organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(4-Bromoanilinomethylene)-2,2dimethyl-1,3-dioxane-4,6-dione

Jian-You Shi,^a Jin-Cheng Yang^a* and Jin-Liang Yang^b

^aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and ^bState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China

Correspondence e-mail: jlyang01@163.com

Received 10 August 2009; accepted 4 September 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.009 Å; R factor = 0.066; wR factor = 0.160; data-to-parameter ratio = 12.7.

In the title compound, $C_{13}H_{12}BrNO_4$, the dihedral angles between the aminomethylene group and the dioxane ring and between the benzyl ring and the aminomethylene unit are 7.96 (4) and 12.15 (4)°, respectively. The dioxane ring shows a half-boat conformation, in which the C atom between the dioxane ring O atoms is 0.460 (8) Å out of the plane through the remaining ring atoms. An intramolecular $N-H\cdots O$ hydrogen bond may stabilize the planar conformation of the molecule. An intermolecular $C-H\cdots O$ interaction is also present.

Related literature

For the synthesis of related compounds, see: Cassis *et al.* (1985). For the synthesis of related antitumor precursors, see: Ruchelman *et al.* (2003). For the crystal structures of related 5–arylaminomethylene–2,2–dimethyl–1,3–dioxane–4,6–dione derivatives, see: Li *et al.* (2009*a*,*b*,*c*).

Experimental

Crystal data

Data collection

Rigaku Saturn CCD area-detector
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
$T_{\min} = 0.570, \ T_{\max} = 0.884$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	H atoms treated by a mixture of
$wR(F^2) = 0.160$	independent and constrained
S = 0.99	refinement
2279 reflections	$\Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3}$
179 parameters	$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$

9108 measured reflections

 $R_{\rm int} = 0.113$

2279 independent reflections

1063 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1−H1 <i>N</i> ···O4 C9−H9···O3 ⁱ	0.98 (7) 0.93	2.06 (8) 2.49	2.770 (7) 3.345 (8)	128 (6) 152
		2		

Symmetry code: (i) -x + 2, -y, -z + 2.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2160).

References

Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009a). Acta Cryst. E65, 01296.
- Li, R., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009b). Acta Cryst. E65, 01297.
- Li, R., Shi, J.-Y., Ding, Z.-Y., Wei, Y.-Q. & Ding, J. (2009c). Acta Cryst. E65, 01298–01299.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). *Bioorg. Med. Chem.* **11**, 2061–2073. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2009). E65, o2458 [doi:10.1107/S1600536809035776]

5-(4-Bromoanilinomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione

Jian-You Shi, Jin-Cheng Yang and Jin-Liang Yang

S1. Comment

The 4(1*H*)quinolone structure plays an extremely important role in the field of pharmaceutical chemistry. The 5–arylaminomethylene–2,2–dimethyl–1,3–dioxane–4,6–diones are the key intermediates which can be used to synthesize the 4(1*H*)quinolone derivatives by thermolysis (Cassis *et al.*, 1985), that can be used as precursors foranti–malarial agents, anticancer agents, and reversible (H+/K+) ATPase inhibitors (Ruchelman *et al.*, 2003). The conformation of the title compound is similar with those reported early by Li *et al.*, (2009*a*,*b*,*c*), which is almost planar with the dihedral angles of 7.96 (4)° and 12.15 (4)° between the aminomethylene group and the dioxane ring, and between the benzyl ring and the aminomethylene unit, respectively. Besides, the dioxane ring of the title compound exhibits a half–boat conformation, in which the C atom between the dioxane oxygen atoms is -0.460 (8) Å out–of–plane. The intramolecular N—H···O hydrogen bond (Table 1) is stabilizing the planar conformation in the molecule.

S2. Experimental

A solution of 2,2–dimethyl–1,3–dioxane–4,6–dione (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 2.5 h, then the arylamine (1.32 g, 0.01 mol) was added into the above solution. The mixture was heated under reflux for another 4 h and then filtered. Single crystals were obtained from the filtrate after 2 days.

S3. Refinement

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93Å for aromatic or 0.96Å for methyl, and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C)$ for the others.

Figure 1

The molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

Crystal packing of the title compound, showing the intermolecular hydrogen bonds as dashed lines. H atoms not involved in these interactions have been omitted. Symmetry code: (i) -x+2, -y, -z+2.

5-(4-Bromoanilinomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione

Crystal data

C₁₃H₁₂BrNO₄ $M_r = 326.14$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.837 (3) Å b = 13.019 (3) Å c = 7.4900 (15) Å $\beta = 105.24$ (3)° V = 1301.8 (5) Å³ Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer Radiation source: rotating anode Confocal monochromator Detector resolution: 7.31 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.570, T_{\max} = 0.884$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.160$ S = 0.992279 reflections 179 parameters F(000) = 656 $D_x = 1.664 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4079 reflections $\theta = 2.2-27.7^{\circ}$ $\mu = 3.17 \text{ mm}^{-1}$ T = 113 KPlate, colourless $0.20 \times 0.18 \times 0.04 \text{ mm}$

9108 measured reflections 2279 independent reflections 1063 reflections with $I > 2\sigma(I)$ $R_{int} = 0.113$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.2^\circ$ $h = -16 \rightarrow 16$ $k = -15 \rightarrow 15$ $l = -7 \rightarrow 8$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0585P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.97 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.96 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ } SHELXL97 \ ({\rm Sheldrick,} \\ 2008), \ {\rm Fc}^* = {\rm kFc} [1 + 0.001 {\rm xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ {\rm Extinction \ coefficient: \ } 0.017 \ (3) \end{array}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

				TT \$/TT	
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Br1	0.55042 (5)	0.35263 (5)	1.07667 (10)	0.0385 (4)	
01	1.2599 (3)	0.2261 (3)	0.9075 (6)	0.0281 (11)	
O2	1.2115 (3)	0.0519 (3)	0.8410 (5)	0.0263 (11)	
03	1.0562 (3)	0.0009 (3)	0.8058 (6)	0.0335 (12)	
04	1.1515 (3)	0.3439 (3)	0.9505 (6)	0.0310 (12)	
N1	0.9664 (4)	0.2768 (4)	0.9800 (7)	0.0235 (13)	
H1N	1.008 (7)	0.337 (5)	0.978 (11)	0.08 (3)*	
C1	1.0970 (5)	0.1708 (4)	0.9159 (8)	0.0232 (16)	
C2	1.1680 (5)	0.2526 (5)	0.9294 (8)	0.0269 (16)	
C3	1.2909 (5)	0.1209 (5)	0.9352 (9)	0.0270 (16)	
C4	1.1175 (5)	0.0689 (5)	0.8546 (8)	0.0260 (16)	
C5	1.3741 (5)	0.1084 (5)	0.8402 (9)	0.0324 (17)	
H5A	1.3500	0.1275	0.7124	0.049*	
H5B	1.3955	0.0380	0.8485	0.049*	
H5C	1.4294	0.1516	0.8994	0.049*	
C6	1.3222 (5)	0.0959 (5)	1.1391 (8)	0.0351 (18)	
H6A	1.3725	0.1438	1.2018	0.053*	
H6B	1.3490	0.0275	1.1562	0.053*	
H6C	1.2652	0.1004	1.1890	0.053*	
C7	1.0035 (5)	0.1867 (5)	0.9435 (8)	0.0250 (16)	
H7	0.9624	0.1294	0.9362	0.030*	
C8	0.8705 (5)	0.2914 (5)	1.0096 (7)	0.0212 (15)	
C9	0.8101 (5)	0.2096 (5)	1.0358 (8)	0.0294 (17)	
H9	0.8340	0.1426	1.0388	0.035*	
C10	0.7156 (5)	0.2274 (5)	1.0571 (8)	0.0284 (16)	
H10	0.6755	0.1730	1.0746	0.034*	
C11	0.6813 (5)	0.3276 (5)	1.0521 (8)	0.0241 (16)	
C12	0.7412 (5)	0.4097 (4)	1.0325 (8)	0.0259 (16)	
H12	0.7180	0.4766	1.0339	0.031*	
C13	0.8362 (5)	0.3912 (5)	1.0109 (8)	0.0252 (16)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H13	0.8768	0.44	59	0.9973	0.030*		
Atomic displacement parameters $(Å^2)$							
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Br1	0.0334 (6)	0.0385 (6)	0.0460 (6)	0.0036 (3)	0.0148 (4)	-0.0078 (3)	
01	0.038 (3)	0.020 (2)	0.031 (3)	0.000 (2)	0.019 (2)	0.000(2)	
O2	0.030 (3)	0.022 (2)	0.032 (3)	0.001 (2)	0.016 (2)	-0.004(2)	
03	0.042 (3)	0.022 (3)	0.044 (3)	-0.005(2)	0.024 (3)	-0.001(2)	
04	0.040 (3)	0.018 (3)	0.038 (3)	0.000 (2)	0.016 (2)	-0.006(2)	
N1	0.028 (4)	0.019 (3)	0.025 (3)	0.001 (3)	0.010 (3)	-0.003 (2)	
C1	0.035 (5)	0.019 (4)	0.019 (3)	-0.003 (3)	0.013 (3)	0.004 (3)	
C2	0.037 (5)	0.027 (4)	0.019 (3)	0.006 (3)	0.012 (3)	0.005 (3)	
C3	0.029 (5)	0.020 (4)	0.034 (4)	0.008 (3)	0.012 (3)	-0.003 (3)	
C4	0.030 (4)	0.023 (4)	0.027 (4)	0.003 (3)	0.010 (3)	0.006 (3)	
C5	0.034 (5)	0.023 (4)	0.043 (4)	0.002 (3)	0.014 (4)	-0.006 (3)	
C6	0.047 (5)	0.030 (4)	0.024 (4)	0.015 (3)	0.002 (3)	-0.004 (3)	
C7	0.034 (5)	0.024 (4)	0.019 (3)	0.002 (3)	0.010 (3)	0.005 (3)	
C8	0.030 (4)	0.020 (4)	0.014 (3)	-0.004(3)	0.008 (3)	-0.002(3)	
С9	0.047 (5)	0.018 (4)	0.028 (4)	0.009 (3)	0.019 (3)	0.000 (3)	
C10	0.037 (5)	0.030 (4)	0.022 (3)	-0.006 (3)	0.014 (3)	-0.005 (3)	
C11	0.028 (4)	0.022 (4)	0.022 (4)	0.001 (3)	0.007 (3)	-0.003 (3)	
C12	0.042 (5)	0.013 (3)	0.023 (4)	0.008 (3)	0.010 (3)	0.005 (3)	
C13	0.041 (5)	0.016 (3)	0.022 (4)	-0.001(3)	0.014 (3)	0.000 (3)	

Geometric parameters (Å, °)

0.9600 0.9600 0.9600 0.9600 0.9600 0.9300
0.9600 0.9600 0.9600 0.9600 0.9300
0.9600 0.9600 0.9600 0.9300
0.9600 0.9600 0.9300
0.9600 0.9300
0.9300
1.385 (8)
1.399 (8)
1.378 (8)
0.9300
1.386 (8)
0.9300
1.383 (8)
1.386 (8)
0.9300
0.9300
109.5
109.5
109.5
109.5

C9 N1 H1N	118 (5)	ЧАР СА ЧАС	100.5
C_{0} C_{1} C_{2}	110(3) 1221(6)	$\frac{110D}{C} = \frac{110C}{C}$	109.5
$C_{7} = C_{1} = C_{2}$	122.1(0)	N1 = C7 = C1 $N1 = C7 = H7$	120.0 (0)
$C^2 = C^1 = C^4$	110.9 (0)	NI = C / = H7	117.0
$C_2 - C_1 - C_4$	120.8(0)	$C_1 - C_2 - C_2$	117.0
04 - 02 - 01	118.0(6)	C13 - C8 - C9	119.7 (6)
04-02-01	125.5 (6)	C13 - C8 - N1	117.7 (5)
01-02-01	116.4 (5)	C9—C8—N1	122.6 (6)
01	111.2 (5)	C10—C9—C8	120.5 (6)
01	110.4 (5)	С10—С9—Н9	119.7
O2—C3—C6	109.8 (5)	С8—С9—Н9	119.7
O1—C3—C5	105.7 (5)	C9—C10—C11	119.0 (6)
O2—C3—C5	106.1 (5)	C9—C10—H10	120.5
C6—C3—C5	113.6 (6)	C11—C10—H10	120.5
O3—C4—O2	117.9 (6)	C12—C11—C10	121.3 (6)
O3—C4—C1	125.5 (6)	C12—C11—Br1	119.5 (5)
O2—C4—C1	116.4 (6)	C10-C11-Br1	119.2 (5)
С3—С5—Н5А	109.5	C11—C12—C13	119.5 (6)
С3—С5—Н5В	109.5	C11—C12—H12	120.3
H5A—C5—H5B	109.5	C13—C12—H12	120.3
C3—C5—H5C	109.5	C8—C13—C12	120.0 (6)
H5A—C5—H5C	109.5	C8—C13—H13	120.0
H5B—C5—H5C	109.5	С12—С13—Н13	120.0
С3—С6—Н6А	109.5		
C3—O1—C2—O4	162.6 (5)	C2—C1—C4—O2	10.3 (8)
C3-01-C2-C1	-20.6(8)	C8—N1—C7—C1	-179.4 (6)
C7—C1—C2—O4	-6.4(10)	C2-C1-C7-N1	2.0 (10)
C4—C1—C2—O4	167.6 (6)	C4-C1-C7-N1	-172.3(6)
C7-C1-C2-O1	177.0 (5)	C7-N1-C8-C13	-168.0(5)
C4-C1-C2-O1	-89(8)	C7 - N1 - C8 - C9	11 5 (9)
$C_{2}=01=C_{3}=02$	46 4 (7)	$C_{13} - C_{8} - C_{9} - C_{10}$	20(9)
$C_2 = 01 = C_3 = C_6$	-75.7(7)	N1 - C8 - C9 - C10	-177.5(5)
$C_2 = 01 = C_3 = C_5$	161.1(5)	C_{8} C_{9} C_{10} C_{11}	0 1 (9)
C_{1} C_{2} C_{3} C_{1} C_{3} C_{1}	-44.9(7)	C_{0} C_{10} C_{11} C_{12}	-23(0)
$C_{4} = 02 = C_{3} = 01$	77.5(6)	$C_{10} = C_{10} = C_{11} = C_{12}$	2.3(5)
$C_{4} = 02 = C_{3} = C_{0}$	-1504(5)	$C_{10} = C_{10} = C_{11} = C_{12} = C_{13}$	178.8(3)
$C_{4}^{-} O_{2}^{-} C_{3}^{-} C_{3}^{-} C_{3}^{-}$	159.4(5)	$P_{\pi 1} = C_{11} = C_{12} = C_{13}$	2.3(9)
$C_{3} = 0_{2} = C_{4} = 0_{3}$	-100.3(3)	BII = CII = CI2 = CI3	-1/8.7(4)
$C_{3} = C_{4} = C_{1}$	1/.0(/)	$V_{7} = V_{8} = V_{12} = V_{12}$	-1.9(8)
$C_{1} - C_{1} - C_{4} - C_{3}$	8.9 (9) 1 <i>(5, 1, (</i> ())	$NI - C\delta - CI3 - CI2$	1//.0(3)
12 - 1 - 14 - 03	-165.4 (6)	U11—U12—U13—U8	-0.2 (8)
C/C1C4O2	-175.3(5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> …O4	0.98 (7)	2.06 (8)	2.770 (7)	128 (6)

			supporting information		
C9—H9····O3 ⁱ	0.93	2.49	3.345 (8)	152	
Symmetry code: (i) $-x+2, -y, -z+2$.					