organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(Dimethylamino)pyridinium 2-(4-hydroxyphenyldiazenyl)benzoate

Hadi D. Arman,^a Tyler Miller^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 20 November 2009; accepted 21 November 2009

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.002 Å; R factor = 0.055; wR factor = 0.135; data-to-parameter ratio = 16.1.

In the title molecular salt, $C_7H_{11}N_2^+ \cdot C_{13}H_9N_2O_3^-$, the dihedral angle between the benzene rings in the anion is 35.14 (8)°. In the crystal, centrosymmetrically related anions associate *via* hydroxyl–carboxylate O–H···O hydrogen bonds, resulting in a 24-membered {···OC_3N_2C_4OH}₂ synthon. The cations are associated with this dimeric unit *via* pyridinium–carboxylate N–H···O hydrogen bonds. Weak C–H···O links further consolidate the packing, generating layers.

Related literature

For a discussion of co-crystal terminology, see: Zukerman-Schpector & Tiekink (2008). For related co-crystallization studies, see: Broker & Tiekink (2007); Broker *et al.* (2008); Ellis *et al.* (2009). For related investigations with 2-(4-hydroxyphenylazo)benzoic acid, see: Corlette & Tiekink (2009); Arman *et al.* (2009). For hydrogen-bond motifs, see: Etter (1990).

Experimental

Crystal data $C_7H_{11}N_2^+ \cdot C_{13}H_9N_2O_3^ M_r = 364.40$ Monoclinic, $P2_1/n$

a = 9.240 (4) Åb = 10.924 (4) Åc = 17.598 (7) Å $\beta = 92.002 \ (8)^{\circ}$ $V = 1775.2 \ (12) \ \text{\AA}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku AFC12K/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.769, T_{max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.135$ S = 1.124060 reflections 252 parameters $\mu = 0.09 \text{ mm}^{-1}$ T = 98 K $0.35 \times 0.25 \times 0.15 \text{ mm}$

12887 measured reflections 4060 independent reflections 3553 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

2 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.33$ e Å⁻³ $\Delta \rho_{min} = -0.32$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3o···O2 ⁱ	0.84	1.77	2.602 (2)	174
N3-H3n···O1	0.88	1.78	2.641 (2)	166
C15−H15···O2 ⁱⁱ	0.95	2.41	3.300 (3)	157
C19−H19a···O3 ⁱⁱⁱ	0.98	2.58	2.968 (3)	103
Symmetry codes: (i) $-x$	+1, -y + 1, -	z + 1; (ii) $-x +$	$\frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (i	iii) $x, y, z - 1$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5243).

References

Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, 03178–03179.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). *CrystEngComm*, **10**, 879–887

- Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.
- Corlette, E. M. & Tiekink, E. R. T. (2009). J. Chem. Crystallogr. 39, 603-606.

Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). *CrystEngComm*, **11**, 1352–1361.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 233-234.

supporting information

Acta Cryst. (2009). E65, o3226 [doi:10.1107/S1600536809050132]

4-(Dimethylamino)pyridinium 2-(4-hydroxyphenyldiazenyl)benzoate

Hadi D. Arman, Tyler Miller and Edward R. T. Tiekink

S1. Comment

The motivation of our studies into co-crystal formation (Broker & Tiekink, 2007; Broker *et al.*, 2008; Ellis *et al.*, 2009) revolves around a desire to establish a hierarchy of hydrogen bonding interactions (Etter, 1990). Studies with 2-(4-hy-droxyphenylazo)benzoic acid reveal the formation of a co-crystal when co-crystallized with *N*,*N*'-bis(4-pyridylmethyl)-oxamide (Arman *et al.*, 2009) but a salt was formed with 1,2-(4-pyridyl)ethane (Corlette & Tiekink, 2009); see Zukerman-Schpector & Tiekink (2008) for a discussion on terminology.

In (I), proton transfer from the carboxylic acid group in 2-(4-hydroxyphenylazo)benzoic acid to the pyridine-N1 atom has occurred during co-crystallization from a methanol solution containing stoichiometric amounts of the reagents, Figs 1 and 2. The NMe₂ group in the cation is co-planar with the (N3, C14—C18) ring as seen in the C15–C14–N4–C19 torsion angle of -179.04 (17) °. By contrast, the 2-(4-hydroxyphenylazo)benzoate anion is non-planar with the dihedral angle formed between the (C1—C6) and (C8—C13) rings being 35.14 (8) °. There is a twist about the C2–N1 bond as seen in the C1–C2–N1–N2 torsion angle of -148.88 (15) °. Further, the carboxylate group is twisted out of the benzene ring to which it is connected: the C2–C1–C7–O1 torsion angle is -134.83 (17) °. The C7–O1 and C7–O2 bond distances of 1.259 (2) Å and 1.260 (2) Å are indistinguishable, consistent with deprotonation.

The crystal packing in (I) is dominated by O–H···O and N–H···O hydrogen bonding. Centrosymmetrically related anions associate by hydrogen bonds formed between the hydroxyl and O2-carboxylate groups. The association leads to the formation of a 24-membered {···OC₃N₂C₄OH}₂ synthon, Fig. 3. Two cations associate with the dimeric aggregate *via* pyridinium-*N*···O1-carboxylate hydrogen bonds, Fig. 3. The resulting four component tectons are linked into effectively flat 2-D arrays in the (100) plane *via* C–H···O contacts, Table 1 and Fig. 4. Links between layers comprise weaker C–H···O contacts, Table 1, and C–H··· π interactions: C20–H20*a*···*Cg*(N3,C14–C18)ⁱ = 2.61 Å, C20···*Cg*(N2, C14–C18)ⁱ = 3.527 (3) Å, with an angle subtended at H20*a* = 155 °; i: 2 - *x*, 1 - *y*, -*z*.

S2. Experimental

Orange blocks of (I) were isolated from the co-crystallization of 1:1 molar equivalents of 2-(4-hydroxyphenylazo) benzoic acid and *p*-dimethylpyridine in a methanol solution.

S3. Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. A rotating group model was used for the methyl groups. The O– and N– bound H-atoms were located in a difference Fourier map and refined with O–H and N–H restraints of 0.840±0.001 Å and 0.88±0.001, respectively, and with $U_{iso}(H) = nU_{eq}(\text{carrier atom})$; n = 1.5 for carrier atom = O, and 1.2 for N.

Figure 1

Molecular structure of the *p*-dimethylaminopyridinium cation in (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

Molecular structure of the 2-(4-hydroxyphenylazo)benzoate anion in (I), showing displacement ellipsoids at the 50% probability level.

Figure 3

A view of a supramolecular dimer mediated by $O-H\cdots O$ hydrogen bonds (orange dashed lines) highlighting the centrosymmetric 24-membered { $\cdots OC_3N_2C_4OH$ }₂ synthon formed between anions, and the attachment of two cations *via* N-H $\cdots O$ hydrogen bonding (orange dashed lines). Hydrogen atoms not participating in hydrogen bonding are omitted for clarity. Colour code: O, red; N, blue; C, grey; and H, green.

Figure 4

A view of the layer in (I) in which the aggregates shown in Fig. 3 are linked *via* C–H…O contacts (green dashed lines). Hydrogen atoms not participating in intermolecular interactions are omitted for clarity. Colour code: O, red; N, blue; C, grey; and H, green.

 $k = -14 \rightarrow 14$

 $l = -20 \rightarrow 22$

4-(Dimethylamino)pyridinium 2-(4-hydroxyphenyldiazenyl)benzoate

Crystal data	
$C_7H_{11}N_2^+C_{13}H_9N_2O_3^-$	F(000) = 768
$M_r = 364.40$	$D_{\rm x} = 1.363 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo Ka radiation, $\lambda = 0.71069$ Å
Hall symbol: -P 2yn	Cell parameters from 7530 reflections
a = 9.240 (4) Å	$\theta = 2.2 - 40.7^{\circ}$
b = 10.924 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 17.598 (7) Å	T = 98 K
$\beta = 92.002 \ (8)^{\circ}$	Block, orange
$V = 1775.2 (12) \text{ Å}^3$	$0.35 \times 0.25 \times 0.15 \text{ mm}$
<i>Z</i> = 4	
Data collection	
Rigaku AFC12K/SATURN724	12887 measured reflections
diffractometer	4060 independent reflections
Radiation source: fine-focus sealed tube	3553 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
ωscans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 12$

(ABSCOR; Higashi, 1995)

 $T_{\min} = 0.769, T_{\max} = 1$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
S = 1.12	H-atom parameters constrained
4060 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 0.902P]$
252 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.33 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.52078 (13)	0.70075 (11)	0.20136 (6)	0.0231 (3)
O2	0.51014 (13)	0.74136 (12)	0.32532 (6)	0.0248 (3)
O3	0.72197 (13)	0.39214 (12)	0.69176 (7)	0.0252 (3)
H3O	0.6507	0.3446	0.6871	0.038*
N1	0.79272 (15)	0.65156 (12)	0.37743 (8)	0.0198 (3)
N2	0.86170 (15)	0.66758 (13)	0.43984 (8)	0.0213 (3)
N3	0.65513 (17)	0.60354 (14)	0.08591 (8)	0.0244 (3)
H3N	0.6072	0.6460	0.1193	0.029*
N4	0.86335 (17)	0.38316 (14)	-0.06666 (8)	0.0253 (3)
C1	0.73363 (18)	0.77410 (15)	0.26482 (9)	0.0186 (3)
C2	0.83605 (18)	0.73634 (14)	0.32047 (9)	0.0187 (3)
C3	0.97934 (18)	0.77841 (15)	0.31800 (9)	0.0210 (3)
Н3	1.0502	0.7485	0.3537	0.025*
C4	1.01826 (19)	0.86322 (16)	0.26387 (9)	0.0229 (4)
H4	1.1151	0.8924	0.2631	0.028*
C5	0.91532 (19)	0.90559 (16)	0.21068 (9)	0.0228 (4)
Н5	0.9406	0.9662	0.1748	0.027*
C6	0.77532 (18)	0.85902 (15)	0.21011 (9)	0.0206 (3)
H6	0.7068	0.8852	0.1720	0.025*
C7	0.57669 (18)	0.73456 (14)	0.26416 (9)	0.0183 (3)
C8	0.82313 (18)	0.58820 (15)	0.49950 (9)	0.0200 (3)
С9	0.8914 (2)	0.61107 (19)	0.56988 (10)	0.0318 (4)
Н9	0.9628	0.6736	0.5741	0.038*
C10	0.8577 (2)	0.5449 (2)	0.63363 (10)	0.0331 (5)
H10	0.9058	0.5618	0.6811	0.040*

C11	0.75306 (18)	0.45340 (15)	0.62834 (9)	0.0204 (3)
C12	0.6840 (2)	0.42969 (16)	0.55792 (10)	0.0248 (4)
H12	0.6124	0.3674	0.5538	0.030*
C13	0.7188 (2)	0.49608 (16)	0.49430 (9)	0.0244 (4)
H13	0.6715	0.4789	0.4467	0.029*
C14	0.79702 (18)	0.45414 (15)	-0.01652 (9)	0.0213 (3)
C15	0.82162 (19)	0.44292 (16)	0.06333 (9)	0.0230 (3)
H15	0.8879	0.3836	0.0832	0.028*
C16	0.7501 (2)	0.51729 (16)	0.11111 (10)	0.0249 (4)
H16	0.7675	0.5084	0.1644	0.030*
C17	0.6284 (2)	0.61699 (17)	0.01041 (10)	0.0261 (4)
H17	0.5608	0.6771	-0.0071	0.031*
C18	0.6963 (2)	0.54610 (17)	-0.04107 (10)	0.0255 (4)
H18	0.6764	0.5580	-0.0939	0.031*
C19	0.8367 (2)	0.39889 (19)	-0.14862 (10)	0.0307 (4)
H19A	0.7346	0.3821	-0.1615	0.046*
H19B	0.8978	0.3419	-0.1762	0.046*
H19C	0.8599	0.4831	-0.1630	0.046*
C20	0.9618 (2)	0.28541 (17)	-0.04192 (11)	0.0289 (4)
H20A	1.0554	0.3207	-0.0258	0.043*
H20B	0.9755	0.2285	-0.0841	0.043*
H20C	0.9207	0.2414	0.0008	0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0229 (6)	0.0285 (6)	0.0177 (5)	-0.0021 (5)	-0.0007 (4)	-0.0009 (5)
O2	0.0268 (6)	0.0295 (7)	0.0182 (6)	-0.0064 (5)	0.0033 (5)	-0.0022 (5)
03	0.0237 (6)	0.0323 (7)	0.0196 (6)	-0.0071 (5)	-0.0010 (5)	0.0071 (5)
N1	0.0228 (7)	0.0189 (7)	0.0177 (6)	0.0007 (5)	0.0005 (5)	0.0003 (5)
N2	0.0226 (7)	0.0223 (7)	0.0189 (7)	-0.0005 (5)	-0.0002 (5)	0.0014 (6)
N3	0.0289 (8)	0.0249 (7)	0.0194 (7)	-0.0001 (6)	0.0029 (6)	-0.0015 (6)
N4	0.0280 (8)	0.0263 (8)	0.0214 (7)	0.0064 (6)	-0.0031 (6)	-0.0024 (6)
C1	0.0226 (8)	0.0186 (7)	0.0145 (7)	-0.0009 (6)	0.0008 (6)	-0.0018 (6)
C2	0.0233 (8)	0.0170 (7)	0.0157 (7)	-0.0012 (6)	0.0013 (6)	-0.0017 (6)
C3	0.0224 (8)	0.0226 (8)	0.0181 (7)	-0.0001 (6)	0.0002 (6)	-0.0014 (6)
C4	0.0222 (8)	0.0256 (8)	0.0210 (8)	-0.0043 (7)	0.0017 (6)	-0.0031 (7)
C5	0.0288 (9)	0.0234 (8)	0.0163 (7)	-0.0045 (7)	0.0030 (6)	0.0005 (6)
C6	0.0251 (8)	0.0219 (8)	0.0146 (7)	-0.0021 (6)	-0.0009 (6)	0.0003 (6)
C7	0.0213 (8)	0.0167 (7)	0.0167 (7)	-0.0001 (6)	0.0006 (6)	0.0014 (6)
C8	0.0216 (8)	0.0202 (8)	0.0183 (8)	0.0001 (6)	0.0007 (6)	0.0013 (6)
C9	0.0311 (10)	0.0398 (11)	0.0241 (9)	-0.0168 (8)	-0.0049 (7)	0.0059 (8)
C10	0.0337 (10)	0.0447 (11)	0.0204 (8)	-0.0158 (9)	-0.0081 (7)	0.0069 (8)
C11	0.0204 (8)	0.0226 (8)	0.0182 (7)	0.0010 (6)	0.0013 (6)	0.0037 (6)
C12	0.0306 (9)	0.0229 (8)	0.0208 (8)	-0.0084 (7)	-0.0021 (7)	0.0005 (7)
C13	0.0314 (9)	0.0244 (8)	0.0171 (8)	-0.0051 (7)	-0.0037 (7)	0.0001 (7)
C14	0.0232 (8)	0.0193 (8)	0.0211 (8)	-0.0010 (6)	-0.0005 (6)	0.0011 (6)
C15	0.0262 (9)	0.0216 (8)	0.0211 (8)	-0.0017 (6)	-0.0015 (6)	0.0049 (7)

supporting information

C16	0.0299 (9)	0.0256 (8)	0.0192 (8)	-0.0036 (7)	-0.0008 (7)	0.0035 (7)	
C17	0.0285 (9)	0.0263 (9)	0.0234 (8)	0.0040 (7)	-0.0013 (7)	0.0019 (7)	
C18	0.0297 (9)	0.0294 (9)	0.0172 (8)	0.0063 (7)	-0.0020 (7)	0.0008 (7)	
C19	0.0348 (10)	0.0374 (10)	0.0200 (8)	0.0098 (8)	0.0000 (7)	-0.0036 (8)	
C20	0.0311 (10)	0.0230 (8)	0.0325 (9)	0.0077 (7)	-0.0005 (7)	-0.0013 (8)	

Geometric parameters (Å, °)

01—C7	1.259 (2)	C8—C9	1.393 (2)
O2—C7	1.260 (2)	C8—C13	1.394 (2)
O3—C11	1.341 (2)	C9—C10	1.379 (3)
O3—H3O	0.8401	С9—Н9	0.9500
N1—N2	1.263 (2)	C10—C11	1.392 (2)
N1-C2	1.432 (2)	C10—H10	0.9500
N2—C8	1.417 (2)	C11—C12	1.398 (2)
N3—C17	1.351 (2)	C12—C13	1.381 (2)
N3—C16	1.352 (2)	C12—H12	0.9500
N3—H3N	0.8801	C13—H13	0.9500
N4-C14	1.339 (2)	C14—C15	1.421 (2)
N4—C20	1.459 (2)	C14—C18	1.426 (2)
N4—C19	1.465 (2)	C15—C16	1.358 (3)
C1—C2	1.400 (2)	C15—H15	0.9500
C1—C6	1.401 (2)	C16—H16	0.9500
C1—C7	1.513 (2)	C17—C18	1.362 (2)
С2—С3	1.404 (2)	C17—H17	0.9500
C3—C4	1.385 (2)	C18—H18	0.9500
С3—Н3	0.9500	C19—H19A	0.9800
C4—C5	1.390 (2)	C19—H19B	0.9800
C4—H4	0.9500	C19—H19C	0.9800
C5—C6	1.390 (2)	C20—H20A	0.9800
С5—Н5	0.9500	C20—H20B	0.9800
С6—Н6	0.9500	C20—H20C	0.9800
С11—О3—НЗО	114.6	C11—C10—H10	120.1
N2—N1—C2	111.98 (14)	O3—C11—C10	118.12 (15)
N1—N2—C8	115.30 (14)	O3—C11—C12	122.74 (16)
C17—N3—C16	119.54 (15)	C10—C11—C12	119.15 (15)
C17—N3—H3N	121.3	C13—C12—C11	120.58 (16)
C16—N3—H3N	119.0	C13—C12—H12	119.7
C14—N4—C20	121.47 (15)	C11—C12—H12	119.7
C14—N4—C19	121.06 (15)	C12—C13—C8	120.40 (16)
C20—N4—C19	117.45 (15)	C12—C13—H13	119.8
C2—C1—C6	118.72 (15)	C8—C13—H13	119.8
C2—C1—C7	123.06 (14)	N4—C14—C15	122.72 (16)
C6—C1—C7	118.07 (14)	N4—C14—C18	121.14 (15)
C1—C2—C3	119.81 (15)	C15—C14—C18	116.14 (15)
C1C2N1	118.78 (15)	C16—C15—C14	119.77 (16)
C3—C2—N1	121.37 (15)	C16—C15—H15	120.1

C4—C3—C2	120.54 (16)	C14—C15—H15	120.1
С4—С3—Н3	119.7	N3—C16—C15	122.57 (16)
С2—С3—Н3	119.7	N3—C16—H16	118.7
C3—C4—C5	119.84 (16)	С15—С16—Н16	118.7
C3—C4—H4	120.1	N3—C17—C18	121.32 (16)
C5—C4—H4	120.1	N3-C17-H17	1193
C6-C5-C4	119.85 (16)	C18—C17—H17	119.3
C6—C5—H5	120.1	C17 - C18 - C14	120.67 (16)
C4—C5—H5	120.1	C17—C18—H18	1197
C5-C6-C1	121.05 (15)	C14—C18—H18	119.7
C5—C6—H6	119.5	N4-C19-H19A	109 5
C1 - C6 - H6	119.5	N4—C19—H19B	109.5
01 - C7 - 02	124 71 (16)	H19A—C19—H19B	109.5
01 - C7 - C1	117.02(14)	N4-C19-H19C	109.5
$0^{2}-0^{7}-0^{1}$	118 22 (14)	H19A - C19 - H19C	109.5
$C_{2} = C_{1}$	118 59 (16)	H19B - C19 - H19C	109.5
C9-C8-N2	115 54 (15)	N4—C20—H20A	109.5
C13 - C8 - N2	125 76 (15)	N4-C20-H20B	109.5
C10-C9-C8	121.40(17)	$H_{20}A = C_{20} = H_{20}B$	109.5
C10-C9-H9	119.3	N4-C20-H20C	109.5
C8—C9—H9	119.3	$H_{20}A - C_{20} - H_{20}C$	109.5
C9-C10-C11	119.87 (17)	$H_{20B} = C_{20} = H_{20C}$	109.5
C9-C10-H10	120.1		109.5
	120.1		
C2—N1—N2—C8	179.04 (13)	N2—C8—C9—C10	176.36 (19)
C6—C1—C2—C3	-3.6 (2)	C8—C9—C10—C11	-0.2 (3)
C7—C1—C2—C3	-179.01 (15)	C9—C10—C11—O3	-179.18 (18)
C6-C1-C2-N1	178.65 (14)	C9—C10—C11—C12	0.2 (3)
C7—C1—C2—N1	3.2 (2)	O3—C11—C12—C13	179.40 (17)
N2—N1—C2—C1	-148.88 (15)	C10-C11-C12-C13	0.0 (3)
N2—N1—C2—C3	33.4 (2)	C11—C12—C13—C8	-0.3 (3)
C1—C2—C3—C4	4.2 (2)	C9—C8—C13—C12	0.3 (3)
N1-C2-C3-C4	-178.05 (15)	N2-C8-C13-C12	-175.72 (17)
C2—C3—C4—C5	-1.1 (2)	C20—N4—C14—C15	2.5 (3)
C3—C4—C5—C6	-2.6 (3)	C19—N4—C14—C15	-179.04 (17)
C4—C5—C6—C1	3.2 (3)	C20—N4—C14—C18	-177.34 (17)
C2-C1-C6-C5	-0.1 (2)	C19—N4—C14—C18	1.1 (3)
C7—C1—C6—C5	175.56 (15)	N4—C14—C15—C16	-179.58 (17)
C2-C1-C7-O1	-134.83 (17)	C18—C14—C15—C16	0.3 (2)
C6—C1—C7—O1	49.7 (2)	C17—N3—C16—C15	0.4 (3)
C2—C1—C7—O2	47.4 (2)	C14—C15—C16—N3	-0.3 (3)
C6—C1—C7—O2	-128.09 (17)	C16—N3—C17—C18	-0.6 (3)
N1—N2—C8—C9	-175.62 (16)	N3-C17-C18-C14	0.7 (3)
N1—N2—C8—C13	0.5 (2)	N4—C14—C18—C17	179.35 (17)
C13—C8—C9—C10	-0.1 (3)	C15-C14-C18-C17	-0.5 (3)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3—H3o…O2 ⁱ	0.84	1.77	2.602 (2)	174
N3—H3n…O1	0.88	1.78	2.641 (2)	166
C15—H15····O2 ⁱⁱ	0.95	2.41	3.300 (3)	157
C19—H19a···O3 ⁱⁱⁱ	0.98	2.58	2.968 (3)	103

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+3/2, *y*-1/2, -*z*+1/2; (iii) *x*, *y*, *z*-1.