

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[aqua(μ -4,4'-bipyridyl- $\kappa^2 N:N'$)bis(μ -formato- $\kappa^2 O:O'$)iron(II)] tetrahydrate]

Bin Jiang^a and Zhilu Liu^b*

^aDepartment of Pharmacy, Shandong Medical College, Jinan 250002, People's Republic of China, and ^bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 73000, People's Republic of China

Correspondence e-mail: liuzhilu2009@yahoo.com.cn

Received 14 August 2009; accepted 29 August 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.084; data-to-parameter ratio = 10.2.

In the title compound, {[Fe(CHO₂)₂(C₁₀H₈N₂)(H₂O)]·4H₂O}_{*n*}, the Fe^{II} ion is coordinated by two 4,4'-bipyridyl (4,4'-bpy) ligands, three formate ligands and one water molecule. The slightly distorted octahedral FeN₂O₄ coordination results from the N atoms of two bridging 4,4'-bpy ligands, the O atoms of two bridging HCOO⁻ anions of *anti–anti* mode, all in *trans* positions around the metal centre, and the O atoms of one terminal HCOO⁻ anion and of one water molecule. The bridging formate ligands link the metal ions into chains that are further connected *via* 4,4'-bpy ligands into a framework structure. The three-dimensional structure is stabilized by extensive O–H···O hydrogen bonding. The crystals were twinned containing a 0.84:0.16 racemate.

Related literature

For the potential applications of metal-organic frameworks, see: Jia *et al.* (2007); Hagrman *et al.* (1999); Kortz *et al.* (2003); Li *et al.* (1996); Liu *et al.* (2007); Seo *et al.* (2000); Wang *et al.* (2007); Yaghi *et al.* (1998).

 $\beta = 102.367 \ (1)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.94 \text{ mm}^{-1}$

T = 273 K

 $R_{\rm int} = 0.031$

Z = 4

V = 1683.44 (16) Å³

 $0.12 \times 0.10 \times 0.08 \; \mathrm{mm}$

4376 measured reflections

2523 independent reflections

2468 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $[Fe(CHO_2)_2(C_{10}H_8N_2)(H_2O)] - 4H_2O$ $M_r = 392.15$ Monoclinic, Cc a = 10.5021 (6) Å b = 20.1959 (11) Å c = 8.1256 (4) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.895, T_{max} = 0.928$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.084$	
S = 1.00	
2523 reflections	
248 parameters	
19 restraints	

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1036 Friedel pairs

Flack parameter: 0.158 (18)

Table 1

		0	
Hvdrogen-bond	geometry	(A.	°)

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H1W\cdots O4^{i}$	0.82 (4)	1.97 (4)	2.693 (4)	146 (6)
$O6-H3W \cdot \cdot \cdot O3^{ii}$	0.82 (4)	1.98 (4)	2.792 (4)	173 (4)
$O6-H4WO9^{iii}$	0.82 (3)	1.93 (3)	2.753 (4)	175 (5)
$O7 - H5W \cdot \cdot \cdot O8^{iv}$	0.82 (5)	2.22 (5)	3.028 (9)	171 (4)
$O7 - H6W \cdot \cdot \cdot O4^{ii}$	0.82(3)	2.46 (3)	3.117 (7)	137 (4)
O9−H10W···O1 ⁱⁱⁱ	0.82 (4)	2.16 (4)	2.954 (4)	165 (5)
$O7 - H6W \cdots O2$	0.82 (3)	2.61 (5)	3.158 (5)	125 (5)
$O8 - H7W \cdots O7$	0.82 (3)	1.94 (3)	2.763 (7)	174 (5)
$O8 - H8W \cdots O6$	0.82 (3)	2.031 (19)	2.797 (5)	155 (4)
O9−H9W···O8	0.82 (4)	1.99 (4)	2.779 (5)	163 (5)
$O5-H2W\cdots O6$	0.82 (3)	1.94 (4)	2.729 (4)	161 (4)
			-	

Symmetry codes: (i) x, y, z + 1; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Chinese Academy of Sciences ('Hundred Talents Program') and the Ministry of Science and Technology of China (project of '973' plan, No. 2007CB607606)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2199).

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.

- Jia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. Commun. 10, 265– 268.
- Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). *Chem. Eur. J.* 9, 2945–2952.
 Li, H., Eddaoudi, M. O., Keffe, M. & Yaghi, O. M. (1996). *Nature (London)*, 402, 276–279.
- Liu, B., Li, X. M., Li, C. B., Gao, G. G. & Che, G. B. (2007). Chin. J. Struct. Chem. 26, 679–682.
- Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). *Nature (London)*, **404**, 982–986.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct. 831, 61–68.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. **31**, 474–484.

supporting information

Acta Cryst. (2009). E65, m1189-m1190 [doi:10.1107/S1600536809034722]

Poly[[aqua(μ -4,4'-bipyridyl- $\kappa^2 N$:N')bis(μ -formato- $\kappa^2 O$:O')iron(II)] tetrahydrate]

Bin Jiang and Zhilu Liu

S1. Comment

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas absorption, molecular recognition, nonlinear optics, and magnetochemistry (Jia *et al.*, 2007; Li *et al.*, 1996; Seo *et al.*, 2000; Hagrman *et al.*, 1999; Yaghi *et al.*, 1998; Kortz *et al.*, 2003; Liu *et al.*, 2007; Wang *et al.*, 2007). A successful strategy for the design and synthesis of predictable MOFs is the assembly reaction between metal ions and well designed organic ligands. In this paper, we report the preparation and crystal structure of the title compound, (I).

The Fe^{II} ion in the title compound (Fig. 1) is octahedrally coordinated by two bridging 4,4'-bipyridyl (4,4'-bpy) ligands, two bridging HCOO⁻ (O1—C1—O2) groups in an anti-anti mode, all in *trans* positions around the metal ion, one terminal HCOO⁻ (O3—C2—O4), and one H₂O molecule. The bridging formate ligands link metal ions to form chains running along the *ac* direction. The chain is further connected to other chains *via* 4,4'-bpy ligands. The three-dimensional structure is stabilized by extensive hydrogen bonding (Fig. 2 and Table 1).

S2. Experimental

The crystallization was performed in a 25 ml Teflon-lined stainless steel vessel. A mixture of 4,4'-bipyridyl ligand (1 mmol), iron(II) chloride tetrahydrate (1 mmol), and sodium formate (1 mmol) in 14 ml water was heated to 443 K, and kept at this temperature for one day. Green crystals were obtained after cooling to room temperature with the yield 75%.

S3. Refinement

The space group Cc was determined from successful refinement of the structure. However, an analysis of the data and a high value of Flack parameter indicated twinning which was resolved by applying an appropriate twin law and using 1031 Friedel pairs which were not merged. The BASF parameter was 0.1728, indicating a 0.83:0.17 racemate. All hydrogen atoms bound to carbon atoms were refined using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H-atoms of the water molecules are included in the refinement using the '*DFIX*' command with the H-atoms separated by 1.38 Å, and the H—O bonds were constrained to be 0.82 Å with error 0.01. An overall U_{iso} was allowed for all H-atoms of water molecules.

Figure 1

A view of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes for atoms: N1A, x+1/2, -y+3/2, z+1/2 and O2B, x+1/2, y-1/2, z.

Figure 2

Packing diagram of the title compound showing hydrogen bonding; H-atoms not involved in H-bonds have been excluded for clarity.

Poly[[aqua(μ -4,4'-bipyridyl- $\kappa^2 N:N'$)- μ -formato- $\kappa^2 O:O'$ -formato- κO -iron(II)] tetrahydrate]

F(000) = 816

 $\theta = 2.2 - 28.3^{\circ}$

 $\mu = 0.94 \text{ mm}^{-1}$ T = 273 K

Block, green

 $0.12 \times 0.10 \times 0.08 \text{ mm}$

 $D_{\rm x} = 1.547 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 4008 reflections

Crystal data

 $[Fe(CHO_2)_2(C_{10}H_8N_2)(H_2O)] \cdot 4H_2O$ $M_r = 392.15$ Monoclinic, *Cc* Hall symbol: C -2yc a = 10.5021 (6) Å b = 20.1959 (11) Å c = 8.1256 (4) Å $\beta = 102.367$ (1)° V = 1683.44 (16) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	4376 measured reflections
diffractometer	2523 independent reflections
Radiation source: fine-focus sealed tube	2468 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 11$
(SADABS; Bruker, 2005)	$k = -19 \rightarrow 24$
$T_{\min} = 0.895, \ T_{\max} = 0.928$	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent
$wR(F^2) = 0.084$	and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.071P)^2]$
2523 reflections	where $P = (F_o^2 + 2F_c^2)/3$
248 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
19 restraints	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1036 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.158 (18)

Special details

Experimental. Elemental Analysis. Calc. for C₁₂H₂₀FeN₂O₉: C 36.73, H 5.10, N 12.24%; Found: C 36.65, H 5.02, N 12.14%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.99831 (11)	0.753902 (16)	0.64202 (13)	0.01649 (13)

C1	0.7398 (3)	0.72764 (15)	0.4049 (4)	0.0274 (6)
H1	0.7212	0.7713	0.4273	0.033*
C2	1.0318 (4)	0.76341 (18)	0.2832 (5)	0.0339 (8)
H2	0.9801	0.7256	0.2686	0.041*
C3	0.7896 (3)	0.85353 (16)	0.6887 (5)	0.0342 (7)
Н3	0.7527	0.8158	0.7245	0.041*
C4	0.7264 (3)	0.91325 (17)	0.6933 (4)	0.0338 (7)
H4	0.6487	0.9149	0.7306	0.041*
C5	0.7789 (3)	0.97064 (15)	0.6424 (4)	0.0294 (8)
C6	0.8935 (4)	0.96383 (17)	0.5850 (5)	0.0401 (9)
H6	0.9321	1.0007	0.5475	0.048*
C7	0.9502 (4)	0.90224 (16)	0.5837 (5)	0.0381 (8)
H7	1.0269	0.8989	0.5445	0.046*
C8	0.7165 (3)	1.03639 (15)	0.6479 (4)	0.0280 (7)
C9	0.5937 (3)	1.04287 (16)	0.6846 (5)	0.0359 (8)
Н9	0.5493	1.0055	0.7090	0.043*
C10	0.5377 (3)	1.10457 (17)	0.6847 (5)	0.0355 (8)
H10	0.4555	1.1076	0.7096	0.043*
C11	0.7777 (4)	1.09450 (16)	0.6157 (5)	0.0355 (8)
H11	0.8609	1.0932	0.5932	0.043*
C12	0.7138 (3)	1.15402 (16)	0.6174 (4)	0.0327 (8)
H12	0.7559	1.1923	0.5938	0.039*
N1	0.5956 (3)	1.16024 (12)	0.6509 (3)	0.0276 (6)
N2	0.9005 (3)	0.84703 (12)	0.6360 (3)	0.0267 (6)
O1	0.8405 (2)	0.70271 (10)	0.4923 (3)	0.0311 (5)
O2	0.6621 (2)	0.69888 (11)	0.2902 (3)	0.0305 (5)
O3	1.0696 (2)	0.78393 (11)	0.4317 (3)	0.0330 (5)
O4	1.0559 (3)	0.78812 (16)	0.1566 (4)	0.0569 (8)
O5	0.9382 (3)	0.73151 (14)	0.8633 (3)	0.0370 (6)
O6	0.7891 (3)	0.63516 (14)	0.9637 (4)	0.0482 (6)
O7	0.6017 (4)	0.5754 (3)	0.4995 (8)	0.1160 (19)
O8	0.7346 (5)	0.51513 (19)	0.7912 (5)	0.0972 (14)
09	0.8996 (3)	0.40816 (15)	0.7836 (4)	0.0561 (8)
H1W	0.946 (5)	0.7580 (16)	0.942 (5)	0.080*
H2W	0.892 (4)	0.6994 (13)	0.871 (5)	0.080*
H3W	0.727 (3)	0.660 (2)	0.963 (5)	0.080*
H4W	0.822 (5)	0.620(2)	1.057 (3)	0.080*
H5W	0.644 (5)	0.5542 (19)	0.444 (7)	0.080*
H6W	0.626 (5)	0.6138 (10)	0.518 (7)	0.080*
H7W	0.692 (4)	0.531 (2)	0.703 (3)	0.080*
H8W	0.761 (5)	0.5426 (16)	0.865 (4)	0.080*
H9W	0.850 (4)	0.4397 (15)	0.764 (6)	0.080*
H10W	0.885 (5)	0.383 (2)	0.856 (5)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Fe1	0.0162 (2)	0.01436 (18)	0.0163 (2)	0.00272 (16)	-0.00227 (13)	-0.00061 (15)

C1	0.0252 (14)	0.0238 (13)	0.0303 (15)	-0.0001 (15)	-0.0001 (12)	0.0005 (15)
C2	0.0352 (19)	0.0367 (16)	0.030(2)	-0.0028 (15)	0.0070 (15)	-0.0049 (15)
C3	0.037 (2)	0.0232 (16)	0.0437 (18)	0.0014 (14)	0.0122 (15)	0.0034 (13)
C4	0.0307 (19)	0.0267 (17)	0.045 (2)	0.0046 (13)	0.0110 (14)	0.0010 (13)
C5	0.028 (2)	0.0250 (16)	0.0321 (17)	0.0044 (12)	0.0001 (14)	-0.0016 (12)
C6	0.040 (2)	0.0225 (17)	0.061 (2)	0.0034 (13)	0.0188 (18)	0.0044 (15)
C7	0.0352 (19)	0.0268 (16)	0.056 (2)	0.0049 (13)	0.0171 (15)	-0.0004 (15)
C8	0.032 (2)	0.0226 (15)	0.0276 (16)	0.0048 (12)	0.0014 (14)	0.0007 (12)
C9	0.0319 (18)	0.0238 (16)	0.053 (2)	0.0017 (12)	0.0111 (16)	0.0050 (14)
C10	0.0259 (18)	0.0288 (16)	0.053 (2)	0.0048 (12)	0.0121 (15)	0.0011 (14)
C11	0.0274 (18)	0.0280 (17)	0.051 (2)	0.0042 (13)	0.0073 (15)	0.0010 (14)
C12	0.0303 (18)	0.0231 (16)	0.0438 (19)	0.0005 (12)	0.0059 (15)	0.0011 (13)
N1	0.0275 (13)	0.0231 (13)	0.0300 (13)	0.0046 (10)	0.0009 (11)	0.0000 (10)
N2	0.0266 (14)	0.0217 (13)	0.0295 (13)	0.0040 (10)	0.0005 (11)	-0.0010 (10)
01	0.0256 (12)	0.0278 (11)	0.0339 (12)	0.0014 (9)	-0.0067 (10)	-0.0007 (9)
O2	0.0278 (11)	0.0285 (12)	0.0290 (12)	0.0007 (9)	-0.0079 (10)	-0.0037 (9)
O3	0.0379 (13)	0.0348 (13)	0.0252 (12)	-0.0003 (10)	0.0040 (10)	-0.0025 (9)
O4	0.0724 (19)	0.070 (2)	0.0291 (13)	-0.0197 (15)	0.0119 (12)	-0.0044 (13)
05	0.0461 (16)	0.0362 (13)	0.0292 (13)	-0.0115 (12)	0.0090 (11)	-0.0025 (11)
06	0.0475 (15)	0.0446 (15)	0.0538 (17)	0.0017 (11)	0.0134 (12)	0.0059 (12)
O7	0.089 (3)	0.092 (3)	0.161 (6)	-0.021 (3)	0.013 (3)	0.057 (3)
08	0.124 (4)	0.068 (3)	0.086 (3)	0.017 (2)	-0.008 (2)	-0.020 (2)
O9	0.063 (2)	0.0502 (18)	0.0540 (18)	-0.0072 (14)	0.0096 (15)	0.0084 (13)

Geometric parameters (Å, °)

Fe1—O5	2.079 (3)	С8—С9	1.390 (5)
Fe1—O3	2.097 (3)	C8—C11	1.390 (5)
Fe1—O1	2.105 (2)	C9—C10	1.378 (5)
Fe1—O2 ⁱ	2.105 (2)	С9—Н9	0.9300
Fe1—N2	2.139 (3)	C10—N1	1.334 (4)
Fe1—N1 ⁱⁱ	2.144 (3)	C10—H10	0.9300
C101	1.247 (4)	C11—C12	1.378 (5)
C1—O2	1.243 (4)	C11—H11	0.9300
C1—H1	0.9300	C12—N1	1.333 (5)
C2—O4	1.218 (5)	C12—H12	0.9300
C2—O3	1.257 (4)	N1—Fe1 ⁱⁱⁱ	2.144 (3)
С2—Н2	0.9300	O2—Fe1 ^{iv}	2.105 (2)
C3—N2	1.330 (4)	O5—H1W	0.82 (4)
C3—C4	1.381 (5)	O5—H2W	0.82 (3)
С3—Н3	0.9300	O6—H3W	0.82 (4)
C4—C5	1.384 (5)	O6—H4W	0.82 (3)
C4—H4	0.9300	O7—H5W	0.82 (5)
C5—C6	1.388 (5)	O7—H6W	0.82 (3)
C5—C8	1.486 (4)	O8—H7W	0.82 (3)
С6—С7	1.380 (5)	O8—H8W	0.82 (3)
С6—Н6	0.9300	O9—H9W	0.82 (4)
C7—N2	1.338 (4)	O9—H10W	0.82 (4)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С7—Н7	0.9300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O5 = E_{2}1 = O2$	174 46 (10)	NO C7 117	110.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O_5 Fe1 O_1	1/4.40(10)	$N_2 - C / - H / C (-C7 - H7)$	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O_{2} Fel— O_{1}	92.60 (10)	C6C/H/	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03—Fel—Ol	92.62 (10)	09-08-011	116.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O5$ —Fel— $O2^{1}$	88.06 (9)	09-08-05	121.7 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O3$ —Fel— $O2^{1}$	86.81 (9)	C11—C8—C5	121.6 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$O1$ —Fe1— $O2^1$	177.17 (10)	C10—C9—C8	120.0 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O5—Fe1—N2	88.72 (11)	С10—С9—Н9	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Fe1—N2	88.90 (10)	С8—С9—Н9	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Fe1—N2	95.96 (9)	N1—C10—C9	123.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱ —Fe1—N2	86.81 (10)	N1—C10—H10	118.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Fe1—N1 ⁱⁱ	90.57 (11)	C9—C10—H10	118.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Fe1—N1 ⁱⁱ	91.81 (10)	C12—C11—C8	119.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Fe1—N1 ⁱⁱ	84.07 (9)	C12—C11—H11	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2 ⁱ —Fe1—N1 ⁱⁱ	93.18 (10)	C8—C11—H11	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—Fe1—N1 ⁱⁱ	179.28 (13)	N1—C12—C11	124.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C1—O2	125.4 (3)	N1-C12-H12	117.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C1—H1	117.3	C11—C12—H12	117.9
$04-C2-O3$ 126.6 (4) $C12-N1-Fe1^{iii}$ 122.3 (2) $04-C2-H2$ 116.7 $C10-N1-Fe1^{iii}$ 121.0 (2) $03-C2-H2$ 116.7 $C3-N2-C7$ 116.6 (3) $N2-C3-C4$ 123.6 (3) $C3-N2-Fe1$ 121.9 (2) $N2-C3-H3$ 118.2 $C7-N2-Fe1$ 121.4 (2) $C4-C3-H3$ 118.2 $C1-O1-Fe1$ 126.7 (2) $C3-C4-C5$ 119.9 (3) $C1-O2-Fe1^{iv}$ 122.8 (2) $C3-C4-H4$ 120.1 $C2-O3-Fe1$ 126.3 (2) $C5-C4-H4$ 120.1 $Fe1-O5-H1W$ 122 (3) $C4-C5-C6$ 116.6 (3) $Fe1-O5-H2W$ 115 (4) $C6-C5-C8$ 122.2 (3) $H1W-O5-H2W$ 115 (4) $C6-C5-C8$ 121.3 (3) $H3W-O6-H4W$ 114 (4) $C7-C6-C5$ 119.9 (3) $H5W-O7-H6W$ 114 (5) $C7-C6-H6$ 120.1 $H7W-O8-H8W$ 114 (4) $C5-C6-H6$ 120.1 $H9W-O9-H10W$ 115 (5) $N2-C7-C6$ 123.4 (3) $N2-C7-C6$ $N2-C7-C6$	O2—C1—H1	117.3	C12—N1—C10	116.6 (3)
$04-C2-H2$ 116.7 $C10-N1-Fe1^{iii}$ $121.0 (2)$ $03-C2-H2$ 116.7 $C3-N2-C7$ $116.6 (3)$ $N2-C3-C4$ $123.6 (3)$ $C3-N2-Fe1$ $121.9 (2)$ $N2-C3-H3$ 118.2 $C7-N2-Fe1$ $121.4 (2)$ $C4-C3-H3$ 118.2 $C1-O1-Fe1$ $126.7 (2)$ $C3-C4-C5$ $119.9 (3)$ $C1-O2-Fe1^{iv}$ $122.8 (2)$ $C3-C4-H4$ 120.1 $C2-O3-Fe1$ $126.3 (2)$ $C5-C4-H4$ 120.1 $Fe1-O5-H1W$ $122 (3)$ $C4-C5-C6$ $116.6 (3)$ $Fe1-O5-H2W$ $122 (3)$ $C4-C5-C8$ $122.2 (3)$ $H1W-O5-H2W$ $115 (4)$ $C6-C5-C8$ $121.3 (3)$ $H3W-O6-H4W$ $114 (4)$ $C7-C6-C5$ $119.9 (3)$ $H5W-O7-H6W$ $114 (5)$ $C7-C6-H6$ 120.1 $H7W-O8-H8W$ $114 (4)$ $C5-C6-H6$ 120.1 $H9W-O9-H10W$ $115 (5)$ $N2-C7-C6$ $123.4 (3)$ $N2-C7-C6$ $N23.4 (3)$	O4—C2—O3	126.6 (4)	C12—N1—Fe1 ⁱⁱⁱ	122.3 (2)
$O3-C2-H2$ 116.7 $C3-N2-C7$ 116.6 (3) $N2-C3-C4$ 123.6 (3) $C3-N2-Fe1$ 121.9 (2) $N2-C3-H3$ 118.2 $C7-N2-Fe1$ 121.4 (2) $C4-C3-H3$ 118.2 $C1-O1-Fe1$ 126.7 (2) $C3-C4-C5$ 119.9 (3) $C1-O2-Fe1^{iv}$ 122.8 (2) $C3-C4-H4$ 120.1 $C2-O3-Fe1$ 126.3 (2) $C5-C4-H4$ 120.1 $Fe1-O5-H1W$ 122 (3) $C4-C5-C6$ 116.6 (3) $Fe1-O5-H2W$ 122 (3) $C4-C5-C8$ 122.2 (3)H1W-O5-H2W115 (4) $C6-C5-C8$ 121.3 (3)H3W-O6-H4W114 (4) $C7-C6-C5$ 119.9 (3)H5W-O7-H6W114 (5) $C7-C6-H6$ 120.1H7W-O8-H8W114 (4) $C5-C6-H6$ 120.1H7W-O9-H10W115 (5) $N2-C7-C6$ 123.4 (3) $N2-C7-C6$ $N2-C7-C6$	O4—C2—H2	116.7	C10—N1—Fe1 ⁱⁱⁱ	121.0 (2)
N2—C3—C4123.6 (3)C3—N2—Fe1121.9 (2)N2—C3—H3118.2C7—N2—Fe1121.4 (2)C4—C3—H3118.2C1—O1—Fe1126.7 (2)C3—C4—C5119.9 (3)C1—O2—Fe1 ^{iv} 122.8 (2)C3—C4—H4120.1C2—O3—Fe1126.3 (2)C5—C4—H4120.1Fe1—O5—H1W122 (3)C4—C5—C6116.6 (3)Fe1—O5—H2W122 (3)C4—C5—C8122.2 (3)H1W—O5—H2W115 (4)C6—C5—C8121.3 (3)H3W—O6—H4W114 (4)C7—C6—C5119.9 (3)H5W—O7—H6W114 (5)C7—C6—H6120.1H7W—O8—H8W114 (4)C5—C6—H6120.1H9W—O9—H10W115 (5)N2—C7—C6123.4 (3)H3W100	O3—C2—H2	116.7	C3—N2—C7	116.6 (3)
N2—C3—H3118.2C7—N2—Fe1121.4 (2)C4—C3—H3118.2C1—O1—Fe1126.7 (2)C3—C4—C5119.9 (3)C1—O2—Fe1 ^{iv} 122.8 (2)C3—C4—H4120.1C2—O3—Fe1126.3 (2)C5—C4—H4120.1Fe1—O5—H1W122 (3)C4—C5—C6116.6 (3)Fe1—O5—H2W122 (3)C4—C5—C8122.2 (3)H1W—O5—H2W115 (4)C6—C5—C8121.3 (3)H3W—O6—H4W114 (4)C7—C6—C5119.9 (3)H5W—O7—H6W114 (5)C7—C6—H6120.1H7W—O8—H8W114 (4)C5—C6—H6120.1H9W—O9—H10W115 (5)N2—C7—C6123.4 (3)123.4 (3)123.4 (3)	N2—C3—C4	123.6 (3)	C3—N2—Fe1	121.9 (2)
C4—C3—H3118.2C1—O1—Fe1126.7 (2)C3—C4—C5119.9 (3)C1—O2—Fe1 ^{iv} 122.8 (2)C3—C4—H4120.1C2—O3—Fe1126.3 (2)C5—C4—H4120.1Fe1—O5—H1W122 (3)C4—C5—C6116.6 (3)Fe1—O5—H2W122 (3)C4—C5—C8122.2 (3)H1W—O5—H2W115 (4)C6—C5—C8121.3 (3)H3W—O6—H4W114 (4)C7—C6—C5119.9 (3)H5W—O7—H6W114 (5)C7—C6—H6120.1H7W—O8—H8W114 (4)C5—C6—H6120.1H9W—O9—H10W115 (5)N2—C7—C6123.4 (3)H2X-GH10W	N2—C3—H3	118.2	C7—N2—Fe1	121.4 (2)
C3C4C5119.9 (3)C1O2Fe1iv122.8 (2)C3C4H4120.1C2O3Fe1126.3 (2)C5C4H4120.1Fe1O5H1W122 (3)C4C5C6116.6 (3)Fe1O5H2W122 (3)C4C5C8122.2 (3)H1WO5H2W115 (4)C6C5C8121.3 (3)H3WO6H4W114 (4)C7C6C5119.9 (3)H5WO7H6W114 (5)C7C6H6120.1H7WO8H8W114 (4)C5C6H6120.1H9WO9H10W115 (5)N2C7C6123.4 (3)H23.4 (3)H24	С4—С3—Н3	118.2	C1—O1—Fe1	126.7 (2)
C3-C4-H4120.1C2-O3-Fe1126.3 (2)C5-C4-H4120.1Fe1-O5-H1W122 (3)C4-C5-C6116.6 (3)Fe1-O5-H2W122 (3)C4-C5-C8122.2 (3)H1W-O5-H2W115 (4)C6-C5-C8121.3 (3)H3W-O6-H4W114 (4)C7-C6-C5119.9 (3)H5W-O7-H6W114 (5)C7-C6-H6120.1H7W-O8-H8W114 (4)C5-C6-H6120.1H9W-O9-H10W115 (5)N2-C7-C6123.4 (3)123.4 (3)123.4 (3)	C3—C4—C5	119.9 (3)	C1—O2—Fe1 ^{iv}	122.8 (2)
C5C4H4120.1Fe1O5H1W122 (3)C4C5C6116.6 (3)Fe1O5H2W122 (3)C4C5C8122.2 (3)H1WO5H2W115 (4)C6C5C8121.3 (3)H3WO6H4W114 (4)C7C6C5119.9 (3)H5WO7H6W114 (5)C7C6H6120.1H7WO8H8W114 (4)C5C6H6120.1H9WO9H10W115 (5)N2C7C6123.4 (3)123.4 (3)123.4 (3)	C3—C4—H4	120.1	C2—O3—Fe1	126.3 (2)
C4—C5—C6 116.6 (3) Fe1—O5—H2W 122 (3) C4—C5—C8 122.2 (3) H1W—O5—H2W 115 (4) C6—C5—C8 121.3 (3) H3W—O6—H4W 114 (4) C7—C6—C5 119.9 (3) H5W—O7—H6W 114 (5) C7—C6—H6 120.1 H7W—O8—H8W 114 (4) C5—C6—H6 120.1 H9W—O9—H10W 115 (5) N2—C7—C6 123.4 (3) Lage 4 (3) Lage 4 (3)	C5—C4—H4	120.1	Fe1—O5—H1W	122 (3)
C4—C5—C8 122.2 (3) H1W—O5—H2W 115 (4) C6—C5—C8 121.3 (3) H3W—O6—H4W 114 (4) C7—C6—C5 119.9 (3) H5W—O7—H6W 114 (5) C7—C6—H6 120.1 H7W—O8—H8W 114 (4) C5—C6—H6 120.1 H9W—O9—H10W 115 (5) N2—C7—C6 123.4 (3) 123.4 (3) 123.4 (3)	C4—C5—C6	116.6 (3)	Fe1—O5—H2W	122 (3)
C6—C5—C8 121.3 (3) H3W—O6—H4W 114 (4) C7—C6—C5 119.9 (3) H5W—O7—H6W 114 (5) C7—C6—H6 120.1 H7W—O8—H8W 114 (4) C5—C6—H6 120.1 H9W—O9—H10W 115 (5) N2—C7—C6 123.4 (3) 123.4 (3) 123.4 (3)	C4—C5—C8	122.2 (3)	H1W—O5—H2W	115 (4)
C7—C6—C5119.9 (3)H5W—O7—H6W114 (5)C7—C6—H6120.1H7W—O8—H8W114 (4)C5—C6—H6120.1H9W—O9—H10W115 (5)N2—C7—C6123.4 (3)123.4 (3)	C6—C5—C8	121.3 (3)	H3W—O6—H4W	114 (4)
C7—C6—H6120.1H7W—O8—H8W114 (4)C5—C6—H6120.1H9W—O9—H10W115 (5)N2—C7—C6123.4 (3)	C7—C6—C5	119.9 (3)	H5W—O7—H6W	114 (5)
C5—C6—H6 120.1 H9W—O9—H10W 115 (5) N2—C7—C6 123.4 (3)	С7—С6—Н6	120.1	H7W—O8—H8W	114 (4)
N2—C7—C6 123.4 (3)	С5—С6—Н6	120.1	H9W—O9—H10W	115 (5)
	N2—C7—C6	123.4 (3)		

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) x+1/2, y-1/2, z; (iii) x-1/2, y+1/2, z; (iv) x-1/2, -y+3/2, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
05—H1 <i>W</i> ···O4 ^v	0.82 (4)	1.97 (4)	2.693 (4)	146 (6)
O6—H3 <i>W</i> ···O3 ^{vi}	0.82 (4)	1.98 (4)	2.792 (4)	173 (4)
O6—H4W····O9 ^{vii}	0.82 (3)	1.93 (3)	2.753 (4)	175 (5)
O7—H5 <i>W</i> ···O8 ^{viii}	0.82 (5)	2.22 (5)	3.028 (9)	171 (4)
O7—H6 <i>W</i> ···O4 ^{vi}	0.82 (3)	2.46 (3)	3.117 (7)	137 (4)
O9—H10W····O1 ^{vii}	0.82 (4)	2.16 (4)	2.954 (4)	165 (5)

supporting information

O7—H6 <i>W</i> ···O2	0.82 (3)	2.61 (5)	3.158 (5)	125 (5)
O8—H7 <i>W</i> …O7	0.82 (3)	1.94 (3)	2.763 (7)	174 (5)
O8—H8 <i>W</i> ···O6	0.82 (3)	2.03 (2)	2.797 (5)	155 (4)
O9—H9 <i>W</i> ···O8	0.82 (4)	1.99 (4)	2.779 (5)	163 (5)
O5—H2 <i>W</i> ···O6	0.82 (3)	1.94 (4)	2.729 (4)	161 (4)

Symmetry codes: (v) *x*, *y*, *z*+1; (vi) *x*-1/2, -*y*+3/2, *z*+1/2; (vii) *x*, -*y*+1, *z*+1/2; (viii) *x*, -*y*+1, *z*-1/2.