Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dimethyl 2,6-dimethyl-1,4-dihydro-pyridine-3,5-dicarboxylate

Zhenfeng Zhang, ${ }^{\text {a }}$ © Dong Xian, ${ }^{\text {a }}$ Jiange Wang ${ }^{\text {b }}$ and Guisheng Zhang ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry, Luoyang Normal University, Xinxiang 453007, People's Republic of China
Correspondence e-mail: zzf5188@sohu.com

Received 18 August 2009; accepted 2 September 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.040 ; w R$ factor $=0.115$; data-to-parameter ratio $=13.8$.

In the crystal of the title compound, $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$, the molecules are linked into sheets by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Within the molecule, the 1,4-dihydropyridine ring exhibits a distinctive planar conformation [r.m.s. deviation from the mean plane of 0.009 (3) \AA], and the other non-H atoms are almost coplanar [r.m.s. deviation $=0.021(3) \AA$] with the 1,4 -dihydropyridine ring. The conformation of the latter is governed mainly by two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ nonclassical interactions.

Related literature

For general background to the biological activity of 1,4dihydropyridine derivatives, see: Kazda \& Towart (1981); Janis \& Triggle (1983); Núñez-Vergara et al., (1998); Mak et al., (2002). For their synthesis, see: Hantzsch \& Liebigs (1882). For related structures, see: Bai et al. (2009); Quesada et al. (2006); Ramesh et al. (2008); Zhao \& Teng (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$
$c=11.1847$ (19) \AA
$M_{r}=225.24$
$\alpha=75.977(2)^{\circ}$
Triclinic, $P \overline{1}$
$a=7.3933$ (13) \AA
$\beta=75.274(2)^{\circ}$
$b=7.8391$ (14) \AA
$\gamma=64.351(2)^{\circ}$
$V=558.62(17) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
Data collection
Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.952, T_{\text {max }}=0.965$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.115 \quad$ H-atom parameters constrained
$S=1.05$
2047 reflections

148 parameters
$T=293 \mathrm{~K}$
$0.49 \times 0.43 \times 0.25 \mathrm{~mm}$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.15	$3.006(2)$	176
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O}^{\text {ii }}$	0.96	2.60	$3.219(2)$	122
$\mathrm{C} 6-\mathrm{H} 6 D \cdots \mathrm{O} 2$	0.96	2.09	$2.843(2)$	134
$\mathrm{C} 7-\mathrm{H} 7 D \cdots \mathrm{O} 3$	0.96	1.98	$2.733(2)$	134

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z-1$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (2008IRTSTHN002). The authors are grateful to the Physiochemical Analysis Measurement Laboratory, College of Chemistry, Luoyang Normal University, for performing the Xray analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2162).

References

Bai, M.-S., Chen, Y.-Y., Niu, D.-L. \& Peng, L. (2009). Acta Cryst. E65, o799. Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Hantzsch, A. \& Liebigs, J. (1882). Ann. Chem. 215, 1-82.
Janis, R. A. \& Triggle, D. J. (1983). J. Med. Chem. 25, 775-785.
Kazda, S. \& Towart, R. (1981). Br. J. Pharmacol. 72, 582-583.
Mak, T. C. W., Zhou, G. D. \& Li, W. K. (2002). Advanced Inorganic Structural Chemistry, 2th ed. Beijing: Chinese.
Núñez-Vergara, L. J., Squella, J. A., Bollo-Dragnic, S., Marin-Catalán, R., Pino, L., Diaz-Araya, G. \& Letelier, M. E. (1998). Gen. Pharmacol. 30, 85-87.

Quesada, A., Argüello, J., Squella, J. A., Wardell, J. L., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. C62, o8-o12.

Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. \& Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhao, L.-L. \& Teng, D. (2008). Acta Cryst. E64, o1772-o1773.

supporting information

Acta Cryst. (2009). E65, o2390 [doi:10.1107/S1600536809035478]

Dimethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

Zhenfeng Zhang, Dong Xian, Jiange Wang and Guisheng Zhang

S1. Comment

The 1,4-dihydropyridine, (1,4-DHP) derivatives, as analogues of $N A D H$ coenzymes, exhibit a wide range of biological activities, acting as powerful arteriolar vasodilators (Kazda \& Towart, 1981) and antihypertensives (Janis \& Triggle, 1983). In addition, 1,4-DHP compounds such as nifedipine, nisoldipine and nicardipine exhibit potential trypanocidal activity (Núñez-Vergara et al., 1998). The classical preparation method of 1,4-DHP is the Hantzsch (Hantzsch \& Liebigs, 1882) and a number of $1,4-D H P$ derivatives have been synthesized via this method. We have prepared some $1,4-D H P$ derivatives by condensation reaction of β-enamino esters with aldehyde. As a typical example containing a planar 1,4DHP ring, we now report the molecular and supramolecular structure of dimethyl 1,4-dihydro-2,6-dimethylpyridine-3,5dicarboxylate, (I) (Fig. 1).
In the I, interestingly, 1,4-DHP ring exhibit perfectly coplanar conformation with r.m.s. deviation from the mean plane of 0.009 (3) \AA. This conformation is significantly diverse from those found in other 1,4-DHP derivatives, where each of the 1,4-dihydropyrimidine rings adopts flat-boat conformation (Quesada et al., 2006; Ramesh, et al., 2008; Zhao \& Teng, 2008; Bai et al., 2009). Another point of interest in the conformation concerns the ester portion of the molecule. In each molecule, there are two short non-classical intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1), and these, we think, control and stabilize the conformations of the two methoxycarbonyl fragments, which are both coplanar with the 1,4-DHP ring, as shown by the torsion angles. However, for C2-methoxycarbonyl it is carbonyl atom O 2 that participates in the intramolecular hydrogen bond, and for C4-methoxycarbonyl it is ethoxy O 3 atom. Within the 1,4-DHP ring, the C1-C2 and C4-C5 distances shows markedly two double bonds. The $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 1-\mathrm{C} 5$ bonds are significantly shorter than the standard N-C experimental bond length of $1.47 \AA$ (Mak, et al., 2002). These features in bond distance suggest the existence of π-delocation in the $\mathrm{C} 2 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 5 / \mathrm{C} 4$ fragment.
Due to the above conformational features of \mathbf{I}, its supramolecular structure exhibits some interesting feature. The molecules of the title compounds are linked into sheets by two independent intermolecular hydrogen bonds, one of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type (Table 1), the formation of which is readily analyzed in terms of two one-dimensional substructures, one formed by the the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and one formed by the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. For the sake of simplicity, we shall omit any further consideration of other $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interaction involving $\mathrm{C} 7-$ methyl group, which is too weak to influence the overall dimensionality of the supramolecular structure. In the first substructure, atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the methoxycarbonyl atom O 4 in the molecule at ($x-1, y, z$), thus forming by translation a $\mathrm{C}_{2}{ }^{2}(6)$ (Bernstein et al., 1995) chain running along the [100] direction (Fig. 2). In the second substructure, methyl atom C11 in the molecule at (x, y, z) acts as a hydrogen bond donor via H 11 B to methoxycarbonyl atom O 2 in the milecule at $(x+1, y, z-1)$, so forming by translation a $\mathrm{C}(9)$ (Bernstein et al., 1995) chain parallel to the [$\left.-\begin{array}{lll}-1 & 1\end{array}\right]$ direction (Fig. 2). The combination of the two chain motifs is sufficient to link all the molecules into a two-dimensional sheet parallel to ($\left.\begin{array}{lll}0 & 1 & 0\end{array}\right)$. Two such sheets pass through each unit cell in the domains $0<$ $y<1 / 2$ and $1 / 2<y<1$, and there are no direction-specific interactions between the two sheets.

S2. Experimental

Into a three-necked round-bottomed flask equipped with a stirrer were introduced methyl 3 -aminobut-2-enoate (0.1 mol , $11.5 \mathrm{~g})$, aqueous formaldehyde $(0.05 \mathrm{~mol}, 37 \% 4.0 \mathrm{~g})$ and ethanol $(95 \%, 25 \mathrm{ml})$. The resulted mixture was refluxed with stirring for ca 20 min , and then the solution is cooled to room temperature. The precipitate was filtered off, washed with cool ethanol (95\%), and the resulting solid product was recrystallized from hot ethanol to give crystals of \mathbf{I}.
${ }^{1} \mathrm{H}$ NMR (DMSO, 400 MHz) of (I): $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), \delta 3.59(\mathrm{~s}, 6 \mathrm{H}), \delta 3.14(\mathrm{~s}, 2 \mathrm{H}), \delta 2.12(\mathrm{~s}, 6 \mathrm{H})$.

S3. Refinement

All H atoms other than the C 1 - and C 5 -methyl H atoms were located in a difference map and then treated as riding atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA\left(\mathrm{CH}_{3}\right)$ or $0.97 \AA\left(\mathrm{CH}_{2}\right)$, and $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}$ (methyl C). The C1- and C5-methyl H atoms was modelled as idealized disordered methyl groups over two sets offset by 60°.

Figure 1

The molecular structure of \mathbf{I}, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius. Only one component of the disordered methyl groups is shown.

Figure 2
Part of the crystal structure of \mathbf{I}, showing the formation of a (01010$)$ sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Intermolecular interactions are represented by dashed lines. Symmetry codes: (i) $x+1$, y, z; (ii) $-x+1, y, z+1$; (iii) $x-1, y, z$; (iv) $x+1, y, z-1$.

Dimethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$
$M_{r}=225.24$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.3933$ (13) \AA
$b=7.8391$ (14) \AA
$c=11.1847(19) \AA$
$\alpha=75.977$ (2 $^{\circ}$
$\beta=75.274(2)^{\circ}$
$\gamma=64.351(2)^{\circ}$
$V=558.62(17) \AA^{3}$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min }=0.952, T_{\text {max }}=0.965$
$Z=2$
$F(000)=240$
$D_{\mathrm{x}}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2071 reflections
$\theta=2.9-28.1^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, blue
$0.49 \times 0.43 \times 0.25 \mathrm{~mm}$

3550 measured reflections
2047 independent reflections
1764 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
2047 reflections
148 parameters
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.115$
$S=1.05$

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0612 P)^{2}+0.1212 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.26 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C1	-0.2092 (2)	0.24631 (19)	0.60198 (13)	0.0371 (3)	
C2	-0.0517 (2)	0.24220 (18)	0.64524 (13)	0.0355 (3)	
C3	0.1441 (2)	0.2394 (2)	0.55870 (13)	0.0366 (3)	
H3A	0.1702	0.3463	0.5677	0.044*	
H3B	0.2561	0.1224	0.5837	0.044*	
C4	0.13729 (19)	0.25116 (18)	0.42266 (12)	0.0328 (3)	
C5	-0.0262 (2)	0.25369 (18)	0.38665 (12)	0.0348 (3)	
C6	-0.4103 (2)	0.2499 (3)	0.67563 (16)	0.0519 (4)	
H6A	-0.4925	0.2528	0.6204	0.078*	0.50
H6B	-0.4787	0.3618	0.7161	0.078*	0.50
H6C	-0.3888	0.1374	0.7376	0.078*	0.50
H6D	-0.4142	0.2485	0.7623	0.078*	0.50
H6E	-0.4280	0.1396	0.6666	0.078*	0.50
H6F	-0.5178	0.3639	0.6452	0.078*	0.50
C7	-0.0548 (2)	0.2638 (2)	0.25662 (14)	0.0467 (4)	
H7A	-0.1855	0.2633	0.2596	0.070*	0.50
H7B	0.0502	0.1553	0.2209	0.070*	0.50
H7C	-0.0474	0.3794	0.2062	0.070*	0.50
H7D	0.0637	0.2687	0.1982	0.070*	0.50
H7E	-0.1720	0.3767	0.2369	0.070*	0.50
H7F	-0.0744	0.1526	0.2516	0.070*	0.50
C8	-0.0642 (2)	0.2376 (2)	0.77872 (14)	0.0430 (4)	
C9	0.3211 (2)	0.25935 (19)	0.33790 (13)	0.0359 (3)	
C10	0.1095 (4)	0.2341 (3)	0.93016 (16)	0.0699 (6)	
H10A	-0.0084	0.3384	0.9621	0.105*	
H10B	0.2303	0.2470	0.9358	0.105*	
H10C	0.1084	0.1152	0.9784	0.105*	
C11	0.5033 (3)	0.2757 (3)	0.13100 (16)	0.0647 (5)	
H11A	0.5180	0.3911	0.1320	0.097*	

H11B	0.4925	0.2720	0.0480	0.097^{*}
H11C	0.6199	0.1669	0.1563	0.097^{*}
N1	$-0.19256(17)$	$0.24966(18)$	$0.47535(11)$	$0.0401(3)$
H1	-0.2931	0.2492	0.4504	0.048^{*}
O1	$0.10679(18)$	$0.23698(18)$	$0.80131(9)$	$0.0537(3)$
O2	$-0.2029(2)$	$0.2326(2)$	$0.86306(11)$	$0.0705(4)$
O3	$0.32231(16)$	$0.27138(19)$	$0.21605(10)$	$0.0547(3)$
O4	$0.46494(15)$	$0.25501(17)$	$0.37415(10)$	$0.0499(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0345(7)$	$0.0403(7)$	$0.0361(7)$	$-0.0168(6)$	$-0.0018(6)$	$-0.0055(5)$
C2	$0.0353(7)$	$0.0396(7)$	$0.0318(7)$	$-0.0161(6)$	$-0.0029(5)$	$-0.0060(5)$
C3	$0.0323(7)$	$0.0479(8)$	$0.0329(7)$	$-0.0183(6)$	$-0.0047(5)$	$-0.0082(6)$
C4	$0.0314(7)$	$0.0376(7)$	$0.0307(7)$	$-0.0148(5)$	$-0.0047(5)$	$-0.0062(5)$
C5	$0.0341(7)$	$0.0384(7)$	$0.0338(7)$	$-0.0161(5)$	$-0.0059(5)$	$-0.0052(5)$
C6	$0.0397(8)$	$0.0718(11)$	$0.0470(9)$	$-0.0287(7)$	$0.0017(7)$	$-0.0108(7)$
C7	$0.0443(8)$	$0.0679(10)$	$0.0366(8)$	$-0.0290(7)$	$-0.0102(6)$	$-0.0063(7)$
C8	$0.0458(8)$	$0.0471(8)$	$0.0353(8)$	$-0.0201(6)$	$-0.0011(6)$	$-0.0077(6)$
C9	$0.0329(7)$	$0.0415(7)$	$0.0341(7)$	$-0.0157(6)$	$-0.0052(5)$	$-0.0058(5)$
C10	$0.0973(15)$	$0.0926(14)$	$0.0354(9)$	$-0.0492(12)$	$-0.0171(9)$	$-0.0088(8)$
C11	$0.0512(10)$	$0.1089(15)$	$0.0386(9)$	$-0.0428(10)$	$0.0079(7)$	$-0.0144(9)$
N1	$0.0324(6)$	$0.0575(7)$	$0.0369(7)$	$-0.0239(5)$	$-0.0061(5)$	$-0.0066(5)$
O1	$0.0599(7)$	$0.0802(8)$	$0.0319(6)$	$-0.0359(6)$	$-0.0090(5)$	$-0.0106(5)$
O2	$0.0668(8)$	$0.1125(11)$	$0.0357(6)$	$-0.0465(8)$	$0.0095(6)$	$-0.0153(6)$
O3	$0.0457(6)$	$0.0966(9)$	$0.0316(6)$	$-0.0411(6)$	$0.0011(4)$	$-0.0101(5)$
O4	$0.0356(6)$	$0.0772(8)$	$0.0430(6)$	$-0.0284(5)$	$-0.0049(4)$	$-0.0103(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C2	1.356 (2)	C7-H7B	0.9600
C1-N1	1.3848 (18)	C7-H7C	0.9600
C1-C6	1.4976 (19)	C7-H7D	0.9600
C2-C8	1.465 (2)	C7-H7E	0.9600
C2-C3	1.5172 (18)	C7-H7F	0.9600
C3-C4	1.5142 (18)	C8-O2	1.2114 (19)
C3-H3A	0.9700	C8-O1	1.3489 (19)
C3-H3B	0.9700	C9-O4	1.2154 (17)
C4-C5	1.3587 (19)	C9-O3	1.3411 (17)
C4-C9	1.4634 (18)	C10-O1	1.4410 (19)
C5-N1	1.3771 (17)	C10-H10A	0.9600
C5-C7	1.5007 (19)	C10-H10B	0.9600
C6-H6A	0.9600	C10-H10C	0.9600
C6-H6B	0.9600	C11-O3	1.4396 (18)
C6-H6C	0.9600	C11-H11A	0.9600
C6-H6D	0.9600	C11-H11B	0.9600
C6-H6E	0.9600	C11-H11C	0.9600

C6-H6F	0.9600	N1-H1	0.8600
C7-H7A	0.9600		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	119.37 (12)	C5-C7- H 7 C	109.5
C2-C1-C6	127.69 (13)	H7A-C7-H7C	109.5
N1-C1-C6	112.93 (12)	H7B-C7-H7C	109.5
C1-C2-C8	120.67 (12)	C5-C7-H7D	109.5
C1-C2-C3	121.77 (12)	H7A-C7-H7D	141.1
C8-C2-C3	117.56 (12)	H7B-C7-H7D	56.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	112.94 (11)	H7C-C7-H7D	56.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0	C5-C7-H7E	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0	H7A-C7-H7E	56.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.0	H7B-C7-H7E	141.1
C2-C3-H3B	109.0	H7C-C7-H7E	56.3
H3A-C3-H3B	107.8	H7D-C7-H7E	109.5
C5-C4-C9	124.99 (12)	C5-C7-H7F	109.5
C5-C4-C3	121.76 (12)	H7A-C7-H7F	56.3
C9-C4-C3	113.25 (11)	H7B-C7-H7F	56.3
C4-C5-N1	119.50 (12)	H7C-C7-H7F	141.1
C4-C5-C7	127.93 (12)	H7D-C7-H7F	109.5
N1-C5-C7	112.57 (11)	H7E-C7-H7F	109.5
C1-C6-H6A	109.5	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	121.07 (14)
C1-C6-H6B	109.5	O2-C8-C2	127.86 (15)
H6A-C6-H6B	109.5	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 2$	111.06 (12)
C1-C6-H6C	109.5	$\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 3$	121.45 (12)
H6A-C6-H6C	109.5	O4-C9-C4	122.90 (13)
H6B-C6-H6C	109.5	O3-C9-C4	115.65 (11)
C1-C6-H6D	109.5	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
H6A-C6-H6D	141.1	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
H6B-C6-H6D	56.3	H10A-C10-H10B	109.5
H6C-C6-H6D	56.3	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
C1-C6-H6E	109.5	H10A-C10-H10C	109.5
H6A-C6-H6E	56.3	H10B-C10-H10C	109.5
H6B-C6-H6E	141.1	$\mathrm{O} 3-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
H6C-C6-H6E	56.3	O3-C11-H11B	109.5
H6D-C6-H6E	109.5	H11A-C11-H11B	109.5
C1-C6- H 6 F	109.5	O3-C11-H11C	109.5
H6A-C6-H6F	56.3	H11A-C11-H11C	109.5
H6B-C6-H6F	56.3	H11B-C11-H11C	109.5
H6C-C6-H6F	141.1	C5-N1-C1	124.57 (11)
H6D-C6-H6F	109.5	C5-N1-H1	117.7
H6E-C6-H6F	109.5	C1-N1-H1	117.7
C5-C7-H7A	109.5	C8-O1-C10	115.57 (13)
C5-C7-H7B	109.5	C9-O3-C11	116.70 (12)
H7A-C7-H7B	109.5		
N1-C1-C2-C8	-179.68(12)	C1-C2-C8-O1	-179.05 (12)
C6-C1-C2-C8	1.0 (2)	C3-C2-C8-O1	1.79 (18)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.6(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.85(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$2.74(19)$
$\mathrm{C} 8-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.11(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-3.18(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$176.77(11)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-178.51(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$1.4(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$0.4(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$-179.65(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8-\mathrm{O} 2$	$1.8(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 8-\mathrm{O} 2$	$-177.38(15)$

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 4$	$-179.32(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 4$	$0.73(19)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 3$	$0.4(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 3$	$-179.52(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$1.1(2)$
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$-177.92(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-1.6(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$177.80(12)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 10$	$-1.3(2)$
$\mathrm{C} 2-\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 10$	$179.51(13)$
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 3-\mathrm{C} 11$	$1.0(2)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{O} 3-\mathrm{C} 11$	$-178.77(14)$

Hydrogen-bond geometry $\left({ }_{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.15	$3.006(2)$	176
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.96	2.60	$3.219(2)$	122
$\mathrm{C} 6 — \mathrm{H} 6 D \cdots \mathrm{O} 2$	0.96	2.09	$2.843(2)$	134
$\mathrm{C} 7 — \mathrm{H} 7 D \cdots \mathrm{O} 3$	0.96	1.98	$2.733(2)$	134

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z-1$.

