Acta Crystallographica Section E ## Structure Reports Online ISSN 1600-5368 # (*R*,*R*)-4,4'-Dibromo-2,2'-[cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenol ### Jianhong Yia and Shuangqi Hub* ^aSchool of Material Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China, and ^bSchool of Chemical Engineering and Environment, North University of China, Taiyuan 030051, People's Republic of China Correspondence e-mail: yijianhongnu@126.com Received 28 September 2009; accepted 29 September 2009 Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.089; data-to-parameter ratio = 14.5. The molecule of the title compound, $C_{20}H_{20}Br_2N_2O_2$, lies on a twofold axis. It contains two stereogenic C atoms with R chirality and thus it is the enatiomerically pure R,R-diastereomer. There is an intramolecular $O-H\cdots N$ hydrogen bond. #### Related literature For the structure of 1,2-cyclohexanediamine, see: Yang *et al.*, (2004, 2007). For background to the use of chiral Salen compounds containing the 1,2-cyclohexanediamine motif in asymmetric catalytic synthesis, see: Canail & Sherrington (1999); Jacobsen (2000). #### **Experimental** Crystal data $C_{20}H_{20}Br_2N_2O_2$ $M_r=480.20$ Orthorhombic, $P2_12_12$ Z=2 Mo Kα radiation b=19.079 (5) Å μ=3.99 mm⁻¹ c=9.009 (2) Å T=298 K V=1019.7 (4) Å³ $0.28 \times 0.21 \times 0.15$ mm Data collection Bruker APEXII area-detector diffractometer 5912 measured reflections 1727 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.401, \, T_{\rm max} = 0.586$ 5912 measured reflections 1449 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$ Refinement $\begin{array}{lll} R[F^2>2\sigma(F^2)]=0.032 & \Delta\rho_{\rm max}=0.34~{\rm e~\mathring{A}^{-3}} \\ wR(F^2)=0.089 & \Delta\rho_{\rm min}=-0.39~{\rm e~\mathring{A}^{-3}} \\ S=1.06 & {\rm Absolute~structure:~Flack~(1983)}, \\ 1727~{\rm reflections} & 681~{\rm Friedel~pairs} \\ 119~{\rm parameters} & {\rm Flack~parameter:~0.018~(18)} \\ {\rm H-atom~parameters~constrained} \end{array}$ **Table 1** Hydrogen-bond geometry (Å, °). | $D-\mathrm{H}\cdots A$ | D-H | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathbf{H}\cdot\cdot\cdot A$ | |------------------------|------|-------------------------|-------------------------|---------------------------------| | O1-H1···N1 | 0.82 | 1.91 | 2.611 (4) | 143 | Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*. The authors are grateful for funding from the Northern University of China. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2493). #### References Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Canail, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85-93. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876-881. Jacobsen, E. N. (2000). Acc. Chem. Res. 33, 421-431. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Yang, M.-H., Li, Y.-Z., Zhu, C.-J., Pan, Y. & Liu, S.-H. (2004). Acta Cryst. E60, 02397–02398. Yang, M.-H., Zheng, Y.-F. & Yan, G.-B. (2007). Acta Cryst. E63, o982-o983. ## supporting information Acta Cryst. (2009). E65, o2643 [https://doi.org/10.1107/S1600536809039671] ## (R,R)-4,4'-Dibromo-2,2'-[cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenol ### Jianhong Yi and Shuangqi Hu #### S1. Comment Chiral Salen compounds containing 1,2-cyclohexanediamine motif are widely used in the asymmetric catalytic synthesis (Canail & Sherrington, 1999; Jacobsen *et al.*, 2000). Until now, only few single-crystal structures of chiral Salen compounds were reported. Some interesting compounds with 1,2-cyclohexanediamine have however been reported (Yang *et al.*, 2004; 2007). In an attempt to form a Cd(II) complex with the (R,R)-4,4'-bromo-2,2'-[cyclohexane-1,2-diylbis (nitrilomethylidyne)]diphenol, we unexpectedly obtained the title compound (I) whose crystal structure is reported herein. The molecular structure of (I) is built from two halves related through a two fold axix passing through the middle of the C8-C8 i and C10-C10 i bonds [(i)= 1-x, 2-y, z)] (Fig. 1). The stereogenic carbon C8 has the R chirality and so the molecule is the enantiomerically pure R,R diastereomer which confirms the synthetic patway used. This molecule is closely related to the (R,R)-N,N'-Bis(5-chlorosalicylidene)- 1,2-cyclohexanediamine compound (Yang *et al.*, 2004). Intramolecular O-H···N hydrogen bonds also exist in this molecule and thus stabilize the structure (Table 1). #### S2. Experimental The title compound was synthesized according to the literature (Yang *et al.*, 2004) using the reaction of (R,R)-1,2-cyclohexanediamine, Na₂SO₄, and 5-bromon–2-hydroxybenzaldehyde under mild condition. (R,R)-4,4'-Bromo-2,2'-[cyclohexane-1,2-diylbis (nitrilomethylidyne)]diphenol (0.52 g, 1 mmol) was added to a solution of Cd(AC)₂ .4H₂O(0.26g, 1 mmol) in methanol(20mL). The mixture was heated for 20 hs under reflux with stirring. It was then filtered to give a clear solution, into which diethyl ether vapour was allowed to condense in a closed vessel. After being allowed to stand for a two weeks at room temperature, colorless single crystals were used to measure X-ray diffraction analysis. #### S3. Refinement The absolute configuration has been deduced from the X-ray structural analyses and confirms the predicted configuration expected from the synthetic pathway. All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98Å (methine) and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(O)$. Figure 1 Molecular view of (I) with the atom-labeling scheme. Ellipsoids are drawn at the the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetric code: (i): -x+1, -y+2, z] #### (R,R)-4,4'-Dibromo-2,2'-[cyclohexane-1,2- diylbis(nitrilomethylidyne)]diphenol #### Crystal data F(000) = 480 $C_{20}H_{20}Br_{2}N_{2}O_{2} \\$ $M_r = 480.20$ $D_{\rm x} = 1.564 \; {\rm Mg \; m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Orthorhombic, P2₁2₁2 Hall symbol: P 2 2ab Cell parameters from 1727 reflections a = 5.9323 (16) Å $\theta = 2.1-24.9^{\circ}$ b = 19.079 (5) Å $\mu = 3.99 \text{ mm}^{-1}$ c = 9.009 (2) Å T = 298 K $V = 1019.7 (4) \text{ Å}^3$ Block, colorless Z=2 $0.28 \times 0.21 \times 0.15 \text{ mm}$ #### Data collection Bruker APEXII area-detector 5912 measured reflections diffractometer 1727 independent reflections Radiation source: fine-focus sealed tube 1449 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\text{int}} = 0.024$ φ and ω scans $\theta_{\text{max}} = 24.7^{\circ}$, $\theta_{\text{min}} = 2.1^{\circ}$ Absorption correction: multi-scan $h = -6 \rightarrow 0$ (SADABS; Bruker, 2005) $k = -22 \rightarrow 22$ $T_{\text{min}} = 0.401, T_{\text{max}} = 0.586$ $l = -10 \rightarrow 0$ #### Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.06 1727 reflections 119 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0509P)^2 + 0.1466P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.34 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.39 \text{ e Å}^{-3}$ Absolute structure: Flack (1983), 681 Friedel pairs Absolute structure parameter: 0.018 (18) #### Special details **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. **Refinement.** Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) | | x | у | Z | $U_{ m iso}$ */ $U_{ m eq}$ | | |------|-------------|--------------|-------------|-----------------------------|--| | Br1 | 0.48940 (8) | 0.71173 (2) | 0.82889 (4) | 0.0863 (2) | | | N1 | 0.6206 (5) | 0.93317 (14) | 0.2921 (3) | 0.0608 (8) | | | O1 | 0.9786 (5) | 0.92461 (14) | 0.4597 (4) | 0.0835 (8) | | | H1 | 0.8927 | 0.9446 | 0.4023 | 0.125* | | | C1 | 0.6427 (6) | 0.77902 (19) | 0.7105 (4) | 0.0572 (9) | | | C2 | 0.8549 (7) | 0.7999 (2) | 0.7508 (4) | 0.0635 (10) | | | H2 | 0.9242 | 0.7810 | 0.8342 | 0.076* | | | C3 | 0.9636 (6) | 0.8492(2) | 0.6663 (4) | 0.0677 (10) | | | H3 | 1.1076 | 0.8637 | 0.6933 | 0.081* | | | C4 | 0.8627 (6) | 0.87805 (17) | 0.5409 (5) | 0.0590 (9) | | | C5 | 0.6450(6) | 0.85674 (15) | 0.5008 (4) | 0.0505 (8) | | | C6 | 0.5368 (6) | 0.80627 (17) | 0.5877 (3) | 0.0533 (8) | | | H6 | 0.3929 | 0.7911 | 0.5623 | 0.064* | | | C7 | 0.5283 (6) | 0.88710 (17) | 0.3743 (4) | 0.0533 (8) | | | H7 | 0.3823 | 0.8725 | 0.3529 | 0.064* | | | C8 | 0.4952 (8) | 0.95999 (17) | 0.1642(3) | 0.0648 (9) | | | H8 | 0.3376 | 0.9450 | 0.1716 | 0.078* | | | C9 | 0.5975 (9) | 0.9300(2) | 0.0232 (5) | 0.0878 (15) | | | H9A | 0.7580 | 0.9397 | 0.0222 | 0.105* | | | H9B | 0.5779 | 0.8796 | 0.0228 | 0.105* | | | C10 | 0.4915 (13) | 0.9604(2) | -0.1149(5) | 0.1066 (17) | | | H10A | 0.3342 | 0.9467 | -0.1197 | 0.128* | | | H10B | 0.5670 | 0.9418 | -0.2020 | 0.128* | | ## Atomic displacement parameters (\mathring{A}^2) | | U^{11} | U^{22} | U^{33} | U^{12} | U^{13} | U^{23} | |-----|-------------|-------------|-------------|-------------|--------------|--------------| | Br1 | 0.1059 (4) | 0.0925 (3) | 0.0605 (3) | -0.0117 (3) | 0.0117 (3) | 0.01235 (19) | | N1 | 0.0651 (18) | 0.0461 (16) | 0.071(2) | 0.0081 (14) | -0.0010(17) | 0.0035 (15) | | O1 | 0.0581 (16) | 0.0651 (15) | 0.127(2) | -0.0141(15) | 0.001(2) | 0.0131 (15) | | C1 | 0.069(2) | 0.057(2) | 0.0452 (18) | 0.0034 (18) | 0.0052 (17) | -0.0075 (15) | | C2 | 0.070(2) | 0.069(2) | 0.0509 (19) | 0.011(2) | -0.0112 (19) | -0.0097 (19) | | C3 | 0.051(2) | 0.071(2) | 0.081(2) | 0.0040 (18) | -0.011 (3) | -0.025(2) | | C4 | 0.054(2) | 0.0445 (18) | 0.078(2) | 0.0002 (16) | 0.001(2) | -0.0103 (18) | | C5 | 0.051(2) | 0.0417 (16) | 0.058(2) | 0.0042 (14) | 0.0024 (18) | -0.0087 (15) | | C6 | 0.050(2) | 0.0580 (18) | 0.0516 (17) | -0.0006(16) | 0.0032 (17) | -0.0140 (15) | | C7 | 0.0488 (19) | 0.0507 (18) | 0.0604 (17) | 0.0064 (17) | -0.0017(18) | -0.0102 (14) | | C8 | 0.074(2) | 0.0500 (17) | 0.071(2) | 0.014(2) | -0.003(3) | 0.0000 (16) | | C9 | 0.126 (4) | 0.061(2) | 0.076(3) | 0.030(3) | -0.004(3) | -0.007(2) | | C10 | 0.160(5) | 0.093 (3) | 0.067(2) | 0.042 (4) | -0.003(4) | -0.010(2) | ## Geometric parameters (Å, °) | Geometrie parameters (11 | , / | | | |--------------------------|-----------|-------------------------|------------| | Br1—C1 | 1.901 (4) | C5—C7 | 1.454 (5) | | N1—C7 | 1.273 (5) | C6—H6 | 0.9300 | | N1—C8 | 1.464 (4) | C7—H7 | 0.9300 | | O1—C4 | 1.341 (4) | C8—C9 | 1.519 (5) | | O1—H1 | 0.8200 | C8—C8i | 1.528 (7) | | C1—C2 | 1.369 (6) | C8—H8 | 0.9800 | | C1—C6 | 1.375 (5) | C9—C10 | 1.510 (6) | | C2—C3 | 1.371 (5) | C9—H9A | 0.9700 | | C2—H2 | 0.9300 | C9—H9B | 0.9700 | | C3—C4 | 1.392 (5) | C10—C10 ⁱ | 1.515 (10) | | C3—H3 | 0.9300 | C10—H10A | 0.9700 | | C4—C5 | 1.401 (5) | C10—H10B | 0.9700 | | C5—C6 | 1.397 (5) | | | | | | | | | C7—N1—C8 | 118.7 (4) | N1—C7—H7 | 119.1 | | C4—O1—H1 | 109.5 | C5—C7—H7 | 119.1 | | C2—C1—C6 | 121.5 (4) | N1—C8—C9 | 108.9 (3) | | C2—C1—Br1 | 119.2 (3) | N1—C8—C8 ⁱ | 109.3 (3) | | C6—C1—Br1 | 119.2 (3) | C9—C8—C8 ⁱ | 111.2 (3) | | C1—C2—C3 | 119.0 (4) | N1—C8—H8 | 109.2 | | C1—C2—H2 | 120.5 | C9—C8—H8 | 109.2 | | C3—C2—H2 | 120.5 | C8 ⁱ —C8—H8 | 109.2 | | C2—C3—C4 | 121.3 (4) | C10—C9—C8 | 112.2 (4) | | C2—C3—H3 | 119.4 | C10—C9—H9A | 109.2 | | C4—C3—H3 | 119.4 | C8—C9—H9A | 109.2 | | O1—C4—C3 | 119.0 (4) | C10—C9—H9B | 109.2 | | O1—C4—C5 | 121.6 (4) | C8—C9—H9B | 109.2 | | C3—C4—C5 | 119.4 (4) | H9A—C9—H9B | 107.9 | | C6—C5—C4 | 118.6 (3) | C9—C10—C10 ⁱ | 110.8 (5) | | | | | | ## supporting information | C6—C5—C7 | 119.6 (3) | C9—C10—H10A | 109.5 | |----------|-----------|----------------------------|-------| | C4—C5—C7 | 121.7 (3) | C10 ⁱ —C10—H10A | 109.5 | | C1—C6—C5 | 120.1 (3) | C9—C10—H10B | 109.5 | | C1—C6—H6 | 119.9 | C10 ⁱ —C10—H10B | 109.5 | | C5—C6—H6 | 119.9 | H10A—C10—H10B | 108.1 | | N1—C7—C5 | 121.8 (4) | | | Symmetry code: (i) -x+1, -y+2, z. ## Hydrogen-bond geometry (Å, °) | <i>D</i> —H··· <i>A</i> | <i>D</i> —H | H···A | D··· A | <i>D</i> —H··· <i>A</i> | |-------------------------|-------------|-------|-----------|-------------------------| | O1—H1···N1 | 0.82 | 1.91 | 2.611 (4) | 143 | Acta Cryst. (2009). E**65**, o2643