Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(2-quinolylcarbonyl)hydrazine

Hui-Min Cheng, Lang Chen, Wei Lu, Xuan Shen and Dun-Ru Zhu*

College of Chemistry and Chemical Engineering, State Key Laboratory of Materialsoriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
Correspondence e-mail: zhudr@njut.edu.cn

Received 10 September 2009; accepted 18 September 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.046 ; w R$ factor $=0.115$; data-to-parameter ratio $=13.7$.

The title compound, $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$, crystallizes in the orthorhombic system with a crystallographic twofold axis through the $\mathrm{N}-\mathrm{N}$ bond. The molecule is non-planar and the dihedral angle between two amide groups is $74.9(2)^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is present. In the crystal, the molecules are packed in chains running along the c axis through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. These chains are further stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions leading to the formation of a three-dimensional network.

Related literature

For general background to the chemistry of N, N^{\prime}-diacylhydrazines, see: Zhao \& Bruke (1997); Knödler et al. (2004); Bernhardt et al. (2005). For the syntheses and structures of related compounds, see: Jasinskas et al. (1975); Shao et al. (1999); Xu et al. (2006); Zheng et al. (2007); Shanmuga Sundara Raj et al. (2000). For the synthesis of the title compound, see: Xie et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=342.35$
Orthorhombic, Pccn
$V=1655.6(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.115$
119 parameters
$S=0.95$
1629 reflections

$$
\begin{aligned}
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& 0.26 \times 0.12 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

10346 measured reflections 1629 independent reflections 816 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.082$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1$	0.86	2.31	$2.689(2)$	107
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.35	$2.978(3)$	130
$\mathrm{C} 5-\mathrm{H} 5 A \cdots 1^{\mathrm{iii}}$	0.93	2.45	$3.177(3)$	135
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.93	2.64	3.449	146

Symmetry codes: (ii) $-x+\frac{3}{2}, y, z-\frac{1}{2}$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x-\frac{1}{2}, y, z-\frac{3}{2} . C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9$ ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China (No. 20771059) and the Natural Science Foundation of Jiangsu Province (BK2008371).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2361).

References

Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J.-Y. C. \& Richardson, D. R. (2005). J. Biol. Inorg. Chem. 10, 761-777.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Jasinskas, L., Urbonas, A. \& Latakas, V. (1975). Liet. TSR Aukš. Mokyklu Mokslo Darb. Chem. Chem. Technol. 17, 143-145.
Knödler, K., Fiedler, J. \& Kaim, W. (2004). Polyhedron, 23, 701-707.
Shanmuga Sundara Raj, S., Yamin, B. M., Boshaala, A. M. A., Tarafder, M. T. H., Crouse, K. A. \& Fun, H.-K. (2000). Acta Cryst. C56, 1011-1012.

Shao, S., Zhu, D., Song, Y., You, X. Z., Shanmuga Sundara Raj, S. \& Fun, H.-K. (1999). Acta Cryst. C55, 1841-1843.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xie, D.-J., Lu, W., Wang, Z.-X. \& Zhu, D.-R. (2009). Acta Cryst. E65, o1177o1178.
Xu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. \& Zhu, D.-R. (2006). Acta Cryst. E62, o5234-05235.
Zhao, H. \& Bruke, T. R. J. (1997). Tetrahedron, 53, 4219-4230.
Zheng, Z.-B., Wu, R.-T., Li, J.-K. \& Sun, Y.-F. (2007). Acta Cryst. E63, 04658.

supporting information

Acta Cryst. (2009). E65, o2526 [doi:10.1107/S1600536809037842]

N, N^{\prime}-Bis(2-quinolylcarbonyl)hydrazine

Hui-Min Cheng, Lang Chen, Wei Lu, Xuan Shen and Dun-Ru Zhu

S1. Comment

(Un)symmetrical N, N^{\prime}-diacylhydrazines are of interest because they are the basic structural components in heterocyclic chemistry and may be used as bridging ligands in coordination chemistry (Zhao \& Bruke, 1997; Knödler et al., 2004; Bernhardt et al., 2005). We have reported the structure of N, N^{\prime}-bis(2-picolinoyl)hydrazine (Shao et al., 1999). As a continuation of our investigations of the structure of N, N^{\prime}-diacylhydrazines and their derivatives, herein, we report the crystal structure of the title compound. It was first prepared by aroylation of 2-quinolylcarbonylhydrazine with 2quinolinecarbonyl chloride in dry pyridine (Jasinskas et al., 1975).
The X-ray analysis of the title compound (Fig. 1) indicates that the molecule is non-planar. The dihedral angle between the quinolyl ring and the amide group is $15.3(2)^{\circ}$ and that between the amide groups is $74.9(2)^{\circ}$. Similarly to N, N^{\prime}-bis(2picolinoyl)hydrazine, the asymmetric unit contains half the molecule and the other half is related by a crystallographic twofold axis passing through the $\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$ bond [symmetry code: (i) $3 / 2-x, 1 / 2-y, z$]. The bond lengths and angles (Table 1) in the structure are in the normal ranges (Xu et al., 2006; Zheng et al., 2007). The C10— $\mathrm{N} 2-\mathrm{N} 2-\mathrm{C} 10^{\mathrm{i}}$ torsion angle is $-87.7(2)^{\circ}$. The two carbonyl groups and the H atoms of the $\mathrm{N}-\mathrm{N}$ bond are in a trans orientation with respect to each other. This conformation is due mainly to the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.
In the crystal (Fig. 2), each molecule is connected to another by a pair of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between the amide H atoms and the O atoms of neighbouring carbonyl groups to form a ten-membered ring with the graph-set motif $\mathrm{CLR}^{2}{ }_{2}(10)$ (Bernstein et al., 1995). The same feature is also found in N, N^{\prime}-bis(2picolinoyl)hydrazine and 1,2-dibenzoylhydrazine (Shanmuga Sundara Raj et al., 2000). Due to presence of these intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the molecules are packed into chains running along the c axis. These chains are further stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) leading to the formation of a three-dimensional network.

S2. Experimental

The title compound was obtained unexpectedly in the synthesis of 3-methyl-4-(p-methylphenyl)-5-(2-quinolyl)-1,2,4triazole by the reaction of N-formyl- N^{\prime}-(2 -quinolylcarbonyl)hydrazine (1 mmol) with 4,4'-dimethylphenylphosphazoanilide (1 mmol) in N, N-dimethylaniline (20 ml) at 463-473 K (Xie et al., 2009). It also can be prepared by literature method (Jasinskas et al., 1975). Diffraction quality crystals were obtained by recrystallization from ethanol (yield 31\%).

S3. Refinement

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of $0.96 \AA$ (aromatic), $0.93 \AA$ (pyridyl), and with $U_{\mathrm{iso}}(\mathrm{H})$ values of 1.2 or 1.5 times of $U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The structure of the title compound showing 50% probability displacement ellipsoids and atom-numbering scheme [symmetry code: (i) $3 / 2-x, 1 / 2-y, z]$.

Figure 2
The three-dimensional network formed via hydrogen bonds (dashed lines) and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions [symmetry code: (i) $1-x, 1 / 2+y, 1 / 2-z]$.

N, N^{\prime}-Bis(2-quinolylcarbonyl)hydrazine

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=342.35$
Orthorhombic, Pccn
Hall symbol: -P 2ab 2ac
$a=11.649$ (4) A
$b=17.023$ (6) \AA
$c=8.349(3) \AA$
$V=1655.6(10) \AA^{3}$
$F(000)=712$
$D_{\mathrm{x}}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 28 reflections
$\theta=2.1-26.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.26 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.976, T_{\text {max }}=0.993$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.115$
$S=0.95$
1629 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> 10346 measured reflections
> 1629 independent reflections
> 816 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.082$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=2.1^{\circ}$
> $h=-14 \rightarrow 14$
> $k=-21 \rightarrow 18$
> $l=-9 \rightarrow 10$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0525 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.011 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.61559(14)$	$0.28662(9)$	$0.3812(2)$	$0.0651(5)$
N1	$0.69622(14)$	$0.44375(10)$	$0.1318(2)$	$0.0424(5)$
N2	$0.73777(18)$	$0.28973(9)$	$0.1733(2)$	$0.0605(6)$
H2A	0.7745	0.3197	0.1080	0.073^{*}
C1	$0.62868(17)$	$0.40522(13)$	$0.2314(3)$	$0.0432(6)$
C2	$0.52811(18)$	$0.43630(14)$	$0.2994(3)$	$0.0520(7)$
H2B	0.4841	0.4063	0.3694	0.062^{*}
C3	$0.49611(18)$	$0.51056(15)$	$0.2615(3)$	$0.0549(7)$
H3A	0.4290	0.5317	0.3037	0.066^{*}
C4	$0.56521(18)$	$0.55552(12)$	$0.1576(3)$	$0.0450(6)$
C5	$0.5394(2)$	$0.63312(13)$	$0.1127(3)$	$0.0599(7)$
H5A	0.4739	0.6573	0.1530	0.072^{*}
C6	$0.6091(2)$	$0.67300(14)$	$0.0114(3)$	$0.0663(8)$
H6A	0.5908	0.7243	-0.0172	0.080^{*}
C7	$0.7083(2)$	$0.63781(14)$	$-0.0508(3)$	$0.0615(7)$

H7A	0.7552	0.6658	-0.1205	0.074^{*}
C8	$0.73620(19)$	$0.56297(13)$	$-0.0097(3)$	$0.0498(6)$
H8A	0.8025	0.5401	-0.0509	0.060^{*}
C9	$0.66544(17)$	$0.51985(12)$	$0.0947(3)$	$0.0401(6)$
C10	$0.65956(19)$	$0.32223(14)$	$0.2702(3)$	$0.0471(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{2}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0692(11)$	$0.0517(10)$	$0.0743(13)$	$-0.0141(9)$	$0.0059(10)$	$0.0116(10)$
N1	$0.0396(11)$	$0.0382(11)$	$0.0495(12)$	$-0.0009(8)$	$-0.0004(9)$	$-0.0006(9)$
N2	$0.0861(15)$	$0.0349(10)$	$0.0605(14)$	$0.0080(12)$	$0.0094(12)$	$0.0031(10)$
C1	$0.0407(13)$	$0.0388(13)$	$0.0501(15)$	$-0.0023(11)$	$-0.0059(11)$	$-0.0051(11)$
C2	$0.0404(14)$	$0.0547(17)$	$0.0610(17)$	$-0.0066(12)$	$0.0063(12)$	$-0.0029(13)$
C3	$0.0387(13)$	$0.0605(18)$	$0.0657(17)$	$0.0031(12)$	$0.0043(12)$	$-0.0063(14)$
C4	$0.0379(13)$	$0.0428(14)$	$0.0543(16)$	$0.0046(10)$	$-0.0049(11)$	$-0.0065(12)$
C5	$0.0508(15)$	$0.0484(16)$	$0.080(2)$	$0.0138(13)$	$-0.0026(14)$	$-0.0058(15)$
C6	$0.0691(18)$	$0.0403(15)$	$0.089(2)$	$0.0079(13)$	$-0.0075(16)$	$0.0060(15)$
C7	$0.0599(16)$	$0.0489(16)$	$0.076(2)$	$-0.0021(13)$	$0.0032(14)$	$0.0091(14)$
C8	$0.0459(14)$	$0.0458(15)$	$0.0577(16)$	$0.0004(11)$	$0.0014(11)$	$0.0027(12)$
C9	$0.0362(12)$	$0.0358(12)$	$0.0483(14)$	$0.0012(10)$	$-0.0064(11)$	$-0.0033(11)$
C10	$0.0489(14)$	$0.0433(15)$	$0.0491(15)$	$-0.0100(12)$	$-0.0030(12)$	$-0.0013(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C10	1.220 (3)	C3-H3A	0.9300
N1-C1	1.319 (3)	C4-C5	1.406 (3)
N1-C9	1.379 (2)	C4-C9	1.417 (3)
N2-C10	1.338 (3)	C5-C6	1.354 (3)
$\mathrm{N} 2-\mathrm{N} 2{ }^{\text {i }}$	1.382 (3)	C5-H5A	0.9300
N2-H2A	0.8600	C6-C7	1.401 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.405 (3)	C6-H6A	0.9300
C1-C10	1.493 (3)	C7-C8	1.359 (3)
C2-C3	1.355 (3)	C7-H7A	0.9300
C2-H2B	0.9300	C8-C9	1.406 (3)
$\mathrm{C} 3-\mathrm{C} 4$	1.409 (3)	C8-H8A	0.9300
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	116.98 (18)	C6-C5-H5A	119.7
C10-N2-N2 ${ }^{\text {i }}$	123.0 (2)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.7
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	118.5	C5-C6-C7	120.7 (2)
N2 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	118.5	C5-C6-H6A	119.6
N1-C1-C2	124.4 (2)	C7-C6-H6A	119.6
N1-C1-C10	117.6 (2)	C8-C7-C6	120.3 (2)
C2-C1-C10	118.0 (2)	C8-C7-H7A	119.8
C3-C2-C1	119.1 (2)	C6-C7-H7A	119.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	120.5	C7-C8-C9	120.3 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	120.5	C7-C8-H8A	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.5 (2)	C9-C8-H8A	119.8

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.2	$\mathrm{~N} 1-\mathrm{C} 9-\mathrm{C} 8$	$118.5(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.2	$\mathrm{~N} 1-\mathrm{C} 9-\mathrm{C} 4$	$122.2(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$123.5(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$119.3(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$118.7(2)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{N} 2$	$122.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$117.8(2)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 1$	$122.3(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.6(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 1$	$115.1(2)$

Symmetry code: (i) $-x+3 / 2,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{~N} 1$	0.86	2.31	$2.689(2)$	107
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.35	$2.978(3)$	130
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots 1^{\mathrm{iii}}$	0.93	2.45	$3.177(3)$	135
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots C g 1^{\mathrm{iv}}$	0.93	2.64	3.449	146

Symmetry codes: (ii) $-x+3 / 2, y, z-1 / 2$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $-x-1 / 2, y, z-3 / 2$.

