

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(2,2'-bi-1*H*-imidazole- $\kappa^2 N^3$, $N^{3'}$)nickel(II) bis(3-methylbenzoate) 3-methylbenzoic acid disolvate

Zhou Hui

College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China Correspondence e-mail: hedazhouhui@163.com

Received 14 October 2009; accepted 27 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; Hatom completeness 87%; disorder in main residue; R factor = 0.091; wR factor = 0.269; data-to-parameter ratio = 15.4.

In the title compound, $[Ni(C_6H_6N_4)_2(H_2O)_2](C_8H_7O_2)_2$ -2 $C_8H_8O_2$, the Ni^{II} atom (site symmetry $\overline{1}$) is coordinated by two *N*,*N'*-bidentate 2,2'-biimidazole ligands and two water molecules, resulting in a slightly distorted *trans*-NiO₂N₄ geometry for the metal ion. In the crystal, the components are linked by N-H···O and O-H···O hydrogen bonds, generating an infinite two-dimensional network running parallel to (100). The methyl group of the benzoic acid molecule is disordered over two sites in a 0.563 (17):0.437 (17) ratio.

Related literature

For a related structure, see: Yang et al. (2009).

Experimental

Crystal data $[Ni(C_6H_6N_4)_2(H_2O)_2](C_8H_7O_2)_2$ -- $2C_8H_8O_2$ $M_r = 905.60$ Monoclinic, C2/c

a = 34.747 (15) Å b = 9.237 (4) Å c = 14.099 (6) Å $\beta = 93.564 (8)^{\circ}$ $V = 4516 (3) \text{ Å}^{3}$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.886, T_{\rm max} = 0.939$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.091$ $wR(F^2) = 0.269$ S = 1.004417 reflections 287 parameters 12 restraints 12088 measured reflections 4417 independent reflections 2926 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.057$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 2.27 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.39 \text{ e } \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Ni1-N1	2.092 (3)	Ni1 - O1W	2.105 (3)
Ni1-N4	2.097 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$04-H4\cdots O2^{i}$	0.852 (8)	1.759 (9)	2.606 (4)	172 (3)
	$01W-H1WB\cdots O3$	0.849 (7)	2.094 (10)	2.897 (4)	158 (2)
	$01W-H1WA\cdots O1$	0.847 (7)	1.819 (8)	2.649 (3)	166 (2)
	$N3-H3A\cdots O2^{ii}$	0.890 (9)	1.920 (12)	2.763 (3)	157 (2)
	$N2-H2A\cdots O1^{ii}$	0.889 (8)	1.854 (9)	2.732 (3)	169.4 (19)

Symmetry codes: (i) x, y - 1, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5141).

References

Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yang, L. F., Cao, M. L., Mo, H. J., Hao, H. G., Wu, J. J., Zhang, J. P. & Ye, B. H. (2009). *CrystEngComm*, **11**, 1114–1121.

metal-organic compounds

supporting information

Acta Cryst. (2009). E65, m1497 [doi:10.1107/S1600536809044705]

Diaquabis(2,2'-bi-1*H*-imidazole- $\kappa^2 N^3$, N^3 ')nickel(II) bis(3-methylbenzoate) 3-methylbenzoic acid disolvate

Zhou Hui

S1. Comment

2,2'-Biimidazole is an interesting ligand because it has two N sites and two –NH donors. Both N-donors having the stronger coordination ability and flexible coordination modes. Moreover, two –NH donors can interact with other hydrogen bonding acceptors *via* hydrogen bonds (Yang *et al.*, 2009). Herein, we report the title compound, (I).

In the symmetric unit of (I), Ni²⁺ having an inversion centre is coordinated by two water molecules occupied the axial sites and two 2,2'-biimidazole ligands through respective two N atoms occupied the equatorial plane, which results in a more regular octahedron (Ni1—N1 2.092 (3) Å; Ni1—N4 2.097 (3) Å; Ni1—O1W 2.105 (3) Å). Each water molecule interacts with 3-methyl-benzenecarboxylate and 3-methyl-benzenecarboxylic acid through O1W—H1WA···O1 and O1W —H1WA···O3 hydrogen bonds (Fig. 1). Adjacent units are linked together by two pairs of N2—H2A···O1 and N3—H3A···O1, and one O4—H4···O2 hydrogen bonds into an infinite two-dimensional network along the (100) direction (Fig. 2).

S2. Experimental

NiSO₄.6H₂O(0.18 g, 0.70 mmol) was added into the aqueous solution (15 ml) including 3-methyl-benzenecarboxylic acid (0.14 g, 1.0 mmol) and NaOH (0.04 g, 1.0 mmol) and refluxed for 30 min. Then an ethanol solution (10 ml) containing 2,2'-biimidazole (0.08 g, 0.60 mmol) was slowly added with continuous stirring. The resulting solution was refluxed for 3 h, filtered and kept for crystallization. After nine days, green blocks of (I) were obtained.

S3. Refinement

H atoms bonded to N atoms, carboxyl and water O atoms are located from the difference maps and refined isotropically with 0.89 (1) Å for N—H, 0.85 (1) Å for O—H and the distance H…H = 1.34 (1) Å from water molecule using *DFIX* commands, respectively. All the remaining H atoms were positioned geometrically with C–H = 0.93 Å (aromatic) and 0.96 Å (methyl) and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ (aromatic) and 1.5 $U_{eq}(C)$ (methyl). The disordered methyl carbon was devided into two parts C22 and C22' with the anisotrophic displacement parameters 0.102 and 0.117, respectively. H atoms bound to them are not added.

Figure 1

Molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. H-bonds are shown as dashed lines. Disordered part of C22' and H atoms not involved in the hydrogen bonds have been omitted for the clarity. Unlabeled atoms are related to labeled atoms by the symmetry transformation 1/2 - x, 1/2 - y, -z.

Figure 2

Part of the crystal structure of (I), showing the formation of the two-dimensional network along the (100) direction. Hydrogen bonds are shown as dashed lines. Disordered part of C22' and H atoms not involved in the hydrogen bonds have been omitted for the clarity.

Diaquabis $(2,2'-bi-1H-imidazole-\kappa^2N^3,N^3)$ nickel(II) bis(3-methylbenzoate) 3-methylbenzoic acid disolvate

Crystal data	
[Ni(C ₆ H ₆ N ₄) ₂ (H ₂ O) ₂](C ₈ H ₇ O ₂) ₂ ·2C ₈ H ₈ O ₂ $M_r = 905.60$ Monoclinic, C2/c Hall symbol: -C 2yc a = 34.747 (15) Å b = 9.237 (4) Å c = 14.099 (6) Å $\beta = 93.564$ (8)° V = 4516 (3) Å ³ Z = 4	F(000) = 1896 $D_x = 1.332 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2285 reflections $\theta = 2.3-22.7^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 296 K Block, green $0.25 \times 0.19 \times 0.13 \text{ mm}$
Data collection Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator 0.3° wide ω exposures scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.886, T_{\max} = 0.939$	12088 measured reflections 4417 independent reflections 2926 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -41 \rightarrow 42$ $k = -11 \rightarrow 10$ $l = -12 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.091$	H atoms treated by a mixture of independent
$wR(F^2) = 0.269$	and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.1377P)^2 + 26.2495P]$
4417 reflections	where $P = (F_o^2 + 2F_c^2)/3$
287 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
12 restraints	$\Delta ho_{ m max} = 2.27 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Nil	0.2500	0.2500	0.0000	0.03434 (15)	
N1	0.23426 (8)	0.0763 (3)	0.08464 (19)	0.0378 (7)	
N2	0.20745 (8)	0.0135 (3)	0.2167 (2)	0.0439 (8)	
H2A	0.1934 (3)	0.014 (4)	0.2673 (7)	0.052 (11)*	
N3	0.18763 (9)	0.3465 (3)	0.2311 (2)	0.0497 (8)	
H3A	0.1819 (7)	0.2986 (18)	0.2832 (8)	0.052 (4)*	
N4	0.21821 (9)	0.3628 (3)	0.0979 (2)	0.0428 (8)	
O3	0.37232 (9)	0.1134 (4)	0.1108 (3)	0.0818 (11)	
O4	0.40602 (10)	-0.0866 (4)	0.1032 (3)	0.0912 (13)	
H4	0.3851 (3)	-0.1337 (17)	0.108 (2)	0.040 (10)*	
O1W	0.29960 (7)	0.2675 (2)	0.09288 (19)	0.0485 (7)	
H1WA	0.3112 (4)	0.3481 (6)	0.094 (2)	0.024 (8)*	
H1WB	0.3173 (3)	0.2048 (8)	0.090 (3)	0.065 (13)*	
C1	0.23884 (11)	-0.0697 (4)	0.0987 (3)	0.0453 (10)	
H1	0.2515	-0.1321	0.0593	0.054*	
C2	0.22193 (11)	-0.1089 (4)	0.1793 (2)	0.0455 (10)	
H2	0.2206	-0.2019	0.2041	0.055*	
C3	0.21533 (10)	0.1215 (4)	0.1581 (2)	0.0370 (8)	
C4	0.20634 (10)	0.2754 (4)	0.1646 (3)	0.0406 (9)	
C5	0.18747 (12)	0.4897 (4)	0.2047 (3)	0.0561 (11)	
Н5	0.1767	0.5661	0.2368	0.067*	
C6	0.20573 (12)	0.4988 (4)	0.1241 (3)	0.0563 (11)	
H6	0.2095	0.5839	0.0906	0.068*	

C15	0.40297 (13)	0.0524 (5)	0.1077 (3)	0.0600 (12)	
C16	0.44042 (13)	0.1300 (6)	0.1130 (3)	0.0694 (14)	
C17	0.44083 (15)	0.2790 (6)	0.1168 (3)	0.0726 (15)	
H17	0.4175	0.3279	0.1184	0.087*	
C18	0.47472 (17)	0.3594 (7)	0.1183 (4)	0.1015 (19)	
C19	0.5081 (2)	0.2839 (10)	0.1168 (6)	0.144 (3)	
H19	0.5312	0.3347	0.1164	0.173*	
C20	0.50918 (19)	0.1346 (10)	0.1159 (6)	0.138 (3)	
H20	0.5328	0.0868	0.1188	0.166*	
C21	0.47463 (5)	0.05430 (17)	0.11043 (11)	0.116 (3)	
H21	0.4748	-0.0461	0.1053	0.140*	
C22	0.47839 (5)	0.50541 (17)	0.12443 (11)	0.102 (5)*	0.437 (17)
C22′	0.46819 (5)	0.54041 (17)	0.12053 (11)	0.117 (4)*	0.563 (17)
01	0.32801 (5)	0.53214 (17)	0.11606 (11)	0.0665 (9)	
O2	0.34258 (5)	0.76257 (17)	0.10071 (11)	0.0758 (10)	
C7	0.34256 (5)	0.63145 (17)	0.07347 (11)	0.0528 (11)	
C8	0.36146 (5)	0.59948 (17)	-0.01813 (11)	0.0536 (11)	
С9	0.37173 (5)	0.45833 (17)	-0.04007 (11)	0.0560 (11)	
Н9	0.3662	0.3844	0.0017	0.067*	
C10	0.38992 (13)	0.4239 (6)	-0.1220 (3)	0.0663 (14)	
C11	0.39556 (13)	0.5355 (7)	-0.1846 (3)	0.0798 (17)	
H11	0.4069	0.5150	-0.2411	0.096*	
C12	0.38518 (13)	0.6747 (7)	-0.1668 (3)	0.0777 (15)	
H12	0.3887	0.7467	-0.2116	0.093*	
C13	0.36927 (13)	0.7085 (5)	-0.0815 (3)	0.0660 (13)	
H13	0.3639	0.8043	-0.0670	0.079*	
C14	0.40365 (16)	0.2721 (6)	-0.1383 (4)	0.0880 (17)	
H14A	0.4071	0.2582	-0.2047	0.132*	
H14B	0.3849	0.2044	-0.1179	0.132*	
H14C	0.4277	0.2566	-0.1027	0.132*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.0416 (3)	0.0285 (3)	0.0337 (3)	0.0008 (3)	0.0086 (2)	0.0003 (2)
N1	0.0382 (15)	0.0335 (14)	0.0427 (15)	-0.0014 (12)	0.0097 (12)	-0.0007 (12)
N2	0.0453 (16)	0.0449 (16)	0.0422 (15)	-0.0005 (13)	0.0087 (13)	0.0048 (13)
N3	0.0542 (17)	0.0502 (16)	0.0464 (16)	0.0046 (14)	0.0160 (13)	0.0003 (14)
N4	0.0506 (16)	0.0339 (14)	0.0457 (15)	-0.0016 (13)	0.0165 (13)	-0.0025 (12)
03	0.0574 (18)	0.069 (2)	0.120 (3)	-0.0004 (16)	0.0135 (18)	-0.0039 (19)
04	0.070 (2)	0.069 (2)	0.135 (3)	0.0079 (18)	0.016 (2)	-0.008 (2)
O1W	0.0504 (14)	0.0431 (14)	0.0523 (14)	-0.0011 (12)	0.0068 (11)	0.0002 (11)
C1	0.054 (2)	0.0344 (17)	0.0485 (19)	0.0021 (16)	0.0121 (16)	-0.0034 (15)
C2	0.060 (2)	0.0359 (17)	0.0407 (18)	-0.0001 (16)	0.0068 (16)	0.0080 (15)
C3	0.0375 (17)	0.0382 (17)	0.0353 (16)	-0.0004 (14)	0.0028 (13)	0.0007 (14)
C4	0.0418 (18)	0.0376 (18)	0.0432 (18)	0.0012 (14)	0.0074 (14)	-0.0022 (14)
C5	0.067 (2)	0.045 (2)	0.058 (2)	0.0105 (19)	0.0118 (19)	-0.0050 (18)
C6	0.077 (3)	0.0348 (18)	0.059 (2)	0.0029 (18)	0.025 (2)	-0.0019 (17)

supporting information

C15	0.058 (2)	0.068 (3)	0.055 (2)	0.001 (2)	0.0119 (19)	0.001 (2)
C16	0.050(2)	0.105 (4)	0.054 (2)	-0.007 (2)	0.0080 (19)	-0.012 (2)
C17	0.068 (3)	0.092 (3)	0.057 (3)	-0.022 (3)	0.005 (2)	-0.006 (2)
C18	0.095 (4)	0.146 (5)	0.065 (3)	-0.057 (3)	0.020 (3)	-0.025 (3)
C19	0.076 (4)	0.233 (8)	0.126 (6)	-0.068 (5)	0.022 (4)	-0.042 (5)
C20	0.053 (3)	0.207 (8)	0.153 (7)	0.003 (5)	-0.001 (4)	-0.027 (7)
C21	0.077 (4)	0.145 (6)	0.128 (5)	0.009 (4)	0.010 (4)	-0.038 (5)
01	0.0949 (19)	0.0607 (16)	0.0472 (14)	-0.0204 (15)	0.0307 (14)	-0.0076 (13)
O2	0.101 (2)	0.0515 (16)	0.0805 (19)	-0.0076 (16)	0.0458 (16)	-0.0024 (14)
C7	0.056 (2)	0.054 (2)	0.049 (2)	-0.0049 (19)	0.0106 (17)	-0.0028 (18)
C8	0.054 (2)	0.070 (2)	0.0381 (18)	-0.005 (2)	0.0124 (16)	0.0022 (18)
C9	0.052 (2)	0.068 (2)	0.048 (2)	-0.003 (2)	0.0063 (18)	-0.0046 (19)
C10	0.051 (2)	0.094 (3)	0.053 (2)	0.000 (2)	0.0013 (19)	-0.015 (2)
C11	0.057 (2)	0.135 (4)	0.049 (2)	0.009 (3)	0.0175 (19)	0.006 (3)
C12	0.060 (3)	0.118 (4)	0.057 (2)	0.003 (3)	0.018 (2)	0.027 (3)
C13	0.055 (2)	0.081 (3)	0.063 (2)	-0.001 (2)	0.015 (2)	0.020 (2)
C14	0.083 (3)	0.102 (4)	0.080 (3)	0.015 (3)	0.015 (3)	-0.038 (3)

Geometric parameters (Å, °)

Ni1—N1 ⁱ	2.092 (3)	C16—C21	1.381 (5)
Ni1—N1	2.092 (3)	C16—C17	1.378 (7)
Ni1—N4 ⁱ	2.097 (3)	C17—C18	1.391 (7)
Ni1—N4	2.097 (3)	С17—Н17	0.9300
Ni1—O1W ⁱ	2.105 (3)	C18—C19	1.354 (10)
Ni1—O1W	2.105 (3)	C18—C22	1.357 (7)
N1—C3	1.328 (4)	C18—C22′	1.688 (7)
N1—C1	1.371 (4)	C19—C20	1.380 (12)
N2—C3	1.335 (4)	С19—Н19	0.9300
N2—C2	1.357 (5)	C20—C21	1.409 (8)
N2—H2A	0.889 (8)	С20—Н20	0.9300
N3—C4	1.345 (5)	C21—H21	0.9300
N3—C5	1.374 (5)	O1—C7	1.2229
N3—H3A	0.890 (9)	O2—C7	1.2706
N4—C4	1.325 (4)	С7—С8	1.5138
N4—C6	1.387 (5)	C8—C13	1.384 (5)
O3—C15	1.208 (5)	C8—C9	1.3917
O4—C15	1.290 (6)	C9—C10	1.388 (5)
O4—H4	0.852 (8)	С9—Н9	0.9300
O1W—H1WA	0.847 (7)	C10—C11	1.379 (7)
O1W—H1WB	0.849 (7)	C10—C14	1.503 (7)
C1—C2	1.362 (5)	C11—C12	1.362 (8)
C1—H1	0.9300	C11—H11	0.9300
С2—Н2	0.9300	C12—C13	1.391 (7)
C3—C4	1.460 (5)	C12—H12	0.9300
C5—C6	1.338 (6)	С13—Н13	0.9300
С5—Н5	0.9300	C14—H14A	0.9600
С6—Н6	0.9300	C14—H14B	0.9600

supporting information

C15—C16	1.483 (6)	C14—H14C	0.9600
N1 ⁱ —Ni1—N1	180.0	O3—C15—C16	123.0 (4)
N1 ⁱ —Ni1—N4 ⁱ	80.71 (11)	O4—C15—C16	114.2 (4)
N1—Ni1—N4 ⁱ	99.29 (11)	C21—C16—C17	120.0 (4)
N1 ⁱ —Ni1—N4	99.29 (11)	C21—C16—C15	120.5 (4)
N1—Ni1—N4	80.71 (11)	C17—C16—C15	119.5 (4)
N4 ⁱ —Ni1—N4	180.0	C16—C17—C18	122.7 (5)
N1 ⁱ —Ni1—O1W ⁱ	86.39 (10)	С16—С17—Н17	118.6
N1-Ni1-O1W ⁱ	93.61 (10)	С18—С17—Н17	118.6
N4 ⁱ —Ni1—O1W ⁱ	89.82 (11)	C19—C18—C22	115.8 (5)
N4—Ni1—O1W ⁱ	90.18 (11)	C19—C18—C17	116.7 (7)
N1 ⁱ —Ni1—O1W	93.61 (10)	C22-C18-C17	127.4 (5)
N1—Ni1—O1W	86.39 (10)	C19-C18-C22'	128.8(5)
N4 ⁱ —Ni1—O1W	90.18 (11)	C22-C18-C22'	13.21 (8)
N4—Ni1—O1W	89.82 (11)	C_{17} $-C_{18}$ $-C_{22}'$	1145(5)
$01W^{i}$ Ni1 $-01W$	180.0	C_{18} C_{19} C_{20}	111.5(3) 1226(7)
$C_3 - N_1 - C_1$	100.0	C_{18} C_{19} H_{19}	122.0 (7)
$C_3 N_1 N_1$	101.0(3) 111.3(2)	C_{20} C_{19} H_{19}	118.7
$C1$ _N1_Ni1	143.6(2)	$C_{10} - C_{20} - C_{21}$	120.1 (6)
$C_1 = N_1 = N_1$	1067(3)	C_{19} C_{20} H_{20}	110.0
$C_3 = N_2 = C_2$	100.7(3)	C_{1}^{21} C_{20}^{20} H20	110.0
$C_2 N_2 H_2 \Lambda$	129(2) 124(2)	$C_{21} = C_{20} = 1120$	117.5 117.6(A)
$C_2 - N_2 - M_2 A$	124(2) 1060(3)	$C_{10} = C_{21} = C_{20}$	121.2
C4 N3 H3A	100.0(3) 118.4(13)	$C_{10} = C_{21} = H_{21}$	121.2
C_{1} N_{2} N_{3} N_{3	110.4(13) 134.8(12)	$C_{20} = C_{21} = 1121$	121.2
C_{3} NA C_{6}	104.3(12)	01 - 07 - 02	124.0
C4 = N4 = C0	104.3(3)	01 - 07 - 08	119.1
C4 N4 N51	111.4(2) 144.2(2)	02-07-08	110.9 119.4(2)
$C_{15} O_{4} H_{4}$	144.3(2)	$C_{13} = C_{8} = C_{7}$	110.4(2) 121.4(2)
$\frac{11}{100} = \frac{11}{100} = 1$	115.0(12)	$C_{13} = C_{8} = C_{7}$	121.4(2)
NII—OIW—HIWA	110.0(14)	$C_{2} = C_{2} = C_{2}$	120.2 122.4(2)
H1WA = O1W = H1WP	119(2) 104.7 (10)	$C_{10} = C_{9} = C_{8}$	122.4 (2)
$\Pi WA = 01 W = \Pi WB$	104.7(10) 100.2(2)	C_{10} C_{9} C_{10} H_{9}	110.0
$C_2 = C_1 = M_1$	109.3 (3)	$C_{0} - C_{9} - H_{9}$	110.0 116.9(4)
$C_2 - C_1 - H_1$	125.4	C11 - C10 - C14	110.8(4) 122.7(4)
NI = CI = HI	123.4	C11 - C10 - C14	122.7(4) 120.4(4)
$N_2 = C_2 = C_1$	107.0 (3)	C_{9} C_{10} C_{14} C_{12} C_{11} C_{10}	120.4(4)
$N_2 = C_2 = H_2$	120.3	C12 $C11$ $U11$	122.0 (4)
C1 - C2 - H2	120.3	CI2—CII—HII	118./
NI = C3 = N2	112.3(3)		110./
$NI = C_3 = C_4$	118.2(3)	CII = CI2 = CI3	119.0 (5)
N4 = C4 = N2	129.5 (3)	C12 - C12 - H12	120.2
N4 - C4 - C2	112.3 (3)	$C_{13} - C_{12} - H_{12}$	120.2
N4 - C4 - C3	118.1 (3)	$C_{0} = C_{12} = U_{12}$	120.0 (4)
N3-C4-C3	129.4 (3)	C8—C13—H13	120.0
C6-C5-N3	10/.3 (3)	C12—C13—H13	120.0
Co-CS-H5	126.4	C10—C14—H14A	109.5
N3—C5—H5	126.4	C10—C14—H14B	109.5

C5—C6—N4	110.0 (3)	H14A—C14—H14B	109.5
С5—С6—Н6	125.0	C10-C14-H14C	109.5
N4—C6—H6	125.0	H14A—C14—H14C	109.5
O3—C15—O4	122.8 (4)	H14B—C14—H14C	109.5

Symmetry code: (i) -x+1/2, -y+1/2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
04—H4···O2 ⁱⁱ	0.85 (1)	1.76 (1)	2.606 (4)	172 (3)
O1 <i>W</i> —H1 <i>WB</i> ···O3	0.85(1)	2.09(1)	2.897 (4)	158 (2)
O1 <i>W</i> —H1 <i>WA</i> ···O1	0.85(1)	1.82 (1)	2.649 (3)	166 (2)
N3—H3A····O2 ⁱⁱⁱ	0.89(1)	1.92 (1)	2.763 (3)	157 (2)
N2—H2A····O1 ⁱⁱⁱ	0.89 (1)	1.85 (1)	2.732 (3)	169 (2)

Symmetry codes: (ii) *x*, *y*–1, *z*; (iii) –*x*+1/2, *y*–1/2, –*z*+1/2.