# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Tetraaquabis(2-oxo-1,2-dihydropyridine-5-sulfonato- $\kappa O^2$ )zinc(II)

#### Zhi-Biao Zhu,<sup>a</sup> Shan Gao<sup>a</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 28 September 2009; accepted 30 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.066; data-to-parameter ratio = 13.5.

The metal atom in the title compound,  $[Zn(C_5H_4NO_4S)_2(H_2O)_4]$ , lies on a center of inversion and is linked to the anionic ligand through the carbonyl O atom. In the crystal structure, the 2-oxo-1,2-dihydropyridine-5-sulfonate ligand interacts with other molecules through N-H···O and O-H···O hydrogen bonds, forming a three-dimensional network structure.

#### **Related literature**

For the crystal structure of another zwitterionic tetraaquabis(amide)–metal<sup>II</sup> complex, see: Gao *et al.* (2004).



#### **Experimental**

Crystal data  $[Zn(C_5H_4NO_4S)_2(H_2O)_4]$   $M_r = 485.74$ Monoclinic,  $P2_1/c$ 

a = 6.7701 (2) Å b = 13.9725 (5) Å c = 10.0343 (3) Å  $\beta = 115.331 (2)^{\circ}$   $V = 857.93 (5) \text{ Å}^{3}$  Z = 2Mo  $K\alpha$  radiation

#### Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995)  $T_{min} = 0.711, T_{max} = 0.768$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$  $wR(F^2) = 0.066$ S = 1.061951 reflections 144 parameters 5 restraints  $\mu = 1.74 \text{ mm}^{-1}$  T = 293 K $0.21 \times 0.16 \times 0.16 \text{ mm}$ 

8224 measured reflections 1951 independent reflections 1866 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.021$ 

#### **Table 1** Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1 - H1 \cdots O2^{i}$     | 0.85(1)  | 1.99 (1)                | 2.790 (2)    | 157 (2)                              |
| O1w−H11···O2 <sup>ii</sup>  | 0.84(1)  | 1.98 (1)                | 2.809 (2)    | 171 (2)                              |
| O1w−H12···O3 <sup>iii</sup> | 0.84(1)  | 1.93 (1)                | 2.767 (2)    | 172 (3)                              |
| O2w−H21···O3 <sup>iv</sup>  | 0.83 (1) | 2.13 (1)                | 2.926 (2)    | 160 (3)                              |
| $O2w-H22\cdots O4^{v}$      | 0.84 (1) | 1.93 (1)                | 2.765 (2)    | 174 (3)                              |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z; (iii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iv)  $x - 1, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (v) x, y, z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University, China, and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2623).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1422-m1424.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

# supporting information

## Acta Cryst. (2009). E65, m1310 [https://doi.org/10.1107/S1600536809039774]

# Tetraaquabis(2-oxo-1,2-dihydropyridine-5-sulfonato- $\kappa O^2$ )zinc(II)

## Zhi-Biao Zhu, Shan Gao and Seik Weng Ng

## **S1. Experimental**

Zinc carbonate (0.25 g, 2 mmol) was added to a hot aqueous solution of 2-hydroxypyridine 5-sulfonic acid (0.35 g, 2 mmol); the pH value was adjusted to 6 with 0.1 *M* sodium hydroxide. The solution was allowed to evaporate slowly. Colorless prismatic crystals were isolated after five days. CH&N elemental analysis. Calc. for  $C_{10}H_{16}N_2O_{12}S_2Zn$ :*C* 24.73, H 3.32, N 5.77%; found: C 24.77, H 3.37, N 5.81%.

#### S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The ammonium and water H-atoms were refined with a distance restraint of N–H = O–H 0.85±0.01 Å; their temperature factors were refined.



## Figure 1

Thermal ellipsoid plot (Barbour, 2001) of  $Zn(H_2O)_4(C_5H_4NO_4S)_2$  at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Tetraaquabis(2-oxo-1,2-dihydropyridine-5-sulfonato-κO<sup>2</sup>)zinc(II)

Crystal data  $[Zn(C_5H_4NO_4S)_2(H_2O)_4]$  $M_r = 485.74$ 

Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

 $\theta = 3.3 - 27.5^{\circ}$ 

 $\mu = 1.74 \text{ mm}^{-1}$ 

Prism, colorles

 $0.21 \times 0.16 \times 0.16$  mm

T = 293 K

Cell parameters from 7685 reflections

a = 6.7701 (2) Å b = 13.9725 (5) Å c = 10.0343 (3) Å  $\beta = 115.331 (2)^{\circ}$   $V = 857.93 (5) \text{ Å}^{3}$  Z = 2 F(000) = 496 $D_{x} = 1.880 \text{ Mg m}^{-3}$ 

### Data collection

| Rigaku R-AXIS RAPID IP                   | 8224 measured reflections                                           |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 1951 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 1866 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.021$                                               |
| $\omega$ scans                           | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$ |
| Absorption correction: multi-scan        | $h = -8 \rightarrow 8$                                              |
| (ABSCOR; Higashi, 1995)                  | $k = -17 \rightarrow 18$                                            |
| $T_{\min} = 0.711, \ T_{\max} = 0.768$   | $l = -13 \rightarrow 13$                                            |

## Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
|-------------------------------------------------|-------------------------------------------------------|
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.023$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.066$                               | neighbouring sites                                    |
| <i>S</i> = 1.06                                 | H atoms treated by a mixture of independent           |
| 1951 reflections                                | and constrained refinement                            |
| 144 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.037P)^2 + 0.5079P]$      |
| 5 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                        |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                   |
| direct methods                                  | $\Delta  ho_{ m max} = 0.37$ e Å <sup>-3</sup>        |
|                                                 | $\Delta \rho_{\min} = -0.39 \text{ e} \text{ Å}^{-3}$ |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|---------------|-----------------------------|
| Zn1 | 0.5000       | 0.5000       | 0.5000        | 0.02207 (10)                |
| S1  | 0.81951 (6)  | 0.69216 (3)  | -0.07941 (4)  | 0.01923 (11)                |
| O1  | 0.4186 (2)   | 0.54472 (10) | 0.28771 (14)  | 0.0295 (3)                  |
| O3  | 0.9550 (2)   | 0.77155 (9)  | 0.00655 (14)  | 0.0290 (3)                  |
| O2  | 0.95353 (19) | 0.61832 (9)  | -0.10431 (13) | 0.0264 (3)                  |
| O4  | 0.63570 (19) | 0.72213 (9)  | -0.21315 (13) | 0.0271 (3)                  |
| O1W | 0.20020 (19) | 0.43039 (9)  | 0.40362 (13)  | 0.0252 (2)                  |
| O2W | 0.3496 (2)   | 0.62596 (11) | 0.53828 (17)  | 0.0406 (3)                  |
| C2  | 0.7484 (3)   | 0.55821 (12) | 0.25390 (18)  | 0.0234 (3)                  |
| H2  | 0.8360       | 0.5271       | 0.3413        | 0.028*                      |
| C1  | 0.5190 (3)   | 0.56850 (11) | 0.21274 (17)  | 0.0214 (3)                  |
| N1  | 0.4007 (2)   | 0.60683 (10) | 0.07675 (15)  | 0.0229 (3)                  |
| C5  | 0.4880 (2)   | 0.64352 (13) | -0.01119 (17) | 0.0221 (3)                  |
| Н5  | 0.3979       | 0.6715       | -0.1009       | 0.027*                      |
| C4  | 0.7072 (2)   | 0.63937 (11) | 0.03179 (17)  | 0.0201 (3)                  |
| C3  | 0.8395 (3)   | 0.59340 (11) | 0.16668 (18)  | 0.0227 (3)                  |
| H3  | 0.9891       | 0.5873       | 0.1956        | 0.027*                      |

# supporting information

| H1  | 0.2625 (16) | 0.6084 (16) | 0.045 (2)   | 0.035 (6)* |
|-----|-------------|-------------|-------------|------------|
| H11 | 0.158 (4)   | 0.4218 (18) | 0.3125 (12) | 0.048 (7)* |
| H12 | 0.166 (4)   | 0.3815 (12) | 0.438 (3)   | 0.045 (7)* |
| H21 | 0.223 (2)   | 0.6479 (18) | 0.509 (3)   | 0.051 (7)* |
| H22 | 0.431 (4)   | 0.6538 (17) | 0.6168 (18) | 0.049 (7)* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|--------------|--------------|
| Zn1 | 0.02021 (15) | 0.02605 (16) | 0.02093 (15) | -0.00103 (9)  | 0.00973 (11) | 0.00145 (9)  |
| S1  | 0.01744 (18) | 0.02194 (19) | 0.01890 (19) | -0.00059 (13) | 0.00834 (14) | 0.00027 (13) |
| 01  | 0.0244 (6)   | 0.0417 (7)   | 0.0246 (6)   | -0.0023 (5)   | 0.0125 (5)   | 0.0061 (5)   |
| 03  | 0.0276 (6)   | 0.0281 (6)   | 0.0320 (7)   | -0.0085 (5)   | 0.0133 (5)   | -0.0060 (5)  |
| 02  | 0.0222 (5)   | 0.0329 (6)   | 0.0252 (6)   | 0.0046 (5)    | 0.0111 (5)   | -0.0021 (5)  |
| O4  | 0.0241 (6)   | 0.0313 (6)   | 0.0233 (6)   | 0.0017 (5)    | 0.0076 (5)   | 0.0071 (5)   |
| O1W | 0.0249 (6)   | 0.0286 (6)   | 0.0223 (6)   | -0.0043 (5)   | 0.0104 (5)   | 0.0014 (5)   |
| O2W | 0.0268 (7)   | 0.0401 (8)   | 0.0447 (8)   | 0.0077 (6)    | 0.0056 (6)   | -0.0145 (6)  |
| C2  | 0.0214 (7)   | 0.0268 (8)   | 0.0198 (7)   | 0.0036 (6)    | 0.0069 (6)   | 0.0030 (6)   |
| C1  | 0.0223 (7)   | 0.0218 (7)   | 0.0204 (7)   | -0.0023 (6)   | 0.0094 (6)   | -0.0005 (6)  |
| N1  | 0.0151 (6)   | 0.0316 (7)   | 0.0216 (7)   | -0.0009 (5)   | 0.0074 (5)   | 0.0019 (5)   |
| C5  | 0.0203 (7)   | 0.0264 (8)   | 0.0190 (7)   | 0.0007 (6)    | 0.0079 (6)   | 0.0024 (5)   |
| C4  | 0.0198 (7)   | 0.0215 (7)   | 0.0204 (7)   | -0.0012 (6)   | 0.0101 (6)   | -0.0006 (5)  |
| C3  | 0.0178 (7)   | 0.0266 (8)   | 0.0229 (8)   | 0.0021 (6)    | 0.0078 (6)   | 0.0001 (6)   |

Geometric parameters (Å, °)

| Zn1—O1 <sup>i</sup>          | 2.0560 (12) | O2W—H21     | 0.833 (10)  |  |
|------------------------------|-------------|-------------|-------------|--|
| Zn1—01                       | 2.0560 (12) | O2W—H22     | 0.838 (10)  |  |
| Zn1—O1W <sup>i</sup>         | 2.0788 (12) | C2—C3       | 1.360 (2)   |  |
| Zn1—O1W                      | 2.0788 (12) | C2—C1       | 1.434 (2)   |  |
| Zn1—O2W                      | 2.1487 (14) | C2—H2       | 0.9300      |  |
| Zn1—O2W <sup>i</sup>         | 2.1487 (14) | C1—N1       | 1.362 (2)   |  |
| S1—O4                        | 1.4477 (12) | N1—C5       | 1.356 (2)   |  |
| S1—O3                        | 1.4626 (12) | N1—H1       | 0.850 (10)  |  |
| S1—O2                        | 1.4643 (12) | C5—C4       | 1.358 (2)   |  |
| S1—C4                        | 1.7588 (15) | С5—Н5       | 0.9300      |  |
| 01—C1                        | 1.2553 (19) | C4—C3       | 1.418 (2)   |  |
| O1W—H11                      | 0.841 (10)  | С3—Н3       | 0.9300      |  |
| O1W—H12                      | 0.841 (10)  |             |             |  |
| Ol <sup>i</sup> —Zn1—O1      | 180.0       | Zn1—O1W—H12 | 125.1 (18)  |  |
| $O1^i$ —Zn1—O1W <sup>i</sup> | 83.37 (5)   | H11—O1W—H12 | 108 (2)     |  |
| O1-Zn1-O1Wi                  | 96.63 (5)   | Zn1—O2W—H21 | 137.0 (19)  |  |
| O1 <sup>i</sup> —Zn1—O1W     | 96.63 (5)   | Zn1—O2W—H22 | 112.2 (18)  |  |
| O1—Zn1—O1W                   | 83.37 (5)   | H21—O2W—H22 | 109 (3)     |  |
| O1W <sup>i</sup> —Zn1—O1W    | 180.00 (6)  | C3—C2—C1    | 120.81 (15) |  |
| O1 <sup>i</sup> —Zn1—O2W     | 90.07 (6)   | C3—C2—H2    | 119.6       |  |
| O1—Zn1—O2W                   | 89.93 (6)   | C1—C2—H2    | 119.6       |  |
|                              |             |             |             |  |

| O1W <sup>i</sup> —Zn1—O2W   | 88.66 (5)    | 01—C1—N1    | 117.88 (14)  |
|-----------------------------|--------------|-------------|--------------|
| O1W—Zn1—O2W                 | 91.34 (5)    | O1—C1—C2    | 126.76 (15)  |
| $O1^{i}$ —Zn1— $O2W^{i}$    | 89.93 (6)    | N1—C1—C2    | 115.35 (14)  |
| $O1$ — $Zn1$ — $O2W^{i}$    | 90.07 (6)    | C5—N1—C1    | 124.58 (13)  |
| $O1W^{i}$ —Zn1— $O2W^{i}$   | 91.34 (5)    | C5—N1—H1    | 117.5 (16)   |
| O1W—Zn1—O2W <sup>i</sup>    | 88.66 (5)    | C1—N1—H1    | 118.0 (16)   |
| O2W—Zn1—O2W <sup>i</sup>    | 180.0        | N1—C5—C4    | 119.93 (14)  |
| O4—S1—O3                    | 113.63 (8)   | N1—C5—H5    | 120.0        |
| O4—S1—O2                    | 113.28 (7)   | С4—С5—Н5    | 120.0        |
| O3—S1—O2                    | 110.91 (7)   | C5—C4—C3    | 118.76 (14)  |
| O4—S1—C4                    | 106.01 (7)   | C5—C4—S1    | 119.40 (12)  |
| O3—S1—C4                    | 106.05 (7)   | C3—C4—S1    | 121.84 (12)  |
| O2—S1—C4                    | 106.28 (7)   | C2—C3—C4    | 120.17 (14)  |
| C1—O1—Zn1                   | 136.67 (11)  | С2—С3—Н3    | 119.9        |
| Zn1—O1W—H11                 | 112.6 (17)   | С4—С3—Н3    | 119.9        |
|                             |              |             |              |
| O1W <sup>i</sup> —Zn1—O1—C1 | 28.28 (18)   | N1—C5—C4—C3 | 2.1 (2)      |
| O1W—Zn1—O1—C1               | -151.72 (18) | N1-C5-C4-S1 | -177.08 (12) |
| O2W—Zn1—O1—C1               | 116.92 (17)  | O4—S1—C4—C5 | -6.85 (15)   |
| O2W <sup>i</sup> —Zn1—O1—C1 | -63.08 (17)  | O3—S1—C4—C5 | 114.25 (14)  |
| Zn1—O1—C1—N1                | -171.26 (12) | O2—S1—C4—C5 | -127.66 (13) |
| Zn1—O1—C1—C2                | 9.9 (3)      | O4—S1—C4—C3 | 173.98 (13)  |
| C3—C2—C1—O1                 | -175.15 (17) | O3—S1—C4—C3 | -64.92 (15)  |
| C3-C2-C1-N1                 | 6.0 (2)      | O2—S1—C4—C3 | 53.17 (15)   |
| O1-C1-N1-C5                 | 173.90 (16)  | C1—C2—C3—C4 | -1.2 (2)     |
| C2-C1-N1-C5                 | -7.1 (2)     | C5—C4—C3—C2 | -3.0 (2)     |
| C1—N1—C5—C4                 | 3.2 (3)      | S1—C4—C3—C2 | 176.21 (13)  |
|                             |              |             |              |

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                     | D—H      | H···A    | D··· $A$  | D—H··· $A$ |
|-----------------------------|----------|----------|-----------|------------|
| N1—H1····O2 <sup>ii</sup>   | 0.85(1)  | 1.99 (1) | 2.790 (2) | 157 (2)    |
| O1w—H11···O2 <sup>iii</sup> | 0.84 (1) | 1.98 (1) | 2.809 (2) | 171 (2)    |
| O1w—H12···O3 <sup>iv</sup>  | 0.84 (1) | 1.93 (1) | 2.767 (2) | 172 (3)    |
| O2w—H21···O3 <sup>v</sup>   | 0.83 (1) | 2.13 (1) | 2.926 (2) | 160 (3)    |
| O2w—H22···O4 <sup>vi</sup>  | 0.84 (1) | 1.93 (1) | 2.765 (2) | 174 (3)    |

Symmetry codes: (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+1, y-1/2, -z+1/2; (v) x-1, -y+3/2, z+1/2; (vi) x, y, z+1.