₁P)] $M_r = 633.51$

Triclinic, $P\overline{1}$ a = 9.6445 (4) Å

b = 12.7202 (5) Å	Z = 4
c = 22.995 (1) Å	Mo $K\alpha$ radiation
$\alpha = 103.731 \ (1)^{\circ}$	$\mu = 5.66 \text{ mm}^{-1}$
$\beta = 96.950 \ (1)^{\circ}$	T = 223 K
$\gamma = 98.443 \ (1)^{\circ}$	0.32 \times 0.07 \times 0.07 mm
$V = 2674.81 (19) \text{ Å}^3$	
Data collection	
Bruker SMART CCD	22571 measured reflections
diffractometer	12259 independent reflections
Absorption correction: multi-scan	9152 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.033$
$T_{\min} = 0.510, \ T_{\max} = 1$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.040$	567 parameters

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 567 parameters $wR(F^2) = 0.089$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 1.41$ e Å⁻³12259 reflections $\Delta \rho_{min} = -0.52$ e Å⁻³

Table 1

Selected bond lengths (Å).

Au1-S1 2.3221 (13) Au2-S2	
A 1 D1 0.0(20 (12) A 2 D2	2.3102 (14)
Au1-P1 2.2638 (13) Au2-P2	2.2589 (14)

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *PATTY* in *DIRDIF92* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2584).

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Bott, R. C., Healy, P. C. & Smith, G. (2004). Aust. J. Chem. 57, 213-218.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2000). *SMART*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison,
- Wisconsin, U. S. A. Cookson, P. D. & Tiekink, E. R. T. (1994). Acta Cryst. C50, 1896–1898.
- Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1994). Acta Cryst. C30, 1890–1898.
- Hon, V. S., Shashos, O. & HCKIIK, E. R. T. (1995). Aust. J. Chem. **49**, 501–510. Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). *Inorg. Chem.* **45**, 8165–8174.
- Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.
- Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). *CrystEngComm*, **10**, 548–564.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1557 [doi:10.1107/S1600536809046893]

$[(Z)-N-IsopropyI-O-methylthiocarbamato-\kappa S](tri-p-tolylphosphine-\kappa P)gold(I)$

Primjira P. Tadbuppa and Edward R. T. Tiekink

S1. Comment

The structure of the title compound, (I), was determined as a part of an on-going study of the structural systematics, including luminescence properties, of molecules related to the general formula $R_3PAu[SC(OR') NR'']$ for R, R' and R'' = alkyl and aryl (Ho *et al.* 2006; Ho & Tiekink, 2007; Kuan *et al.*, 2008).

Two essentially equivalent molecules comprise the asymmetric unit, Fig. 1. These are connected by an aurophilic interaction of 3.1351 (3) Å. Each Au atom exists within a SP donor set and comparable geometric parameters are similar, Table 1. Deviations from the ideal linear geometry [S—Au—P = 175.31 (5) and 176.45 (5) °] are likely due to the proximity to Au of the respective O atom [2.974 (4) and 3.027 (4) Å].

As a general comment, aurophilic interactions are comparatively rare in phosphinegold(I) carbonimidothioates so the presence of a Au^{...}Au contact in (I) prompted an examination of the structures of the precursor $(p-tol)_3$ PAuCl structures. There are two polymorphs reported for this compound for which atomic coordinates are available. In the monoclinic polymorph, no aurophilic interaction was noted (Cookson & Tiekink, 1994) but, in the orthorhombic form, Au^{...}Au contacts [3.375 (1) Å] were observed (Bott *et al.*, 2004). Such vagaries in supramolecular aggregation underscore the difficulties in crystal engineering with these systems.

S2. Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of (*p*-tol)₃PAuCl and MeOC(S)N(H)-ⁱPr in the presence of base (Hall *et al.*, 1993).

S3. Refinement

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The maximum and minimum residual electron density peaks of 1.41 and 0.52 e Å⁻³, respectively, were located 0.96 Å and 1.25 Å from the Au2 and H29*c* atoms, respectively.

Figure 1

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

$[(Z)-N-IsopropyI-O-methylthiocarbamato-\kappa S](tri-p-tolylphosphine-\kappa P)gold(I)$

Crystal data	
[Au(C ₅ H ₁₀ NOS)(C ₂₁ H ₂₁ P)]	Z = 4
$M_r = 633.51$	F(000) = 1248
Triclinic, P1	$D_x = 1.573 \text{ Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71069 \text{ Å}$
a = 9.6445 (4) Å	Cell parameters from 4932 reflections
b = 12.7202 (5) Å	$\theta = 2.2-24.5^{\circ}$
c = 22.995 (1) Å	$\mu = 5.66 \text{ mm}^{-1}$
a = 103.731 (1)°	T = 223 K
$\beta = 96.950$ (1)°	Prism, colourless
$\gamma = 98.443 (1)^{\circ}$ $V = 2674.81 (19) Å^{3}$ Data collection	$0.32 \times 0.07 \times 0.07 \text{ mm}$
Bruker SMART CCD	22571 measured reflections
diffractometer	12259 independent reflections
Radiation source: fine-focus sealed tube	9152 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.033$
ω scans	$\theta_{max} = 27.5^{\circ}, \theta_{min} = 0.9^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2000)	$k = -16 \rightarrow 15$
$T_{\min} = 0.510, T_{\max} = 1$	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.089$	neighbouring sites
S = 0.97	H-atom parameters constrained
12259 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0393P)^2]$
567 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.41 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Aul	0.05819 (2)	1.018576 (17)	0.202900 (9)	0.03982 (7)
Au2	0.21442 (2)	0.883806 (17)	0.279145 (9)	0.04019 (7)
S1	0.23483 (14)	1.15335 (11)	0.26808 (6)	0.0463 (3)
S2	0.31241 (16)	0.83442 (12)	0.19202 (7)	0.0493 (3)
P1	-0.12358 (14)	0.89835 (12)	0.13825 (6)	0.0407 (3)
P2	0.11746 (14)	0.92117 (11)	0.36470 (6)	0.0383 (3)
O1	0.0144 (4)	1.2461 (3)	0.25565 (16)	0.0494 (10)
O2	0.2647 (4)	0.6531 (3)	0.22738 (18)	0.0590 (11)
N1	0.1861 (5)	1.3508 (4)	0.33280 (19)	0.0441 (11)
N2	0.2885 (5)	0.6198 (4)	0.1281 (2)	0.0575 (13)
C1	0.1452 (5)	1.2637 (4)	0.2907 (2)	0.0410 (12)
C2	0.3239 (6)	1.3657 (5)	0.3710 (3)	0.0517 (15)
H2	0.3515	1.2929	0.3679	0.062*
C3	0.4325 (7)	1.4360 (7)	0.3492 (4)	0.097 (3)
H3A	0.4384	1.4012	0.3075	0.146*
H3B	0.5242	1.4453	0.3743	0.146*
H3C	0.4059	1.5074	0.3517	0.146*
C4	0.3097 (8)	1.4154 (6)	0.4356 (3)	0.087 (2)
H4A	0.2397	1.3663	0.4484	0.130*
H4B	0.2796	1.4857	0.4388	0.130*
H4C	0.4006	1.4261	0.4615	0.130*
C5	-0.0674 (6)	1.3310 (5)	0.2694 (3)	0.0559 (16)
H5A	-0.0852	1.3411	0.3108	0.084*
H5B	-0.1571	1.3104	0.2418	0.084*
H5C	-0.0154	1.3991	0.2649	0.084*

C6	-0.1889(5)	0.7811 (4)	0.1660 (2)	0.0424 (13)
C7	-0.3173 (6)	0.7698 (5)	0.1863 (2)	0.0461 (13)
H7	-0.3789	0.8192	0.1819	0.055*
C8	-0.3563 (6)	0.6857 (5)	0.2135 (3)	0.0576 (16)
H8	-0.4450	0.6780	0.2266	0.069*
С9	-0.2674 (6)	0.6141 (6)	0.2214 (3)	0.0631 (18)
C10	-0.1386 (6)	0.6261 (5)	0.2006 (3)	0.0676 (19)
H10	-0.0773	0.5765	0.2051	0.081*
C11	-0.0982 (6)	0.7083 (5)	0.1738 (3)	0.0516 (15)
H11	-0.0095	0.7156	0.1607	0.062*
C12	-0.3091(8)	0.5257 (7)	0.2527 (4)	0.102(3)
H12A	-0 3863	0.5431	0.2745	0.153*
H12R	-0.2282	0.5216	0.2811	0.153*
H12C	-0.3396	0.4554	0.2228	0.153*
C13	-0.0834(5)	0.8408 (4)	0.0641(2)	0.0414(12)
C14	-0.1605(6)	0.7446(5)	0.0011(2) 0.0245(2)	0.0515(15)
H14	-0 2332	0.7440 (3)	0.0243(2)	0.062*
C15	-0.1322 (7)	0.7020	-0.0336(3)	0.002
U15	-0.1860	0.7094 (3)	-0.0507	0.0387 (17)
C16	-0.0252(7)	0.0443	-0.0540(2)	0.070°
C10 C17	-0.0233(7)	0.7081(3)	-0.0340(3) -0.0140(3)	0.0309(10)
U17	0.0333 (7)	0.0021(3)	-0.0140(3)	0.0000 (18)
П1/ С19	0.1310	0.9010	-0.0204	0.080°
	0.0258 (7)	0.8989 (5)	0.0442 (3)	0.0547 (15)
HI8 C10	0.0804	0.9640	0.0703	0.066*
C19	0.0082 (9)	0.7287(7)	-0.11/0 (3)	0.090 (3)
HI9A	0.0455	0.6611	-0.1203	0.135*
HI9B	0.0784	0.7844	-0.1248	0.135*
H19C	-0.0776	0.7153	-0.1464	0.135*
C20	-0.2751 (5)	0.9646 (5)	0.1259 (2)	0.0436 (13)
C21	-0.2828 (6)	1.0623 (5)	0.1661 (3)	0.0550 (15)
H21	-0.2093	1.0943	0.1991	0.066*
C22	-0.3984 (7)	1.1136 (5)	0.1580 (3)	0.0629 (17)
H22	-0.4012	1.1800	0.1861	0.076*
C23	-0.5084 (6)	1.0716 (6)	0.1108 (3)	0.0542 (15)
C24	-0.5006 (7)	0.9719 (6)	0.0714 (3)	0.0667 (19)
H24	-0.5753	0.9394	0.0389	0.080*
C25	-0.3873 (6)	0.9194 (5)	0.0783 (3)	0.0593 (16)
H25	-0.3857	0.8523	0.0506	0.071*
C26	-0.6321 (7)	1.1279 (6)	0.1024 (3)	0.078 (2)
H26A	-0.6949	1.1158	0.1311	0.116*
H26B	-0.6835	1.0983	0.0614	0.116*
H26C	-0.5983	1.2063	0.1094	0.116*
C27	0.2870 (5)	0.6894 (5)	0.1768 (3)	0.0477 (14)
C28	0.3114 (10)	0.6566 (6)	0.0745 (3)	0.083 (2)
H28	0.3403	0.7377	0.0855	0.100*
C29	0.1795 (11)	0.6229 (10)	0.0303 (4)	0.141 (4)
H29A	0.1055	0.6576	0.0475	0.212*
H29B	0.1508	0.5435	0.0205	0.212*

H29C	0.1952	0.6451	-0.0062	0.212*
C30	0.4262 (9)	0.6030 (8)	0.0468 (3)	0.111 (3)
H30A	0.5142	0.6257	0.0754	0.167*
H30B	0.4400	0.6254	0.0100	0.167*
H30C	0.3982	0.5236	0.0370	0.167*
C31	0.2423 (8)	0.5370 (5)	0.2195 (3)	0.0708 (19)
H31A	0.1562	0.5028	0.1906	0.106*
H31B	0.2328	0.5207	0.2581	0.106*
H31C	0.3225	0.5083	0.2043	0.106*
C32	0.2406 (5)	0.9995 (4)	0.4321 (2)	0.0394 (12)
C33	0.2445 (6)	0.9743 (5)	0.4878 (2)	0.0475 (13)
H33	0.1847	0.9112	0.4910	0.057*
C34	0.3342 (6)	1.0403 (5)	0.5380 (3)	0.0504 (14)
H34	0.3363	1.0205	0.5749	0.060*
C35	0.4221 (6)	1.1353 (5)	0.5361 (2)	0.0499 (14)
C36	0.4205 (6)	1.1581 (5)	0.4805 (3)	0.0604 (17)
H36	0.4813	1.2207	0.4774	0.072*
C37	0.3328 (6)	1.0924 (5)	0.4297 (3)	0.0531 (15)
H37	0.3350	1.1104	0.3924	0.064*
C38	0.5130 (7)	1.2097 (6)	0.5927 (3)	0.074(2)
H38A	0.4636	1.2678	0.6099	0.111*
H38B	0.6018	1.2419	0.5828	0.111*
H38C	0.5324	1.1676	0.6218	0.111*
C39	-0.0258(5)	0.9982 (4)	0.3607 (2)	0.0401 (12)
C40	-0.0188(6)	1.1040 (5)	0.3965 (3)	0.0515 (14)
H40	0.0615	1.1376	0.4261	0.062*
C41	-0.1287(6)	1.1601 (5)	0.3889(3)	0.0572 (16)
H41	-0.1212	1.2322	0.4130	0.069*
C42	-0.2499(6)	1.1126 (6)	0.3465 (3)	0.0542 (15)
C43	-0.2567(6)	1.0071 (6)	0.3119 (3)	0.0572 (16)
H43	-0.3379	0.9730	0.2829	0.069*
C44	-0.1479 (6)	0.9502 (5)	0.3188(2)	0.0500 (14)
H44	-0 1564	0.8779	0 2948	0.060*
C45	-0.3702(7)	1 1759 (6)	0.3397(3)	0.077(2)
H45A	-0.4153	1 1848	0.3757	0.115*
H45B	-0.4396	1 1356	0.3044	0.115*
H45C	-0.3326	1 2477	0 3349	0.115*
C46	0.0408 (5)	0 7956 (4)	0.3820(2)	0.0386(12)
C47	-0.0665(6)	0.7922 (5)	0.3020(2) 0.4171(2)	0.0500(12) 0.0504(14)
H47	-0.1031	0.8561	0.4318	0.060*
C48	-0.1200 (6)	0.6952 (5)	0.4307(3)	0.0518(14)
H48	-0.1953	0.6936	0.4531	0.062*
C49	-0.0646(6)	0.6010 (4)	0.4121(2)	0.002
C50	0.0425 (6)	0 6054 (4)	0.3774(2)	0.0476(14)
H50	0.0813	0 5420	0 3641	0.057*
C51	0.0944 (6)	0 7007 (4)	0 3618 (2)	0.037 0.0446 (13)
H51	0 1660	0 7009	0 3375	0.054*
C52	-0 1245 (7)	0 4963 (5)	0.4267 (3)	0.0653(17)
0.52	0.1210(7)	0.1905 (0)	0.1207 (0)	0.0000 (17)

supporting information

H52A	-0.2129	0.4620	0.3995	0.098*
H52B	-0.1423	0.5127	0.4683	0.098*
H52C	-0.0571	0.4465	0.4219	0.098*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Au1	0.03911 (12)	0.04092 (12)	0.03790 (12)	0.00767 (9)	0.00326 (9)	0.00853 (9)
Au2	0.03970 (12)	0.04677 (13)	0.03748 (12)	0.01398 (9)	0.01023 (9)	0.01176 (9)
S1	0.0413 (7)	0.0448 (8)	0.0476 (8)	0.0104 (6)	-0.0010 (6)	0.0044 (6)
S2	0.0536 (9)	0.0512 (9)	0.0505 (8)	0.0173 (7)	0.0237 (7)	0.0150 (7)
P1	0.0381 (7)	0.0436 (8)	0.0396 (7)	0.0055 (6)	0.0030 (6)	0.0122 (6)
P2	0.0404 (7)	0.0411 (8)	0.0356 (7)	0.0125 (6)	0.0090 (6)	0.0098 (6)
01	0.048 (2)	0.050(2)	0.043 (2)	0.0185 (17)	-0.0063 (17)	-0.0009 (17)
O2	0.075 (3)	0.054 (3)	0.058 (3)	0.021 (2)	0.024 (2)	0.022 (2)
N1	0.048 (3)	0.040 (3)	0.040 (2)	0.008 (2)	0.003 (2)	0.004 (2)
N2	0.066 (3)	0.055 (3)	0.050 (3)	0.012 (3)	0.016 (3)	0.007 (2)
C1	0.042 (3)	0.044 (3)	0.038 (3)	0.009 (2)	0.005 (2)	0.014 (2)
C2	0.049 (3)	0.047 (3)	0.051 (3)	0.006 (3)	-0.007 (3)	0.006 (3)
C3	0.062 (5)	0.105 (7)	0.116 (7)	-0.016 (4)	-0.005 (5)	0.040 (5)
C4	0.107 (6)	0.084 (6)	0.052 (4)	0.018 (5)	-0.015 (4)	-0.002 (4)
C5	0.048 (3)	0.054 (4)	0.061 (4)	0.020 (3)	-0.001 (3)	0.004 (3)
C6	0.038 (3)	0.048 (3)	0.040 (3)	0.003 (2)	-0.001 (2)	0.015 (2)
C7	0.038 (3)	0.053 (3)	0.049 (3)	0.007 (2)	0.000 (2)	0.022 (3)
C8	0.037 (3)	0.077 (5)	0.061 (4)	0.005 (3)	0.000 (3)	0.030 (3)
C9	0.037 (3)	0.082 (5)	0.084 (5)	0.006 (3)	0.008 (3)	0.050 (4)
C10	0.045 (4)	0.072 (5)	0.105 (6)	0.025 (3)	0.011 (3)	0.051 (4)
C11	0.032 (3)	0.061 (4)	0.071 (4)	0.010 (3)	0.009 (3)	0.033 (3)
C12	0.059 (5)	0.115 (7)	0.165 (9)	0.015 (4)	0.021 (5)	0.100 (7)
C13	0.045 (3)	0.042 (3)	0.036 (3)	0.007 (2)	0.002 (2)	0.010 (2)
C14	0.051 (3)	0.053 (4)	0.045 (3)	0.002 (3)	0.000 (3)	0.012 (3)
C15	0.072 (4)	0.055 (4)	0.039 (3)	0.002 (3)	-0.002 (3)	0.002 (3)
C16	0.079 (5)	0.051 (4)	0.043 (3)	0.012 (3)	0.016 (3)	0.014 (3)
C17	0.083 (5)	0.059 (4)	0.058 (4)	-0.003 (4)	0.025 (4)	0.019 (3)
C18	0.066 (4)	0.047 (4)	0.046 (3)	0.000 (3)	0.013 (3)	0.008 (3)
C19	0.115 (7)	0.093 (6)	0.054 (4)	0.002 (5)	0.027 (4)	0.005 (4)
C20	0.039 (3)	0.048 (3)	0.045 (3)	0.005 (2)	0.003 (2)	0.018 (3)
C21	0.044 (3)	0.058 (4)	0.058 (4)	0.010 (3)	-0.001 (3)	0.011 (3)
C22	0.059 (4)	0.057 (4)	0.071 (4)	0.018 (3)	0.008 (3)	0.010 (3)
C23	0.038 (3)	0.072 (4)	0.065 (4)	0.013 (3)	0.014 (3)	0.037 (3)
C24	0.050 (4)	0.080 (5)	0.072 (4)	0.014 (3)	-0.007 (3)	0.029 (4)
C25	0.060 (4)	0.062 (4)	0.050 (4)	0.012 (3)	-0.008 (3)	0.010 (3)
C26	0.051 (4)	0.099 (6)	0.094 (6)	0.029 (4)	0.009 (4)	0.040 (5)
C27	0.032 (3)	0.056 (4)	0.058 (4)	0.009 (2)	0.005 (3)	0.020 (3)
C28	0.131 (7)	0.050 (4)	0.069 (5)	0.016 (4)	0.044 (5)	0.003 (3)
C29	0.127 (9)	0.238 (14)	0.109 (8)	0.105 (9)	0.034 (7)	0.089 (9)
C30	0.093 (6)	0.161 (9)	0.060 (5)	-0.005 (6)	0.028 (4)	-0.001 (5)
C31	0.083 (5)	0.056 (4)	0.085 (5)	0.015 (4)	0.029 (4)	0.030 (4)

C32	0.037 (3)	0.043 (3)	0.041 (3)	0.013 (2)	0.007 (2)	0.012 (2)
C33	0.051 (3)	0.049 (3)	0.043 (3)	0.014 (3)	0.010 (3)	0.010 (3)
C34	0.057 (4)	0.058 (4)	0.040 (3)	0.024 (3)	0.008 (3)	0.012 (3)
C35	0.049 (3)	0.058 (4)	0.043 (3)	0.028 (3)	0.002 (3)	0.006 (3)
C36	0.052 (4)	0.050 (4)	0.073 (4)	-0.002 (3)	-0.004(3)	0.017 (3)
C37	0.055 (4)	0.060 (4)	0.051 (3)	0.013 (3)	0.007 (3)	0.026 (3)
C38	0.069 (4)	0.070 (5)	0.065 (4)	0.019 (3)	-0.014 (3)	-0.007 (3)
C39	0.042 (3)	0.049 (3)	0.035 (3)	0.014 (2)	0.013 (2)	0.016 (2)
C40	0.047 (3)	0.049 (4)	0.056 (4)	0.011 (3)	0.006 (3)	0.011 (3)
C41	0.053 (4)	0.044 (4)	0.079 (4)	0.017 (3)	0.018 (3)	0.017 (3)
C42	0.045 (3)	0.073 (4)	0.066 (4)	0.029 (3)	0.026 (3)	0.039 (3)
C43	0.047 (3)	0.080 (5)	0.051 (4)	0.014 (3)	0.007 (3)	0.027 (3)
C44	0.052 (3)	0.056 (4)	0.044 (3)	0.020 (3)	0.009 (3)	0.011 (3)
C45	0.059 (4)	0.096 (6)	0.095 (5)	0.045 (4)	0.027 (4)	0.039 (5)
C46	0.042 (3)	0.042 (3)	0.034 (3)	0.012 (2)	0.008 (2)	0.008 (2)
C47	0.056 (4)	0.047 (3)	0.052 (3)	0.019 (3)	0.019 (3)	0.008 (3)
C48	0.053 (4)	0.054 (4)	0.053 (3)	0.012 (3)	0.022 (3)	0.016 (3)
C49	0.049 (3)	0.042 (3)	0.044 (3)	0.004 (2)	0.008 (3)	0.009 (2)
C50	0.052 (3)	0.038 (3)	0.051 (3)	0.012 (2)	0.003 (3)	0.008 (2)
C51	0.041 (3)	0.048 (3)	0.043 (3)	0.012 (2)	0.007 (2)	0.006 (2)
C52	0.083 (5)	0.051 (4)	0.066 (4)	0.006 (3)	0.024 (4)	0.019 (3)

Geometric parameters (Å, °)

Au1—S1	2.3221 (13)	C22—C23	1.366 (8)
Au1—P1	2.2638 (13)	C22—H22	0.9400
Au1—Au2	3.1351 (3)	C23—C24	1.391 (9)
Au2—S2	2.3102 (14)	C23—C26	1.496 (8)
Au2—P2	2.2589 (14)	C24—C25	1.374 (8)
S1—C1	1.763 (6)	C24—H24	0.9400
S2—C27	1.768 (6)	C25—H25	0.9400
P1—C13	1.801 (5)	C26—H26A	0.9700
P1—C6	1.816 (5)	C26—H26B	0.9700
P1-C20	1.818 (5)	C26—H26C	0.9700
P2—C32	1.811 (5)	C28—C29	1.467 (11)
P2-C46	1.812 (5)	C28—C30	1.511 (11)
P2-C39	1.813 (5)	C28—H28	0.9900
01—C1	1.370 (6)	C29—H29A	0.9700
O1—C5	1.427 (6)	C29—H29B	0.9700
O2—C27	1.377 (6)	C29—H29C	0.9700
O2—C31	1.425 (7)	C30—H30A	0.9700
N1-C1	1.261 (6)	C30—H30B	0.9700
N1—C2	1.462 (6)	C30—H30C	0.9700
N2—C27	1.255 (7)	C31—H31A	0.9700
N2-C28	1.449 (8)	C31—H31B	0.9700
C2—C3	1.487 (8)	C31—H31C	0.9700
C2—C4	1.502 (8)	C32—C37	1.387 (7)
C2—H2	0.9900	C32—C33	1.389 (7)

С3—НЗА	0.9700	C33—C34	1.368 (7)
С3—Н3В	0.9700	С33—Н33	0.9400
С3—НЗС	0.9700	C34—C35	1.383 (8)
C4—H4A	0.9700	С34—Н34	0.9400
C4—H4B	0.9700	C35—C36	1.374 (8)
C4—H4C	0.9700	C35—C38	1.502 (8)
C5—H5A	0.9700	C36—C37	1.368 (8)
C5—H5B	0 9700	C36—H36	0.9400
C5—H5C	0.9700	C37—H37	0.9400
C6-C7	1 377 (7)	C38—H38A	0.9700
C6-C11	1 390 (7)	C38—H38B	0.9700
C7-C8	1 389 (7)	C38_H38C	0.9700
C7 H7	0.0400	C30 C44	1.387(7)
C^{*}	0.9400 1.367 (8)	$C_{39} = C_{44}$	1.387(7)
C° H°	0.0400	$C_{39} = C_{40}$	1.300(0) 1.378(0)
	0.9400	C40 - C41	1.578 (8)
C9_C10	1.384 (8)	C40—H40	0.9400
C9—C12	1.506 (8)	C41 - C42	1.385 (8)
	1.367 (8)	C41—H41	0.9400
C10—H10	0.9400	C42—C43	1.376 (9)
С11—Н11	0.9400	C42—C45	1.519 (8)
C12—H12A	0.9700	C43—C44	1.373 (8)
C12—H12B	0.9700	C43—H43	0.9400
C12—H12C	0.9700	C44—H44	0.9400
C13—C18	1.383 (7)	C45—H45A	0.9700
C13—C14	1.386 (7)	C45—H45B	0.9700
C14—C15	1.377 (8)	C45—H45C	0.9700
C14—H14	0.9400	C46—C51	1.383 (7)
C15—C16	1.378 (8)	C46—C47	1.390 (7)
С15—Н15	0.9400	C47—C48	1.385 (7)
C16—C17	1.383 (8)	C47—H47	0.9400
C16—C19	1.507 (8)	C48—C49	1.380 (8)
C17—C18	1.387 (8)	C48—H48	0.9400
С17—Н17	0.9400	C49—C50	1.380(7)
C18—H18	0.9400	C49—C52	1.503 (7)
С19—Н19А	0.9700	C50—C51	1.386 (7)
С19—Н19В	0.9700	С50—Н50	0.9400
С19—Н19С	0.9700	C51—H51	0.9400
C_{20} C_{21}	1 379 (8)	C52—H52A	0 9700
C_{20} C_{25}	1 390 (7)	C52—H52B	0.9700
C_{21} C_{22}	1 387 (8)	C52 H52D	0.9700
C21_H21	0.9400	0.52 11.520	0.9700
621—1121	0.9400		
P1—Au1—S1	175.31 (5)	C25—C24—C23	122.2 (6)
P1—Au1—Au2	106.83 (4)	C25—C24—H24	118.9
S1—Au1—Au2	77.57 (3)	C23—C24—H24	118.9
P2—Au2—S2	176.45 (5)	C24—C25—C20	120.6 (6)
P2—Au2—Au1	100.80 (3)	C24—C25—H25	119.7
$S^2 = Au^2 = Au^1$	81 87 (4)	C20—C25—H25	119 7
52 1142 1141		020 023 1123	11/./

C1—S1—Au1	102.97 (17)	C23—C26—H26A	109.5
C27—S2—Au2	102.9 (2)	C23—C26—H26B	109.5
C13—P1—C6	105.5 (3)	H26A—C26—H26B	109.5
C13—P1—C20	106.0 (2)	C23—C26—H26C	109.5
C6—P1—C20	105.8 (2)	H26A—C26—H26C	109.5
C13—P1—Au1	114.69 (18)	H26B—C26—H26C	109.5
C6—P1—Au1	113.50 (16)	N2—C27—O2	118.8 (5)
C20—P1—Au1	110.72 (18)	N2—C27—S2	129.0 (5)
C32—P2—C46	105.8 (2)	O2—C27—S2	112.2 (4)
C32—P2—C39	104.9 (2)	N2—C28—C29	109.2 (7)
C46—P2—C39	105.3 (2)	N2-C28-C30	109.0 (7)
C32—P2—Au2	114.84 (18)	C29—C28—C30	108.9 (7)
C46—P2—Au2	111.00 (17)	N2—C28—H28	109.9
C39—P2—Au2	114.20 (16)	C29—C28—H28	109.9
C1—O1—C5	116.3 (4)	C30—C28—H28	109.9
C27—O2—C31	116.3 (5)	С28—С29—Н29А	109.5
C1—N1—C2	118.7 (5)	С28—С29—Н29В	109.5
C27—N2—C28	119.5 (6)	H29A—C29—H29B	109.5
N1-C1-O1	119.8 (5)	С28—С29—Н29С	109.5
N1—C1—S1	128.8 (4)	H29A—C29—H29C	109.5
01—C1—S1	111.4 (4)	H29B—C29—H29C	109.5
N1—C2—C3	109.4 (5)	С28—С30—Н30А	109.5
N1—C2—C4	108.6 (5)	C28—C30—H30B	109.5
C3—C2—C4	112.1 (6)	H30A—C30—H30B	109.5
N1—C2—H2	108.9	C28—C30—H30C	109.5
С3—С2—Н2	108.9	H30A—C30—H30C	109.5
С4—С2—Н2	108.9	H30B-C30-H30C	109.5
С2—С3—НЗА	109.5	O2—C31—H31A	109.5
С2—С3—Н3В	109.5	O2—C31—H31B	109.5
НЗА—СЗ—НЗВ	109.5	H31A—C31—H31B	109.5
С2—С3—Н3С	109.5	O2—C31—H31C	109.5
НЗА—СЗ—НЗС	109.5	H31A—C31—H31C	109.5
НЗВ—СЗ—НЗС	109.5	H31B—C31—H31C	109.5
C2—C4—H4A	109.5	C37—C32—C33	117.2 (5)
C2—C4—H4B	109.5	C37—C32—P2	119.3 (4)
H4A—C4—H4B	109.5	C33—C32—P2	123.4 (4)
C2—C4—H4C	109.5	C34—C33—C32	120.7 (5)
H4A—C4—H4C	109.5	С34—С33—Н33	119.6
H4B—C4—H4C	109.5	С32—С33—Н33	119.6
O1—C5—H5A	109.5	C33—C34—C35	122.0 (5)
O1—C5—H5B	109.5	С33—С34—Н34	119.0
H5A—C5—H5B	109.5	С35—С34—Н34	119.0
O1—C5—H5C	109.5	C36—C35—C34	117.0 (5)
H5A—C5—H5C	109.5	C36—C35—C38	122.2 (6)
H5B—C5—H5C	109.5	C34—C35—C38	120.8 (6)
C7—C6—C11	119.0 (5)	C37—C36—C35	121.8 (6)
C7—C6—P1	122.1 (4)	С37—С36—Н36	119.1
C11—C6—P1	118.4 (4)	С35—С36—Н36	119.1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5) (4) (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5) (4) (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5) (4) (4)
C9-C8-H8119.6C35-C38-H38B109.5C7-C8-H8119.6H38A-C38-H38B109.5C8-C9-C10118.3 (6)C35-C38-H38C109.5C8-C9-C12120.2 (6)H38A-C38-H38C109.5C10-C9-C12121.4 (6)H38B-C38-H38C109.5C11-C10-C9121.7 (6)C44-C39-C40118.0C11-C10-H10119.1C44-C39-P2118.5C9-C10-H10119.1C40-C39-P2123.5C10-C11-C6119.8 (5)C41-C40-C39120.5C10-C11-H11120.1C41-C40-H40119.8	(5) (4) (4)
C7C8H8119.6H38AC38H38B109.5C8C9C10118.3 (6)C35C38H38C109.5C8C9C12120.2 (6)H38AC38H38C109.5C10C9C12121.4 (6)H38BC38H38C109.5C11C10C9121.7 (6)C44C39C40118.0C11C10H10119.1C44C39P2118.5C9C10H10119.1C40C39P2123.5C10C11C6119.8 (5)C41C40C39120.5C10C11H11120.1C41C40H40119.8	(5) (4) (4)
C8—C9—C10 118.3 (6) C35—C38—H38C 109.5 C8—C9—C12 120.2 (6) H38A—C38—H38C 109.5 C10—C9—C12 121.4 (6) H38B—C38—H38C 109.5 C11—C10—C9 121.7 (6) C44—C39—C40 118.0 C11—C10—H10 119.1 C44—C39—P2 118.5 C9—C10—H10 119.1 C40—C39—P2 123.5 C10—C11—C6 119.8 (5) C41—C40—C39 120.5 C10—C11—H11 120.1 C41—C40—H40 119.8	(5) (4) (4)
C8—C9—C12 120.2 (6) H38A—C38—H38C 109.5 C10—C9—C12 121.4 (6) H38B—C38—H38C 109.5 C11—C10—C9 121.7 (6) C44—C39—C40 118.0 C11—C10—H10 119.1 C44—C39—P2 118.5 C9—C10—H10 119.1 C40—C39—P2 123.5 C10—C11—C6 119.8 (5) C41—C40—C39 120.5 C10—C11—H11 120.1 C41—C40—H40 119.8	(5) (4) (4)
C10—C9—C12121.4 (6)H38B—C38—H38C109.5C11—C10—C9121.7 (6)C44—C39—C40118.0C11—C10—H10119.1C44—C39—P2118.5C9—C10—H10119.1C40—C39—P2123.5C10—C11—C6119.8 (5)C41—C40—C39120.5C10—C11—H11120.1C41—C40—H40119.8	(5) (4) (4)
C11—C10—C9121.7 (6)C44—C39—C40118.0C11—C10—H10119.1C44—C39—P2118.5C9—C10—H10119.1C40—C39—P2123.5C10—C11—C6119.8 (5)C41—C40—C39120.5C10—C11—H11120.1C41—C40—H40119.8	(5) (4) (4)
C11—C10—H10119.1C44—C39—P2118.5C9—C10—H10119.1C40—C39—P2123.5C10—C11—C6119.8 (5)C41—C40—C39120.5C10—C11—H11120.1C41—C40—H40119.8	(4) (4)
C9—C10—H10119.1C40—C39—P2123.5C10—C11—C6119.8 (5)C41—C40—C39120.5C10—C11—H11120.1C41—C40—H40119.8	(4)
C10—C11—C6119.8 (5)C41—C40—C39120.5C10—C11—H11120.1C41—C40—H40119.8	
C10—C11—H11 120.1 C41—C40—H40 119.8	(5)
C6—C11—H11 120.1 C39—C40—H40 119.8	
C9—C12—H12A 109.5 C40—C41—C42 121.5	(6)
C9—C12—H12B 109.5 C40—C41—H41 119.2	
H12A—C12—H12B 109.5 C42—C41—H41 119.2	
C9—C12—H12C 109.5 C43—C42—C41 117.5	(5)
H12A—C12—H12C 109.5 C43—C42—C45 122.2	(6)
H12B—C12—H12C 109.5 C41—C42—C45 120.3	(6)
C18—C13—C14 117.9 (5) C44—C43—C42 121.7	(6)
C18—C13—P1 118.2 (4) C44—C43—H43 119.1	
C14—C13—P1 123.7 (4) C42—C43—H43 119.1	
C15—C14—C13 121.1 (6) C43—C44—C39 120.8	(6)
C15—C14—H14 119.4 C43—C44—H44 119.6	
C13—C14—H14 119.4 C39—C44—H44 119.6	
C14—C15—C16 121.1 (5) C42—C45—H45A 109.5	
C14—C15—H15 119.5 C42—C45—H45B 109.5	
C16—C15—H15 119.5 H45A—C45—H45B 109.5	
C15—C16—C17 118.1 (6) C42—C45—H45C 109.5	
C15—C16—C19 121.3 (6) H45A—C45—H45C 109.5	
C17—C16—C19 120.5 (6) H45B—C45—H45C 109.5	
C16—C17—C18 121.0 (6) C51—C46—C47 118.6	(5)
C16—C17—H17 119.5 C51—C46—P2 119.2	(4)
C18—C17—H17 119.5 C47—C46—P2 122.1	(4)
C13—C18—C17 120.7 (5) C48—C47—C46 120.5	(5)
C13—C18—H18 119.6 C48—C47—H47 119.7	
C17—C18—H18 119.6 C46—C47—H47 119.7	
C16—C19—H19A 109.5 C49—C48—C47 121.2	(6)
C16—C19—H19B 109.5 C49—C48—H48 119.4	
H19A—C19—H19B 109.5 C47—C48—H48 119.4	
C16—C19—H19C 109.5 C48—C49—C50 117.8	(5)
H19A—C19—H19C 109.5 C48—C49—C52 120.5	(6)
H19B—C19—H19C 109.5 C50—C49—C52 121.6	(5)
	(5)
C21—C20—C25 117.8 (5) C49—C50—C51 121.8	
C21—C20—C25117.8 (5)C49—C50—C51121.8C21—C20—P1119.4 (4)C49—C50—H50119.1	

C20—C21—C22	120.3 (5)	C46—C51—C50	120.0 (5)
C20—C21—H21	119.8	C46—C51—H51	120.0
C22—C21—H21	119.8	С50—С51—Н51	120.0
C23—C22—C21	122.7 (6)	C49—C52—H52A	109.5
C23—C22—H22	118.7	C49—C52—H52B	109.5
C21—C22—H22	118.7	H52A—C52—H52B	109.5
C22—C23—C24	116.3 (6)	С49—С52—Н52С	109.5
C22—C23—C26	122.2 (7)	H52A—C52—H52C	109.5
C24—C23—C26	121.5 (6)	H52B—C52—H52C	109.5
P1—Au1—Au2—P2	-98.27 (5)	C21—C22—C23—C26	-179.7 (6)
S1—Au1—Au2—P2	80.05 (5)	C22—C23—C24—C25	-1.4 (10)
P1—Au1—Au2—S2	79.36 (6)	C26—C23—C24—C25	179.7 (6)
S1—Au1—Au2—S2	-102.32 (5)	C23—C24—C25—C20	0.2 (10)
Au2—Au1—S1—C1	-137.47 (18)	C21—C20—C25—C24	1.1 (9)
Au1—Au2—S2—C27	-130.07 (18)	P1-C20-C25-C24	179.1 (5)
Au2—Au1—P1—C13	-94.31 (19)	C28—N2—C27—O2	179.8 (6)
Au2—Au1—P1—C6	27.1 (2)	C28—N2—C27—S2	-1.2 (9)
Au2—Au1—P1—C20	145.85 (18)	C31—O2—C27—N2	-1.2 (8)
Au1—Au2—P2—C32	-114.68 (19)	C31—O2—C27—S2	179.6 (4)
Au1—Au2—P2—C46	125.42 (17)	Au2—S2—C27—N2	160.8 (5)
Au1—Au2—P2—C39	6.5 (2)	Au2—S2—C27—O2	-20.1 (4)
C2-N1-C1-01	177.7 (5)	C27—N2—C28—C29	-110.8 (8)
C2—N1—C1—S1	-2.2 (8)	C27—N2—C28—C30	130.4 (6)
C5-01-C1-N1	0.8 (7)	C46—P2—C32—C37	169.9 (5)
C5-01-C1-S1	-179.2 (4)	C39—P2—C32—C37	-79.1 (5)
Au1—S1—C1—N1	168.1 (5)	Au2—P2—C32—C37	47.1 (5)
Au1—S1—C1—O1	-11.9 (4)	C46—P2—C32—C33	-12.9 (5)
C1—N1—C2—C3	98.3 (7)	C39—P2—C32—C33	98.2 (5)
C1—N1—C2—C4	-139.0 (6)	Au2—P2—C32—C33	-135.7 (4)
C13—P1—C6—C7	-126.4 (4)	C37—C32—C33—C34	1.1 (8)
C20—P1—C6—C7	-14.4 (5)	P2-C32-C33-C34	-176.1 (4)
Au1—P1—C6—C7	107.2 (4)	C32—C33—C34—C35	1.4 (9)
C13—P1—C6—C11	61.8 (5)	C33—C34—C35—C36	-3.0 (9)
C20—P1—C6—C11	173.8 (5)	C33—C34—C35—C38	176.3 (5)
Au1—P1—C6—C11	-64.6 (5)	C34—C35—C36—C37	2.2 (9)
C11—C6—C7—C8	-1.0 (8)	C38—C35—C36—C37	-177.1 (6)
P1-C6-C7-C8	-172.7 (4)	C35—C36—C37—C32	0.3 (10)
C6—C7—C8—C9	1.1 (9)	C33—C32—C37—C36	-2.0 (9)
C7—C8—C9—C10	-1.2 (10)	P2-C32-C37-C36	175.4 (5)
C7—C8—C9—C12	178.0 (6)	C32—P2—C39—C44	-170.2 (4)
C8—C9—C10—C11	1.2 (11)	C46—P2—C39—C44	-58.8 (5)
C12—C9—C10—C11	-177.9 (7)	Au2—P2—C39—C44	63.2 (5)
C9—C10—C11—C6	-1.1 (10)	C32—P2—C39—C40	11.2 (5)
C7—C6—C11—C10	1.0 (9)	C46—P2—C39—C40	122.6 (5)
P1-C6-C11-C10	173.0 (5)	Au2—P2—C39—C40	-115.4 (4)
C6—P1—C13—C18	-149.1 (4)	C44—C39—C40—C41	-2.0 (8)
C20-P1-C13-C18	99.0 (5)	P2-C39-C40-C41	176.6 (5)

Au1—P1—C13—C18	-23.4 (5)	C39—C40—C41—C42	1.3 (9)
C6—P1—C13—C14	34.5 (5)	C40—C41—C42—C43	-0.2 (9)
C20—P1—C13—C14	-77.4 (5)	C40—C41—C42—C45	179.2 (6)
Au1—P1—C13—C14	160.2 (4)	C41—C42—C43—C44	0.0 (9)
C18—C13—C14—C15	-1.9 (9)	C45—C42—C43—C44	-179.4 (6)
P1-C13-C14-C15	174.5 (5)	C42—C43—C44—C39	-0.8 (9)
C13—C14—C15—C16	0.8 (10)	C40—C39—C44—C43	1.8 (8)
C14—C15—C16—C17	1.5 (10)	P2-C39-C44-C43	-176.9 (4)
C14—C15—C16—C19	178.6 (6)	C32—P2—C46—C51	-98.7 (4)
C15—C16—C17—C18	-2.8 (10)	C39—P2—C46—C51	150.6 (4)
C19—C16—C17—C18	-179.8 (7)	Au2—P2—C46—C51	26.5 (4)
C14—C13—C18—C17	0.7 (9)	C32—P2—C46—C47	78.6 (5)
P1-C13-C18-C17	-175.9 (5)	C39—P2—C46—C47	-32.1 (5)
C16—C17—C18—C13	1.6 (11)	Au2—P2—C46—C47	-156.2 (4)
C13—P1—C20—C21	-142.6 (5)	C51—C46—C47—C48	-1.0 (8)
C6—P1—C20—C21	105.7 (5)	P2-C46-C47-C48	-178.3 (4)
Au1—P1—C20—C21	-17.6 (5)	C46—C47—C48—C49	2.7 (9)
C13—P1—C20—C25	39.5 (5)	C47—C48—C49—C50	-2.3 (8)
C6—P1—C20—C25	-72.2 (5)	C47—C48—C49—C52	-179.5 (5)
Au1—P1—C20—C25	164.4 (4)	C48—C49—C50—C51	0.3 (8)
C25—C20—C21—C22	-1.1 (9)	C52—C49—C50—C51	177.5 (5)
P1-C20-C21-C22	-179.2 (5)	C47—C46—C51—C50	-1.0 (7)
C20-C21-C22-C23	-0.2 (10)	P2-C46-C51-C50	176.4 (4)
C21—C22—C23—C24	1.4 (10)	C49—C50—C51—C46	1.3 (8)