Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

catena-Poly[[diaquazinc(II)]- μ-piper-
 azine-1,4-diacetato- $\left.\kappa^{4} N^{1}, O^{1}: N^{4}, O^{4}\right]$

Jian-Hong Bi

Deparment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
Correspondence e-mail: bi010101@126.com

Received 24 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$;
R factor $=0.018 ; w R$ factor $=0.050$; data-to-parameter ratio $=14.4$.

The asymmetric unit of the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, contains a $\mathrm{Zn}^{\text {II }}$ ion residing on an inversion center, half of a centrosymmetric piperazine-1,4-diacetate ligand (L) and a water molecule. The $\mathrm{Zn}^{\mathrm{II}}$ ion is trans-coordinated by two N, O-bidentate L ligands and by two water molecules in a distorted octahedral geometry. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link polymeric chains into a three-dimensional supramolecular structure.

Related literature

For related structures, see: Wu \& Mak (1996); Zhang \& Chen (2003); Shen et al. (2006); Yang et al. (2008); Zhang et al. (2008).

Experimental

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad M_{r}=301.62$

Monoclinic, $P 2_{1} / c$
$a=6.3670$ (1) A
$b=7.3116$ (10) \AA
$c=11.9910(1) \AA$
$\beta=101.438(10)^{\circ}$
$V=547.13(1) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=2.27 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
$0.30 \times 0.15 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.517, T_{\text {max }}=0.766$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.050$
$S=1.07$
1255 reflections
87 parameters
2 restraints

5254 measured reflections
1255 independent reflections 1173 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {i }}$	0.813 (19)	2.000 (19)	2.8060 (16)	172.9 (19)
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\text {ii }}$	0.826 (15)	1.927 (15)	2.7497 (15)	175 (2)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author is indebted to the National Natural Science Foundation of China (grant No. 20871039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2645).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shen, L., Wang, F.-W., Cheng, A.-B. \& Yang, S. (2006). Acta Cryst. E62, o2242o2244.
Wu, D. D. \& Mak, T. C. W. (1996). Inorg. Chim. Acta, 253, m15-m21.
Yang, J., Lu, N., Zhang, G., Cheng, L. \& Gou, S. H. (2008). Polyhedron, 27, m2119-m2126.
Zhang, X. M. \& Chen, X. M. (2003). Inorg. Chem. Commun. 6, m206-m209.
Zhang, R. F., Shi, W. \& Cheng, P. (2008). Chin. J. Inorg. Chem. 24, m1272m1277.

supporting information

catena-Poly[[diaquazinc(II)]- μ-piperazine-1,4-diacetato- $\left.\kappa^{4} N^{1}, O^{1}: N^{4}, O^{4}\right]$

Jian-Hong Bi

S1. Comment

Researchers have shown their interest in design and synthesis of polydentate flexible ligands, which propagated a family of piperazine-based ligands, because the chair configuration of piperazine can reduce their coordination modes, which makes piperazine or its related species structurally or functionally directing polymeric constructions (Shen et al., 2006; Wu et al., 1996; Yang et al., 2008; Zhang et al., 2008; Zhang et al., 2003). Herein, based on bridging 1,4-piperazinediacetic acid, we report the title compound and present its crystal structure.
The coordination geometry about $\mathrm{Zn}(\mathrm{II})$ center is shown in Fig.1. The $\mathrm{Zn}(\mathrm{II})$ center adopts an octahedral coordination geometry, in which two N atoms and two O atoms from two ligands are in the equatorial plane while the apical positions are occupied by two O atoms from water molecules. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link polymeric chains into three-dimensional supramolecular structure.

S2. Experimental

All solvents and chemicals were of analytical grade and were used without further purification. A mixture of $\mathrm{H}_{2} L .2 \mathrm{HCl}$ $(0.1 \mathrm{mmol}), \mathrm{ZnCl}_{2}(0.1 \mathrm{mmol})$, and water $(10 \mathrm{ml})$ were heated in a $15-\mathrm{ml}$ Teflon-lined vessel at 120 oC for 3 days, followed by slow cooling ($5 \mathrm{oCh}-1$) to room temperature. After filtration and washing with $\mathrm{H}_{2} \mathrm{O}$, colorless block crystals were collected and dried in air. Anal. Calcd.for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Zn}: \mathrm{C}, 31.86$; H, 5.35; N, 9.29. Found: C, 31.88; H,5.39; N, 9.22 .

S3. Refinement

C-bound H atoms weregeometrically positioned $\left(\mathrm{C}-\mathrm{H} 0.93-0.97 \AA\right.$) and refined as riding, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})$. Atoms H 3 A and H 3 B were located on a difference map, and refined with bond restraint $\mathrm{O}-\mathrm{H}=0.82$ (2) \AA as riding, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=\mathrm{U}_{\text {eq }}(\mathrm{O})$.

Figure 1
A portion of the polymeric chain in (I) showing 30% probability displacement ellipsoids and the atomic numbering [symmetry codes: (A) $1-x,-y, 1-z$; (B) $-x,-y, 1-z]$.

catena-Poly[[diaquazinc(II)]- μ-piperazine-1,4-diacetato- $\left.\kappa^{4} N^{1}, O^{1}: N^{4}, O^{4}\right]$

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=301.62$
Monoclinic, $P 2_{1} / c$
Hall symbol: - P 2ybc
$a=6.3670$ (1) \AA
$b=7.3116$ (1) \AA
$c=11.9910$ (1) \AA
$\beta=101.438(1)^{\circ}$
$V=547.13$ (1) \AA^{3}
$Z=2$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.517, T_{\text {max }}=0.766$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.050$
$S=1.07$
1255 reflections
87 parameters
2 restraints
$F(000)=312.0$
$D_{\mathrm{x}}=1.831 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1255 reflections
$\theta=3.3-27.5^{\circ}$
$\mu=2.27 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Block, colourless
$0.30 \times 0.15 \times 0.12 \mathrm{~mm}$

5254 measured reflections
1255 independent reflections
1173 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-7 \rightarrow 9$
$l=-15 \rightarrow 12$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0264 P)^{2}+0.2196 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.3930(2)$	$0.34321(18)$	$0.39316(11)$	$0.0202(3)$
C2	$0.2110(2)$	$0.32565(19)$	$0.45839(13)$	$0.0246(3)$
H2A	0.2484	0.3936	0.5290	0.029^{*}
H2B	0.0826	0.3804	0.4137	0.029^{*}
C3	$0.0594(2)$	$0.1341(2)$	$0.58516(12)$	$0.0223(3)$
H3C	-0.0658	0.2127	0.5701	0.027^{*}
H3D	0.1581	0.1831	0.6505	0.027^{*}
C4	$0.0075(2)$	$0.0568(2)$	$0.38757(12)$	$0.0221(3)$
H4A	0.0714	0.0528	0.3206	0.026^{*}
H4B	-0.1179	0.1350	0.3709	0.026^{*}
H3A	$0.547(3)$	$0.101(3)$	$0.7111(15)$	$0.043(6)^{*}$
H3B	$0.607(3)$	$0.255(2)$	$0.6608(17)$	$0.042(6)^{*}$
N1	$0.16401(17)$	$0.13433(15)$	$0.48462(10)$	$0.0198(2)$
O1	$0.3977(2)$	$0.48174(13)$	$0.33348(10)$	$0.0299(2)$
O2	$0.53370(15)$	$0.22018(14)$	$0.40554(9)$	$0.0263(2)$
O3	$0.59517(17)$	$0.14245(15)$	$0.65815(9)$	$0.0265(2)$
Zn1	0.5000	0.0000	0.5000	$0.02027(9)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0241(6)$	$0.0172(6)$	$0.0196(6)$	$-0.0029(5)$	$0.0052(5)$	$-0.0009(5)$
C2	$0.0228(6)$	$0.0188(7)$	$0.0346(8)$	$0.0020(5)$	$0.0116(6)$	$0.0021(6)$
C3	$0.0198(6)$	$0.0264(7)$	$0.0224(7)$	$-0.0021(5)$	$0.0080(5)$	$-0.0027(5)$
C4	$0.0188(6)$	$0.0276(7)$	$0.0205(6)$	$-0.0001(5)$	$0.0054(5)$	$0.0020(6)$
N1	$0.0185(5)$	$0.0198(5)$	$0.0228(6)$	$-0.0020(4)$	$0.0081(4)$	$0.0006(4)$
O1	$0.0418(6)$	$0.0197(5)$	$0.0307(6)$	$0.0016(4)$	$0.0131(5)$	$0.0068(4)$
O2	$0.0255(5)$	$0.0224(5)$	$0.0351(6)$	$0.0040(4)$	$0.0162(4)$	$0.0083(4)$
O3	$0.0328(5)$	$0.0225(5)$	$0.0270(5)$	$-0.0011(4)$	$0.0125(4)$	$-0.0019(4)$
Zn1	$0.02321(13)$	$0.01652(13)$	$0.02233(13)$	$0.00056(7)$	$0.00751(9)$	$0.00295(8)$

Geometric parameters ($A,{ }^{\circ}$)

C1-O1	1.2439 (17)	C4- $\mathrm{C}^{\text {i }}{ }^{\text {a }}$	1.514 (2)
C1-O2	1.2575 (16)	C4—H4A	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	1.5269 (18)	C4-H4B	0.9700
C2-N1	1.4773 (17)	N1-Zn1	2.3278 (11)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	$\mathrm{O} 2-\mathrm{Zn} 1$	2.0042 (10)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700	$\mathrm{O} 3-\mathrm{Zn} 1$	2.1430 (11)
$\mathrm{C} 3-\mathrm{N} 1$	1.4884 (16)	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.814 (15)
C3-C4 ${ }^{\text {i }}$	1.514 (2)	O3-H3B	0.825 (16)
C3-H3C	0.9700	$\mathrm{Zn} 1-\mathrm{O} 2^{\text {ii }}$	2.0042 (10)
C3-H3D	0.9700	$\mathrm{Zn} 1-\mathrm{O}^{\text {ii }}$	2.1430 (11)
C4-N1	1.4864 (18)	$\mathrm{Zn} 1-\mathrm{N} 1^{\text {ii }}$	2.3278 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	123.53 (12)	C4-N1-C3	107.18 (10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.08 (12)	C2-N1-Zn1	101.23 (7)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.34 (12)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Zn} 1$	111.36 (8)
N1-C2-C1	113.26 (11)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Zn} 1$	119.15 (8)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.9	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Zn} 1$	119.19 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.9	$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	115.2 (15)
N1-C2-H2B	108.9	$\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	121.7 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.9	H3A-O3-H3B	112 (2)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.7	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 2$	180.0
N1-C3-C4 ${ }^{\text {i }}$	111.49 (11)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 3$	86.18 (4)
N1-C3-H3C	109.3	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 3$	93.82 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.3	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O}^{3 i}$	93.82 (4)
N1-C3-H3D	109.3	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O}^{3 i}$	86.18 (4)
C4i-C3-H3D	109.3	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 3^{\text {ii }}$	180.0
H3C-C3-H3D	108.0	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{N} 1$	100.60 (4)
N1-C4-C3 ${ }^{\text {i }}$	110.87 (11)	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 1$	79.40 (4)
N1-C4-H4A	109.5	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	87.66 (4)
C3--C4-H4A	109.5	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{N} 1$	92.34 (4)
N1-C4-H4B	109.5	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {ii }}$	79.40 (4)
C3 ${ }^{\text {i }}$ - $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5	$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 1^{\text {ii }}$	100.60 (4)
H4A-C4-H4B	108.1	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1^{1 i}$	92.34 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	109.09 (11)	O3ii- $\mathrm{Zn} 1-\mathrm{N} 1^{\text {ii }}$	87.66 (4)
C2-N1-C3	108.39 (10)	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\text {ii }}$	180.00 (6)

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{iii}}$	$0.81(2)$	$2.00(2)$	$2.8060(16)$	$173(2)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 3 B \cdots 1^{\mathrm{iv}}$	$0.83(2)$	$1.93(2)$	$2.7497(15)$	$175(2)$

Symmetry codes: (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $-x+1,-y+1,-z+1$.

