Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N^{1}, N^{4}-Bis(2-thienylmethylene)cyclo-hexane-1,4-diamine

Kyung-Eun Lee* and Soon W. Lee
Department of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
Correspondence e-mail: soonwlee@skku.edu

Received 1 September 2009; accepted 3 September 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.032 ; w R$ factor $=0.089$; data-to-parameter ratio $=14.9$.

The title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$, lies about an inversion center with only half of the molecule in the asymmetric unit. The cyclohexane ring adopts a chair conformation, and the terminal thiophene rings are in a transoid orientation, with an S...S separation between the two terminal 2-thiophene rings of 11.6733 (9) A.

Related literature

For a general introduction to coordination polymers, see: Batten et al. (2009); Perry et al. (2009); Robin \& Fromm (2006). For structurally related compounds, see: Yun et al. (2009). For related linking ligands containing terminal thiophene rings, see: Lee \& Lee (2007); Huh et al. (2008); Kim \& Lee (2008).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$
$M_{r}=302.44$

Monoclinic, $P 2_{1} / n$
$a=6.2173$ (4) A
$b=7.4999$ (5) \AA
$c=17.1289$ (12) \AA
$\beta=97.047$ (3) ${ }^{\circ}$
$V=792.67(9) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.46 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.864, T_{\text {max }}=0.937$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad 127$ parameters
$w R\left(F^{2}\right)=0.089$
$S=1.02$
1889 reflections

All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{\AA^{-3}}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant No. 2009-007996).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2205).

References

Batten, S. R., Neville, S. M. \& Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Cambridge: The Royal Society of Chemistry.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Huh, H. S., Kim, S. H., Yun, S. Y. \& Lee, S. W. (2008). Polyhedron, 27, 12291237.

Kim, S. H. \& Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137-144.
Lee, H. H. \& Lee, S. W. (2007). Bull. Korean Chem. Soc. 28, 421-426.
Perry, J. J. IV, Perman, J. A. \& Zaworotko, M. J. (2009). Chem. Soc. Rev. 38, 1400-1417.
Robin, A. Y. \& Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yun, H. J., Lim, S. H. \& Lee, S. W. (2009). Polyhedron, 28, 614-620.

supporting information

Acta Cryst. (2009). E65, o2382 [doi:10.1107/S1600536809035545]

N^{1}, N^{4}-Bis(2-thienylmethylene)cyclohexane-1,4-diamine

Kyung-Eun Lee and Soon W. Lee

S1. Comment

Design and construction of coordination polymers (or metal-organic frameworks, MOFs) are currently under intensive study due to their desirable applications in catalysis, nonlinear optical activity, spin crossover, luminescence, long-range magnetism, adsorption-desorption, and gas storage (Batten et al., 2009; Perry IV et al., 2009; Robin \& Fromm, 2006). In preparing such polymers, appropriate linking ligands play a fundamental role. We have continually reported long bis-(pyridine)-, bis(furan)-, bis(thiophene)-, and (pyridine-amine)-type linking ligands and their coordination polymers (Yun et al. 2009). As an extension to our ongoing study of novel linking ligands and their coordination polymers, we have prepared a long, potential linking ligand containing an intervening cyclohexane ring with two terminal thiophene rings.
The molecular structure of the title compound (Fig. 1) contains an intervening cyclohexane ring between two iminethiophene ($-N=\mathrm{CH}-2$-thiophene) fragments. The cyclohexane ring fragment adopts a chair conformation. The imine fragments occupy the equatorial sites of the cyclohexane ring and are trans with respect to each other. The terminal thiophene rings also adopt an overall transoid conformation. The $\mathrm{S} \cdots \mathrm{S}$ separation between the two terminal 2-thiophene rings is 11.6733 (9) \AA. Several related linking ligands containing terminal thiophene rings were previously employed to obtain coordination networks: (2-thiophene)- $\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-$ (2-thiophene) (Lee \& Lee, 2007; Huh et al., 2008) and (3-thio-phene)- $\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-$ (3-thiophene) (Kim \& Lee, 2008).

S2. Experimental

At room temperature, trans-1,4-diaminocyclohexane ($1.0 \mathrm{~g}, 8.76 \mathrm{mmol}$) was added to 2-thiophene carboxaldehyde (1.72 $\mathrm{ml}, 18.72 \mathrm{mmol})$ in 80 ml methanol. After adding dichloromethane $(50 \mathrm{ml})$ and three drops of formic acid, the mixture was stirred for 15 h , and then the solvent was removed under vacuum. The resulting solid was extracted with dichloromethane $(150 \mathrm{ml})$ and washed with water $(30 \mathrm{ml} \times 3)$. The organic phase was dried over MgSO_{4} and then filtered. All the solvent was removed to give white crude solid, which was recrystallized from dichloromethane/hexane to give colorless crystals of the title compound suitable for X-ray crystallographic study ($2.05 \mathrm{~g}, 6.78 \mathrm{mmol}, 77 \%$) mp : $511-513 \mathrm{~K}$.

S3. Refinement

All H atoms were located from difference maps and refined isotropically.

Figure 1

Molecular structure of the title compound showing 50% probability displacement ellipsoids. Symmetry code for the atoms with A in their labels: $-x+2,-y+2,-z+2$.

N^{1}, N^{4}-Bis(2-thienylmethylene)cyclohexane-1,4-diamine

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$

$M_{r}=302.44$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=6.2173$ (4) \AA
$b=7.4999(5) \AA$
$c=17.1289(12) \AA$
$\beta=97.047$ (3) ${ }^{\circ}$
$V=792.67(9) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.864, T_{\text {max }}=0.937$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.089$
$S=1.02$
1889 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=320$
$D_{\mathrm{x}}=1.267 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5365 reflections
$\theta=2.4-28.2^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.46 \times 0.24 \times 0.20 \mathrm{~mm}$

9045 measured reflections
1889 independent reflections
1590 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-8 \rightarrow 8$
$k=-8 \rightarrow 9$
$l=-22 \rightarrow 19$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0484 P)^{2}+0.1406 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.19$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Special details

Experimental. IR (KBr, cm^{-1}): 3443 (w), 3103 (w), 2923 (m), 2852 (w), 1626 (s), 1430 (m), 1306 (w), 1210 (m), 1084 (m), 944 (m), 847 (m), 730 (s), 498 (m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.65706(5)$	$0.42717(5)$	$0.78995(2)$	$0.04947(14)$
N1	$0.78346(18)$	$0.71526(15)$	$0.91441(7)$	$0.0458(3)$
C1	$0.4495(3)$	$0.2897(2)$	$0.75469(10)$	$0.0554(4)$
C2	$0.2791(3)$	$0.3032(2)$	$0.79591(10)$	$0.0575(4)$
C3	$0.3138(2)$	$0.42688(19)$	$0.85814(9)$	$0.0488(3)$
C4	$0.51420(19)$	$0.50601(18)$	$0.86246(7)$	$0.0396(3)$
C5	$0.6024(2)$	$0.64140(18)$	$0.91770(7)$	$0.0412(3)$
C6	$0.8511(2)$	$0.85271(18)$	$0.97279(8)$	$0.0430(3)$
C7	$0.8308(3)$	$1.0366(2)$	$0.93470(10)$	$0.0527(4)$
C8	$1.0844(2)$	$0.8189(2)$	$1.00708(10)$	$0.0516(3)$
H1	$0.465(3)$	$0.218(2)$	$0.7107(11)$	$0.069(5)^{*}$
H2	$0.157(3)$	$0.239(3)$	$0.7840(10)$	$0.070(5)^{*}$
H3	$0.218(2)$	$0.4550(19)$	$0.8910(10)$	$0.051(4)^{*}$
H5	$0.518(2)$	$0.6691(19)$	$0.9570(9)$	$0.050(4)^{*}$
H6	$0.761(2)$	$0.847(2)$	$1.0152(9)$	$0.053(4)^{*}$
H7A	$0.687(3)$	$1.058(2)$	$0.9140(12)$	$0.074(6)^{*}$
H7B	$0.909(3)$	$1.037(2)$	$0.8896(11)$	$0.061(5)^{*}$
H8B	$1.176(3)$	$0.821(2)$	$0.9662(10)$	$0.056(4)^{*}$
H8A	$1.104(3)$	$0.705(2)$	$1.0311(10)$	$0.059(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0449(2)$	$0.0531(2)$	$0.0512(2)$	$-0.00126(14)$	$0.00905(15)$	$-0.00792(15)$
N1	$0.0473(6)$	$0.0465(6)$	$0.0443(6)$	$-0.0070(5)$	$0.0087(5)$	$-0.0088(5)$
C1	$0.0617(9)$	$0.0484(8)$	$0.0545(8)$	$-0.0023(7)$	$0.0005(7)$	$-0.0112(7)$
C2	$0.0523(8)$	$0.0552(9)$	$0.0631(9)$	$-0.0150(7)$	$-0.0003(7)$	$-0.0052(7)$
C3	$0.0445(7)$	$0.0532(8)$	$0.0491(7)$	$-0.0066(6)$	$0.0077(6)$	$-0.0008(6)$
C4	$0.0400(6)$	$0.0389(6)$	$0.0393(6)$	$0.0006(5)$	$0.0035(5)$	$0.0025(5)$
C5	$0.0418(6)$	$0.0428(7)$	$0.0389(6)$	$0.0016(5)$	$0.0051(5)$	$0.0000(5)$
C6	$0.0450(7)$	$0.0441(7)$	$0.0407(6)$	$-0.0041(5)$	$0.0084(5)$	$-0.0076(6)$
C7	$0.0531(8)$	$0.0492(8)$	$0.0518(8)$	$0.0023(6)$	$-0.0091(7)$	$-0.0035(6)$
C8	$0.0544(8)$	$0.0397(8)$	$0.0584(9)$	$0.0050(6)$	$-0.0030(7)$	$-0.0044(6)$

Geometric parameters (A, ${ }^{\circ}$)

S1-C1	1.7038 (16)	C5-H5	0.928 (15)
S1-C4	1.7181 (13)	C6-C8	1.518 (2)
N1-C5	1.2619 (16)	C6-C7	1.524 (2)
N1-C6	1.4616 (16)	C6-H6	0.971 (16)
C1-C2	1.347 (2)	C7- $8^{\text {8 }}$	1.522 (2)
C1-H1	0.941 (18)	C7-H7A	0.94 (2)
C2-C3	1.410 (2)	C7-H7B	0.960 (19)
C2-H2	0.900 (18)	C8-C7 ${ }^{\text {i }}$	1.522 (2)
C3-C4	1.3736 (18)	C8-H8B	0.954 (16)
C3-H3	0.894 (15)	C8-H8A	0.951 (17)
C4-C5	1.4492 (19)		
C1-S1-C4	91.62 (7)	N1-C6-C7	110.09 (11)
C5-N1-C6	117.53 (11)	C8-C6-C7	109.96 (12)
C2-C1-S1	112.26 (12)	N1-C6-H6	109.6 (9)
C2-C1-H1	129.0 (11)	C8-C6-H6	108.2 (9)
S1-C1-H1	118.7 (11)	C7-C6-H6	109.8 (9)
C1-C2-C3	112.85 (14)	C8i-C7-C6	111.09 (12)
C1-C2-H2	122.3 (11)	C8- ${ }^{\text {- } 7-\mathrm{H} 7 \mathrm{~A}}$	111.4 (11)
C3-C2-H2	124.8 (11)	C6-C7-H7A	110.0 (11)
C4-C3-C2	112.27 (13)	C8 ${ }^{\text {- }}$ C7- 77 B	111.0 (11)
C4-C3-H3	122.4 (10)	C6-C7- H 7 B	108.7 (10)
C2-C3-H3	125.3 (10)	H7A-C7-H7B	104.5 (15)
C3-C4-C5	127.31 (12)	C6-C8-C7i	111.86 (12)
C3-C4-S1	110.99 (11)	C6-C8-H8B	109.9 (10)
C5-C4-S1	121.69 (9)	C7- ${ }^{\text {i }}$ - ${ }^{\text {- }} 88 \mathrm{~B}$	106.4 (10)
N1-C5-C4	123.14 (12)	C6-C8-H8A	112.4 (10)
N1-C5-H5	121.5 (10)	C7- ${ }^{\text {i }} 8$ - H 8 A	110.0 (10)
C4-C5-H5	115.3 (10)	H8B-C8-H8A	106.0 (13)
N1-C6-C8	109.16 (11)		

Symmetry code: (i) $-x+2,-y+2,-z+2$.

