metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Dichloridobis[tris(4-methoxyphenyl)phosphine]palladium(II) benzene monosolvate

Charmaine van Blerk* and Cedric W. Holzapfel

University of Johannesburg, Department of Chemistry, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: cvanblerk@uj.ac.za

Received 23 September 2009; accepted 3 November 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 21.3.

The structure of the title compound, $[PdCl_2(C_{21}H_{21}O_3P)_2]$ - C_6H_6 , shows a square-planar geometry for the Pd^{II} atom within a $Cl_2[P(PhOMe)_3]_2$ ligand set. The crystal structure contains benzene as solvent. The Pd^{II} atom sits on a centre of inversion and therefore the asymmetric unit contains the Pd^{II} atom, one Cl atom, one tris(4-methoxyphenyl)phosphine ligand and one half of the benzene solvent molecule.

Related literature

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002); Van Leeuwen *et al.* (2003); Williams *et al.* (2008).

Experimental

Crystal data

 $[PdCl_{2}(C_{21}H_{21}O_{3}P)_{2}]\cdot C_{6}H_{6}$ $M_{r} = 960.10$ Triclinic, $P\overline{1}$ a = 7.9338 (2) Å b = 12.1886 (3) Å c = 12.5268 (3) Å $\alpha = 85.981$ (3)° $\beta = 78.840$ (2)°

Data collection

```
Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(APEX2 AX-Scale; Bruker, 2008)
T_{\rm min} = 0.813, T_{\rm max} = 0.939
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.097$ S = 1.085781 reflections $\gamma = 76.155 (2)^{\circ}$ $V = 1153.57 (5) \text{ Å}^3$ Z = 1Mo K\alpha radiation $\mu = 0.63 \text{ mm}^{-1}$ T = 295 K $0.34 \times 0.24 \times 0.10 \text{ mm}$

31847 measured reflections 5781 independent reflections 4546 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.046$

271 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=1.26\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.53\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *SMART-NT* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2009).

The authors acknowledge the University of the Witwatersrand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2192).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (1999). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2008). SAINT and APEX2 AX-Scale. Bruker AXS Inc., Madison,
- Bruker (2008). SAINT and APEX2 AX-Scale. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Robertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev. 225, 67–90.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc. 125, 5523–5539.
- Westrip, S. P. (2009). publCIF. In preparation.
- Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.

supporting information

Acta Cryst. (2009). E65, m1536 [doi:10.1107/S1600536809046261]

trans-Dichloridobis[tris(4-methoxyphenyl)phosphine]palladium(II) benzene monosolvate

Charmaine van Blerk and Cedric W. Holzapfel

S1. Comment

The palladium-catalysed methoxycarbonylation (Robertson & Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The palladium complexes $(Ar_3P)_2PdX_2$ (X = Cl, DMS, OTf *etc.*) are the preferred catalysts but most quantitative studies have been carried out with complexes where the phosphine ligand is limited to triphenylphosphine. The X-ray structures (Van Leeuwen *et al.*, 2003 and Williams *et al.*, 2008) of several of this class of palladium(II) complexes have been determined. Our studies (Williams *et al.*, 2008) on the effect of substituents on the triarylphosphine ligands on regioselectivity and reaction rate showed *trans*-dichloro-bis[tris-(4-methoxy)phosphine] palladium(II) to be an exceptionally efficient catalyst for the production of linear esters from 1-alkenes at high rates.

The structure of the title compound (I), $[PdCl_2(C_{42}H_{42}P_2O_6).C_6H_6]$ shows a square planar geometry for the Pd^{II} atom within the $Cl_2(P(PhOMe)_3)$ ligand set. The crystal structure contains benzene as a solvate. The solvent molecule exhibits noticeable disorder but this disorder was not modelled. The palladium atom sits on a centre of inversion and therefore the asymmetric unit contains the palladium atom, one chlorine atom, one tris-(4-methoxyphenyl)phenylphosphine ligand and one half of the benzene solvent molecule.

S2. Experimental

Tris-(4-methoxyphenyl)phosphine (704 mg, 0.2 mmol) was added to a solution of lithium chloride (85 mg, 0.2 mmol) and palladium(II) chloride (177 mg, 0.1 mmol) in 15 ml me thanol. The mixture was heated under reflux in an atmosphere of nitrogen for 1 h resulting in the formation of the product as a yellow precipitate. The solution was allowed to cool to room temperature and the product (710 mg) was collected by filtration, washed with fresh methanol and dried under vacuum. The product was recrystallized from 1:1 ethyl acetate:benzene to furnish yellow plates (m. p. $> 250^{\circ}$ C, decomp.) A suitable single-crystal was selected for the single-crystal X-ray diffraction analysis.

S3. Refinement

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and $U_{iso}(H) = 1.2Ueq(C)$ or 1.5Ueq(N). For (I), the highest peak in the final difference map is 0.98Å from C15 and the deepest hole is 0.01Å from Pd1.

Figure 1

Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with (i) are at symmetry position (-x, -y, -z) and atoms labelled with (ii) are at symmetry position (-x + 1, -y + 1, -z + 1)

trans-Dichloridobis[tris(4-methoxyphenyl)phosphine]palladium(II) benzene monosolvate

Crvstal	data
Cr ybrar	cicicic

 $[PdCl_2(C_{21}H_{21}O_3P)_2] \cdot C_6H_6$ $M_r = 960.10$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.9338 (2) Å *b* = 12.1886 (3) Å c = 12.5268 (3) Å $\alpha = 85.981 (3)^{\circ}$ $\beta = 78.840 \ (2)^{\circ}$ $\gamma = 76.155 (2)^{\circ}$ $V = 1153.57 (5) \text{ Å}^3$

Data collection

Bruker SMART CCD	31847 measured reflection
diffractometer	5781 independent reflect
Radiation source: fine-focus sealed tube	4546 reflections with $I >$
Graphite monochromator	$R_{\rm int} = 0.046$
φ and ω scans	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(APEX2 Ax-Scale; Bruker, 2008)	$k = -16 \rightarrow 16$
$T_{\min} = 0.813, \ T_{\max} = 0.939$	$l = -16 \rightarrow 16$

Z = 1F(000) = 494 $D_{\rm x} = 1.382 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9954 reflections $\theta = 1.7 - 28.3^{\circ}$ $\mu = 0.63 \text{ mm}^{-1}$ T = 295 KFlat, yellow $0.34 \times 0.24 \times 0.10 \text{ mm}$

ons ions $2\sigma(I)$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 1.08	H-atom parameters constrained
5781 reflections	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 0.8985P]$
271 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.26 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.53 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4425 (16)	0.4281 (7)	0.5761 (6)	0.155 (3)
H1	0.4046	0.3780	0.6295	0.186*
C2	0.5827 (15)	0.4708 (8)	0.5889 (6)	0.157 (3)
H2	0.6361	0.4503	0.6495	0.188*
C3	0.3558 (14)	0.4537 (7)	0.4915 (8)	0.164 (3)
Н3	0.2608	0.4232	0.4866	0.197*
C11	0.0548 (3)	0.1003 (2)	-0.2660 (2)	0.0322 (5)
C12	-0.0842 (4)	0.0505 (3)	-0.2715 (2)	0.0394 (6)
H12	-0.1180	0.0008	-0.2162	0.047*
C13	-0.1725 (4)	0.0744 (3)	-0.3587 (2)	0.0457 (7)
H13	-0.2650	0.0406	-0.3614	0.055*
C14	-0.1248 (4)	0.1475 (3)	-0.4413 (2)	0.0415 (6)
C15	0.0146 (4)	0.1971 (3)	-0.4377 (2)	0.0491 (8)
H15	0.0490	0.2459	-0.4937	0.059*
C16	0.1017 (4)	0.1736 (3)	-0.3504 (2)	0.0451 (7)
H16	0.1941	0.2076	-0.3481	0.054*
C17	-0.1700 (5)	0.2373 (4)	-0.6136 (3)	0.0663 (10)
H17A	-0.1778	0.3112	-0.5882	0.099*
H17B	-0.2476	0.2429	-0.6647	0.099*
H17C	-0.0508	0.2058	-0.6484	0.099*
C21	0.2612 (3)	0.1876 (2)	-0.1422 (2)	0.0319 (5)
C22	0.4426 (4)	0.1803 (2)	-0.1504 (2)	0.0379 (6)
H22	0.5220	0.1107	-0.1627	0.046*
C23	0.5046 (4)	0.2750 (3)	-0.1406 (3)	0.0462 (7)
H23	0.6252	0.2685	-0.1460	0.055*

C24	0.3887 (4)	0.3800 (2)	-0.1227 (2)	0.0419 (7)
C25	0.2087 (4)	0.3885 (2)	-0.1136 (2)	0.0417 (7)
H25	0.1297	0.4582	-0.1011	0.050*
C26	0.1472 (4)	0.2935 (2)	-0.1233 (2)	0.0383 (6)
H26	0.0264	0.3004	-0.1169	0.046*
C27	0.3489 (6)	0.5791 (3)	-0.1038 (4)	0.0781 (13)
H27A	0.2900	0.5975	-0.1650	0.117*
H27B	0.4168	0.6336	-0.0997	0.117*
H27C	0.2628	0.5801	-0.0382	0.117*
C31	0.3704 (3)	-0.0450 (2)	-0.2019 (2)	0.0305 (5)
C32	0.4241 (4)	-0.0750 (2)	-0.3103 (2)	0.0381 (6)
H32	0.3637	-0.0348	-0.3627	0.046*
C33	0.5670 (4)	-0.1644 (3)	-0.3409 (2)	0.0465 (7)
H33	0.6017	-0.1840	-0.4136	0.056*
C34	0.6591 (4)	-0.2253 (2)	-0.2634 (3)	0.0408 (6)
C35	0.6116 (4)	-0.1934 (3)	-0.1561 (3)	0.0438 (7)
H35	0.6766	-0.2308	-0.1046	0.053*
C36	0.4660 (4)	-0.1053 (2)	-0.1256 (2)	0.0406 (6)
H36	0.4315	-0.0861	-0.0528	0.049*
C37	0.8756 (5)	-0.3895 (3)	-0.2234 (4)	0.0722 (11)
H37A	0.9291	-0.3483	-0.1822	0.108*
H37B	0.9644	-0.4495	-0.2604	0.108*
H37C	0.7882	-0.4206	-0.1751	0.108*
O1	-0.2204 (3)	0.1654 (2)	-0.52266 (18)	0.0592 (6)
O2	0.4641 (3)	0.46844 (19)	-0.1165 (2)	0.0626 (7)
O3	0.7933 (3)	-0.31468 (19)	-0.3017 (2)	0.0576 (6)
P1	0.17506 (8)	0.06402 (5)	-0.15376 (5)	0.02933 (15)
Cl1	-0.05138 (11)	0.16975 (6)	0.08394 (6)	0.04878 (19)
Pd1	0.0000	0.0000	0.0000	0.02850 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.264 (12)	0.110 (5)	0.087 (5)	-0.034 (6)	-0.030 (6)	-0.009 (4)
C2	0.244 (11)	0.137 (7)	0.080 (5)	-0.018 (7)	-0.037 (6)	-0.015 (5)
C3	0.256 (11)	0.129 (6)	0.109 (6)	-0.046 (7)	-0.024 (7)	-0.038 (5)
C11	0.0305 (13)	0.0349 (14)	0.0304 (13)	-0.0055 (11)	-0.0069 (10)	0.0006 (10)
C12	0.0387 (15)	0.0453 (16)	0.0373 (14)	-0.0170 (13)	-0.0083 (12)	0.0075 (12)
C13	0.0408 (16)	0.0573 (19)	0.0461 (16)	-0.0236 (14)	-0.0117 (13)	0.0031 (14)
C14	0.0414 (15)	0.0484 (17)	0.0375 (15)	-0.0109 (13)	-0.0138 (12)	0.0001 (13)
C15	0.0554 (19)	0.066 (2)	0.0372 (15)	-0.0340 (16)	-0.0158 (14)	0.0154 (14)
C16	0.0459 (16)	0.0534 (18)	0.0454 (16)	-0.0264 (14)	-0.0173 (13)	0.0123 (14)
C17	0.078 (3)	0.084 (3)	0.051 (2)	-0.036 (2)	-0.0331 (19)	0.0202 (19)
C21	0.0367 (14)	0.0303 (13)	0.0295 (12)	-0.0101 (11)	-0.0070 (10)	0.0036 (10)
C22	0.0368 (14)	0.0323 (14)	0.0446 (15)	-0.0063 (11)	-0.0088 (12)	-0.0016 (12)
C23	0.0355 (15)	0.0440 (17)	0.063 (2)	-0.0147 (13)	-0.0126 (14)	0.0005 (14)
C24	0.0517 (17)	0.0324 (15)	0.0478 (16)	-0.0156 (13)	-0.0181 (14)	0.0039 (12)
C25	0.0450 (16)	0.0287 (14)	0.0496 (16)	-0.0043 (12)	-0.0109 (13)	0.0018 (12)

C26	0.0340 (14)	0.0343 (14)	0.0464 (16)	-0.0079 (11)	-0.0089 (12)	0.0042 (12)
C27	0.079 (3)	0.0346 (18)	0.129 (4)	-0.0176 (18)	-0.033 (3)	0.000 (2)
C31	0.0321 (13)	0.0273 (13)	0.0333 (13)	-0.0080 (10)	-0.0079 (10)	0.0000 (10)
C32	0.0359 (14)	0.0416 (16)	0.0358 (14)	-0.0051 (12)	-0.0091 (11)	-0.0008 (12)
C33	0.0428 (16)	0.0565 (19)	0.0360 (15)	-0.0031 (14)	-0.0041 (12)	-0.0101 (13)
C34	0.0316 (14)	0.0369 (15)	0.0525 (17)	-0.0071 (12)	-0.0040 (12)	-0.0053 (13)
C35	0.0431 (16)	0.0401 (16)	0.0491 (17)	-0.0053 (13)	-0.0182 (13)	0.0048 (13)
C36	0.0462 (16)	0.0403 (16)	0.0345 (14)	-0.0048 (13)	-0.0124 (12)	-0.0008 (12)
C37	0.061 (2)	0.054 (2)	0.090 (3)	0.0119 (18)	-0.018 (2)	-0.001 (2)
01	0.0633 (15)	0.0806 (17)	0.0476 (13)	-0.0328 (13)	-0.0299 (11)	0.0164 (12)
O2	0.0640 (15)	0.0374 (12)	0.0955 (19)	-0.0198 (11)	-0.0262 (14)	-0.0028 (12)
O3	0.0453 (12)	0.0516 (13)	0.0654 (15)	0.0089 (10)	-0.0076 (11)	-0.0073 (11)
P1	0.0311 (3)	0.0287 (3)	0.0285 (3)	-0.0080 (3)	-0.0054 (3)	0.0009 (3)
Cl1	0.0675 (5)	0.0326 (4)	0.0444 (4)	-0.0180 (3)	0.0051 (3)	-0.0086 (3)
Pd1	0.03329 (16)	0.02494 (15)	0.02737 (15)	-0.00770 (11)	-0.00467 (11)	-0.00023 (10)

Geometric parameters (Å, °)

C1—C3	1.351 (11)	C24—O2	1.366 (4)	
C1—C2	1.375 (12)	C24—C25	1.390 (4)	
C1—H1	0.9300	C25—C26	1.380 (4)	
C2-C3 ⁱ	1.413 (11)	C25—H25	0.9300	
С2—Н2	0.9300	C26—H26	0.9300	
$C3-C2^i$	1.413 (11)	С27—О2	1.436 (4)	
С3—Н3	0.9300	C27—H27A	0.9600	
C11—C16	1.388 (4)	C27—H27B	0.9600	
C11—C12	1.395 (4)	С27—Н27С	0.9600	
C11—P1	1.820 (3)	C31—C32	1.389 (4)	
C12—C13	1.387 (4)	C31—C36	1.394 (4)	
С12—Н12	0.9300	C31—P1	1.815 (3)	
C13—C14	1.374 (4)	C32—C33	1.386 (4)	
С13—Н13	0.9300	С32—Н32	0.9300	
C14—O1	1.360 (3)	C33—C34	1.393 (4)	
C14—C15	1.392 (4)	С33—Н33	0.9300	
C15—C16	1.382 (4)	C34—O3	1.368 (3)	
С15—Н15	0.9300	C34—C35	1.381 (4)	
С16—Н16	0.9300	C35—C36	1.388 (4)	
C17—O1	1.441 (4)	С35—Н35	0.9300	
С17—Н17А	0.9600	С36—Н36	0.9300	
С17—Н17В	0.9600	С37—ОЗ	1.434 (4)	
С17—Н17С	0.9600	С37—Н37А	0.9600	
C21—C26	1.394 (4)	С37—Н37В	0.9600	
C21—C22	1.404 (4)	С37—Н37С	0.9600	
C21—P1	1.821 (3)	P1—Pd1	2.3496 (6)	
C22—C23	1.380 (4)	Cl1—Pd1	2.2995 (7)	
С22—Н22	0.9300	Pd1—Cl1 ⁱⁱ	2.2995 (7)	
C23—C24	1.389 (4)	Pd1—P1 ⁱⁱ	2.3496 (6)	
С23—Н23	0.9300			

C3—C1—C2	124.8 (9)	C25—C26—C21	121.8 (3)
С3—С1—Н1	117.6	С25—С26—Н26	119.1
C2—C1—H1	117.6	С21—С26—Н26	119.1
C1-C2-C3 ⁱ	118.8 (8)	O2—C27—H27A	109.5
C1—C2—H2	120.6	O2—C27—H27B	109.5
C3 ⁱ —C2—H2	120.6	H27A—C27—H27B	109.5
C1-C3-C2 ⁱ	116.3 (9)	O2—C27—H27C	109.5
С1—С3—Н3	121.8	H27A—C27—H27C	109.5
C2 ⁱ —C3—H3	121.8	H27B—C27—H27C	109.5
C16—C11—C12	118.0 (2)	C32—C31—C36	118.4 (2)
C16—C11—P1	121.9 (2)	C32—C31—P1	123.13 (19)
C12—C11—P1	120.1 (2)	C36—C31—P1	118.4 (2)
C13—C12—C11	120.5 (3)	C33—C32—C31	120.5 (3)
C13—C12—H12	119.7	С33—С32—Н32	119.8
C11—C12—H12	119.7	С31—С32—Н32	119.8
C14—C13—C12	120.7 (3)	C32—C33—C34	120.4 (3)
C14—C13—H13	119.6	С32—С33—Н33	119.8
C12—C13—H13	119.6	С34—С33—Н33	119.8
O1—C14—C13	116.0 (3)	O3—C34—C35	124.8 (3)
O1—C14—C15	124.5 (3)	O3—C34—C33	115.6 (3)
C13—C14—C15	119.5 (3)	C35—C34—C33	119.7 (3)
C16—C15—C14	119.6 (3)	C34—C35—C36	119.5 (3)
C16—C15—H15	120.2	С34—С35—Н35	120.2
C14—C15—H15	120.2	С36—С35—Н35	120.2
C15—C16—C11	121.6 (3)	C35—C36—C31	121.4 (3)
C15—C16—H16	119.2	С35—С36—Н36	119.3
C11—C16—H16	119.2	С31—С36—Н36	119.3
O1—C17—H17A	109.5	O3—C37—H37A	109.5
O1—C17—H17B	109.5	O3—C37—H37B	109.5
H17A—C17—H17B	109.5	Н37А—С37—Н37В	109.5
O1—C17—H17C	109.5	O3—C37—H37C	109.5
H17A—C17—H17C	109.5	Н37А—С37—Н37С	109.5
H17B—C17—H17C	109.5	Н37В—С37—Н37С	109.5
C26—C21—C22	117.5 (2)	C14—O1—C17	118.0 (2)
C26—C21—P1	120.6 (2)	C24—O2—C27	117.4 (3)
C22—C21—P1	122.0 (2)	C34—O3—C37	117.7 (3)
C23—C22—C21	120.9 (3)	C31—P1—C11	106.73 (12)
C23—C22—H22	119.5	C31—P1—C21	104.02 (12)
C21—C22—H22	119.5	C11—P1—C21	104.27 (12)
C22—C23—C24	120.6 (3)	C31—P1—Pd1	111.03 (8)
С22—С23—Н23	119.7	C11—P1—Pd1	111.08 (9)
C24—C23—H23	119.7	C21—P1—Pd1	118.81 (9)
O2—C24—C23	115.9 (3)	Cl1 ⁱⁱ —Pd1—Cl1	180.00 (4)
O2—C24—C25	124.9 (3)	Cl1 ⁱⁱ —Pd1—P1	88.38 (2)
C23—C24—C25	119.2 (3)	Cl1—Pd1—P1	91.62 (2)
C26—C25—C24	120.0 (3)	$C11^{ii}$ —Pd1—P1 ⁱⁱ	91.62 (2)
С26—С25—Н25	120.0	Cl1—Pd1—P1 ⁱⁱ	88.38 (2)

supporting information

С24—С25—Н25	120.0	P1—Pd1—P1 ⁱⁱ	180.00 (3)
C3—C1—C2—C3 ⁱ	-0.6 (15)	P1-C31-C36-C35	176.8 (2)
$C2-C1-C3-C2^{i}$	0.5 (15)	C13—C14—O1—C17	-177.2 (3)
C16—C11—C12—C13	-0.3 (4)	C15—C14—O1—C17	2.6 (5)
P1-C11-C12-C13	-177.6 (2)	C23—C24—O2—C27	176.8 (3)
C11—C12—C13—C14	0.0 (5)	C25—C24—O2—C27	-2.5 (5)
C12-C13-C14-O1	-179.7 (3)	C35—C34—O3—C37	8.5 (5)
C12—C13—C14—C15	0.6 (5)	C33—C34—O3—C37	-171.3 (3)
O1—C14—C15—C16	179.4 (3)	C32—C31—P1—C11	10.3 (3)
C13—C14—C15—C16	-0.9 (5)	C36—C31—P1—C11	-166.3 (2)
C14—C15—C16—C11	0.6 (5)	C32—C31—P1—C21	-99.6 (2)
C12-C11-C16-C15	0.0 (5)	C36—C31—P1—C21	83.8 (2)
P1-C11-C16-C15	177.2 (3)	C32—C31—P1—Pd1	131.5 (2)
C26—C21—C22—C23	-0.3 (4)	C36—C31—P1—Pd1	-45.2 (2)
P1-C21-C22-C23	-179.5 (2)	C16—C11—P1—C31	-80.9 (3)
C21—C22—C23—C24	-0.2 (5)	C12-C11-P1-C31	96.3 (2)
C22—C23—C24—O2	-178.6 (3)	C16-C11-P1-C21	28.8 (3)
C22—C23—C24—C25	0.6 (5)	C12-C11-P1-C21	-154.0 (2)
O2—C24—C25—C26	178.8 (3)	C16—C11—P1—Pd1	157.9 (2)
C23—C24—C25—C26	-0.4 (4)	C12-C11-P1-Pd1	-24.9 (2)
C24—C25—C26—C21	-0.1 (4)	C26—C21—P1—C31	170.1 (2)
C22—C21—C26—C25	0.5 (4)	C22—C21—P1—C31	-10.8 (2)
P1-C21-C26-C25	179.7 (2)	C26—C21—P1—C11	58.4 (2)
C36—C31—C32—C33	1.4 (4)	C22-C21-P1-C11	-122.5 (2)
P1-C31-C32-C33	-175.3 (2)	C26—C21—P1—Pd1	-65.9 (2)
C31—C32—C33—C34	-0.2 (5)	C22—C21—P1—Pd1	113.2 (2)
C32—C33—C34—O3	177.4 (3)	C31—P1—Pd1—Cl1 ⁱⁱ	-41.94 (9)
C32—C33—C34—C35	-2.4 (5)	C11—P1—Pd1—Cl1 ⁱⁱ	76.66 (10)
O3—C34—C35—C36	-176.1 (3)	C21—P1—Pd1—Cl1 ⁱⁱ	-162.45 (10)
C33—C34—C35—C36	3.7 (5)	C31—P1—Pd1—Cl1	138.06 (9)
C34—C35—C36—C31	-2.6 (5)	C11—P1—Pd1—Cl1	-103.34 (10)
C32—C31—C36—C35	0.0 (4)	C21—P1—Pd1—Cl1	17.55 (10)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z.