

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Bis(2-ethoxyphenyl)triazene methanol 0.33-solvate

Mohammad Kazem Rofouei,^a Mohammad Reza Melardi,^b Yasaman Salemi^b and Jafar Attar Gharamaleki^c*

^aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, ^bDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and ^cYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran Correspondence e-mail: attar_jafar@yahoo.com

Received 25 July 2009; accepted 1 September 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.060; wR factor = 0.204; data-to-parameter ratio = 16.0.

There are three independent molecules of 1,3-bis(2-ethoxyphenyl)triazene and a molecule of methanol in the asymmetric unit of the title compound, $C_{16}H_{19}N_3O_2\cdot 0.33CH_3OH$. Two molecules related by a non-crystallographic pseudo-twofold rotation axis are linked *via* distinct intermolecular N-H···N hydrogen bonds, leading to the formation of a dimer with an $R_2^2(8)$ graph set. The third molecule is connected to the methanol molecule by O-H···N and N-H···O hydrogen bonds. There are a number of weak C-H··· π interactions, with H··· π distances ranging from 2.74 to 2.89 Å between the C-H groups and the aromatic benzene rings.

Related literature

For related structures, see: Rofouei *et al.* (2009); Melardi *et al.* (2008); Rofouei *et al.* (2006). For the structural properties and metal complexes of aryl triazenes, see: Meldola *et al.* (1888); Leman *et al.* (1993); Chen *et al.* (2002); Vrieze *et al.* (1987); Hematyar *et al.* (2008); Payehghadr *et al.* (2007). For hydrogen-bond patterns and graph sets, see: Grell *et al.* (2002).

Experimental

erystat data	
C ₁₆ H ₁₉ N ₃ O ₂ ·0.33CH ₄ O	b = 13.640 (3) Å
$M_r = 296.02$	c = 16.117 (4) Å
Triclinic, P1	$\alpha = 71.448 \ (5)^{\circ}$
a = 12.146 (3) Å	$\beta = 72.827 \ (4)^{\circ}$

 $\gamma = 81.151 (4)^{\circ}$ $V = 2413.2 (10) Å^{3}$ Z = 6Mo $K\alpha$ radiation

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.978, T_{\rm max} = 0.992$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.204$ S = 1.009421 reflections

 $0.30 \times 0.20 \times 0.10$ mm

21014 measured reflections 9421 independent reflections 4997 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$

587 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.31$ e Å⁻³ $\Delta \rho_{min} = -0.30$ e Å⁻³

Table 1	
Hydrogen bond	geometry

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3−H3 <i>N</i> ···N4	0.88	2.20	3.024 (3)	156
$N6-H6N\cdots N1$	0.88	2.20	3.033 (3)	158
N9−H9 <i>N</i> ···O7	0.88	2.19	2.920 (3)	140
O7−H7 <i>O</i> ···N7	0.88	2.15	2.839 (3)	134
$C28-H28A\cdots Cg1^{i}$	0.95	2.89	3.712 (3)	146
$C36-H36A\cdots Cg2^{i}$	0.95	2.74	3.549 (3)	144
$C15 - H15A \cdots Cg3^{ii}$	0.99	2.76	3.463 (3)	128
$C32 - H32C \cdots Cg3^{i}$	0.98	2.80	3.593 (3)	138
$C40-H40C\cdots Cg4^{i}$	0.98	2.84	3.632 (3)	138

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z + 1. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C9–C14, C33–C38 and C25–C30 rings, respectively.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2190).

References

Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, N., Barra, M., Lee, I. & Chahal, N. (2002). J. Org. Chem. 67, 2271-2277.

- Grell, J. J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.
- Hematyar, M. & Rofouei, M. K. (2008). Anal. Sci. 24, x117-x118.

Leman, J. T., Wilking, J. B., Cooling, A. J. & Barron, A. R. (1993). Inorg. Chem.

- 32, 4324–4336.
 Melardi, M. R., Khalili, H. R., Barkhi, M. & Rofouei, M. K. (2008). Anal. Sci.
 24, x281–x282.
- Meldola, R. & Streatfield, F. W. (1888). J. Chem. Soc. 61, 102-118.
- Payehghadr, M., Rofouei, M. K., Morsali, A. & Shamsipur, M. (2007). *Inorg. Chim. Acta*, 360, 1792–1798.
- Rofouei, M. K., Melardi, M. R., Salemi, Y. & Kazemi, S. R. (2009). *Acta Cryst.* E65, o719.
- Rofouei, M. K., Shamsipur, M. & Payehghadr, M. (2006). Anal. Sci. 22, x79– x80.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vrieze, K. & Van Koten, G. (1987). Comprehensive Coordination Chemistry. Vol. 2, pp. 189–244. Oxford: Pergamon Press.

 $\mu = 0.08 \text{ mm}^{-1}$

T = 120 K

supporting information

Acta Cryst. (2009). E65, o2391 [doi:10.1107/S1600536809035338]

1,3-Bis(2-ethoxyphenyl)triazene methanol 0.33-solvate

Mohammad Kazem Rofouei, Mohammad Reza Melardi, Yasaman Salemi and Jafar Attar Gharamaleki

S1. Comment

Aryl triazenes have been studied over 130 years for their interesting structural, anticancer, and reactivity properties. The first extensive investigation of the coordination chemistry of a triazene derivative (1,3-diphenyltriazene) was carried out in 1887 by Meldola (Meldola *et al.*, 1888). In the intervening years, numerous transition metal triazenide compounds have been studied (Liman, *et al.*, 1993). Triazene compounds characterized by having a diazoamino group commonly adopt a *trans* configuration in the ground state (Chen *et al.*, 2002). The study of transition metal complexes containing 1,3-diaryltriazenide [RN=N-NR]⁻ ligands has increased greatly in the past few years, because of their potential reactivity in relation to their several coordination modes (Vrieze, *et al.*, 1987). We have recently reported the synthesis and characterization of three 1,3-bis derivatives of triazene (Melardi *et al.*, 2008; Rofouei *et al.*, 2006; Rofouei *et al.*, 2009).

The title structure contains three molecules of $C_{16}H_{19}N_3O_2$ and a molecule of CH₃OH in an asymmetric unit (Fig. 1). It is similar to our recently published article, $C_{16}H_{19}N_3O_2$, [Rofouei, *et al.*, 2009] and only differs in one methanol molecule as solvent. All the three molecules A, B and C show *trans* stereo chemistry for the N=N double bond. The torsion angles C1 -N1-N2-N3, C17-N4-N5-N6 and C33-N7-N8-N9 are -177.34 (17), 179.42 (16) and 177.30 (16)°, respectively. The N1-N2, N2-N3, N4-N5, N5-N6, N7-N8 and N8-N9 bond distances are 1.291 (2), 1.308 (3), 1.298 (2), 1.304 (3), 1.276 (3) and 1.328 (2) Å, respectively which are in good agreement with the reported data for N-N and N=N bond distances (Hematyar, *et al.*, 2008; Payehghadr, *et al.*, 2007; Melardi, *et al.*, 2008).

The molecule A is almost planar, but the other two molecules (B and C) are somewhat twisted with respect to the phenyl rings. Two interlocked molecules (A and B) are connected by two distinct classic N—H···N hydrogen bonds with D···A of 3.024 (3) and 3.033 (3) Å and are related by a non-crystallographic pseudo twofold rotation axis. The N—H···N hydrogen bonds lead to the formation of a dimer with an $R^2_2(8)$ graph set geometry (Grell, *et al.*, 2002). The steric demand of the ethoxy groups in the *ortho* position prevents a co-planar arrangement of the two molecules in the dimer which instead consists of two interlocked molecules. The third molecule (C) is connected to a methanol molecule by two O7—H7O···N7 and N9—H9N···O7 hydrogen bonds forming a six membered ring with an $R^2_2(6)$ graph set geometry (Grell, *et al.*, 2002). Hydrogen bond geometries are shown in Table 1.

Also, there are several interesting weak C—H^{$...\pi$} interactions between CH groups with aromatic phenyl rings with H^{$...\pi$} distances ranging from 2.74 Å to 2.89 Å (Fig. 2). The unit cell packing of the title compound is presented in Fig. 3.

S2. Experimental

A 100 ml flask was charged with 10 g of ice and 15 ml of water and then cooled to 273 K in an ice-bath. To this was added 10 mmol (1.37 g) of o-phenetidin and 13 mmol of hydrochloric acid (37%) followed by a solution containing NaNO₂ 6 mmol (0.41 g) in 25 ml of water during a 15 min period. After mixing for 15 min a solution containing 180

mmol (14.76 g) of sodium acetate in 45 ml of water was added. After mixing for 45 min the brown product was filtered and dissolved in Et_2O , and was crystallized at 263 K. Recrystallization from methanol afforded the title compound as an orange crystalline material.

S3. Refinement

The hydrogen atoms bonded to N and O were found from difference Fourier synthesis. All hydrogen atoms were included in the refinement at geometrically idealized positions in isotropic approximation in riding mode with distances: N/O–H = 0.88 Å, C–H = 0.95 (aryl), 0.98 (methyl), 0.99 (methylene) Å and U_{iso} (H) equal to $1.5U_{eq}$ (C) for methyl groups and $1.2U_{eq}$ (N/O and methylene C).

Figure 1

Molecular structure of the title compound, with thermal elliposids drawn at 50% probability level. Only hydrogen atoms involved in the hydrogen bonding are shown.

Figure 2

Weak C—H $\cdots\pi$ interactions between C–H groups with aromatic phenyl rings with with H $\cdots\pi$ distances ranging from 2.74 Å to 2.89 Å.

Figure 3

Unit cell packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

1,3-Bis(2-ethoxyphenyl)triazene methanol 0.33-solvate

Crystal data	
$C_{16}H_{19}N_{3}O_{2} \cdot 0.33CH_{4}O$	$\gamma = 81.151 \ (4)^{\circ}$
$M_r = 296.02$	V = 2413.2 (10) Å ³
Triclinic, P1	Z = 6
Hall symbol: -P 1	F(000) = 948
a = 12.146 (3) Å	$D_{\rm x} = 1.222 {\rm ~Mg} {\rm ~m}^{-3}$
b = 13.640(3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 16.117 (4) Å	Cell parameters from 2921 reflections
$\alpha = 71.448 \ (5)^{\circ}$	$\theta = 2.4 - 24.6^{\circ}$
$\beta = 72.827 \ (4)^{\circ}$	$\mu = 0.08 \mathrm{~mm^{-1}}$

1.00

T = 120 KPrism, orange

Data collection

Bruker SMART 1000 CCD area-detector	21014 measured reflections
diffractometer	9421 independent reflections
Radiation source: fine-focus sealed tube	4997 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 1998)	$k = -16 \rightarrow 16$
$T_{\min} = 0.978, \ T_{\max} = 0.992$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location:

Refinement on F ²	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.204$	H-atom parameters constrained
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2 + 2P]$
9421 reflections	where $P = (F_o^2 + 2F_c^2)/3$
587 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.31 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.30 \ m e \ m \AA^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.31967 (13)	0.24889 (12)	0.40953 (10)	0.0360 (4)	
O2	0.00977 (12)	0.23580 (12)	0.82111 (10)	0.0334 (4)	
N1	0.12742 (15)	0.19444 (14)	0.53596 (12)	0.0312 (5)	
N2	0.03282 (15)	0.16622 (14)	0.59722 (12)	0.0289 (5)	
N3	0.02050 (15)	0.19607 (14)	0.66913 (12)	0.0314 (5)	
H3N	0.0725	0.2323	0.6722	0.038*	
C1	0.14480 (18)	0.16900 (16)	0.45427 (14)	0.0272 (5)	
C2	0.24629 (18)	0.20179 (16)	0.38631 (15)	0.0296 (6)	
C3	0.26635 (19)	0.18578 (17)	0.30162 (15)	0.0322 (6)	
H3A	0.3335	0.2099	0.2549	0.039*	
C4	0.18748 (19)	0.13438 (17)	0.28613 (15)	0.0344 (6)	
H4A	0.2017	0.1224	0.2288	0.041*	
C5	0.08808 (19)	0.10025 (18)	0.35339 (15)	0.0342 (6)	
H5A	0.0349	0.0646	0.3425	0.041*	

C6	0.06734 (18)	0.11877 (17)	0.43658 (15)	0.0303 (6)
H6A	-0.0013	0.0966	0.4823	0.036*
C7	0.41398 (19)	0.29920 (19)	0.33826 (16)	0.0372 (6)
H7A	0.3845	0.3525	0.2903	0.045*
H7B	0.4660	0.2480	0.3107	0.045*
C8	0.4776 (2)	0.3482 (2)	0.37950 (18)	0.0545 (8)
H8A	0.5427	0.3833	0.3325	0.082*
H8B	0.5065	0.2947	0.4267	0.082*
H8C	0.4253	0.3988	0.4064	0.082*
C9	-0.07846 (17)	0.16844 (16)	0.74147 (14)	0.0265 (5)
C10	-0.08259 (18)	0.18916 (16)	0.82198 (14)	0.0277 (5)
C11	-0.17676 (19)	0.15921 (17)	0.89794 (15)	0.0322 (6)
H11A	-0.1797	0.1719	0.9532	0.039*
C12	-0.26562 (18)	0.11094 (17)	0.89177 (15)	0.0330 (6)
H12A	-0.3296	0.0909	0.9430	0.040*
C13	-0.26151 (18)	0.09184 (17)	0.81164 (15)	0.0322 (6)
H13A	-0.3226	0.0588	0.8080	0.039*
C14	-0.16852(18)	0.12082 (17)	0.73660 (15)	0.0308 (6)
H14A	-0.1664	0.1080	0.6815	0.037*
C15	0.0103 (2)	0.25548 (18)	0.90324 (15)	0.0354 (6)
H15A	0.0089	0.1895	0.9524	0.043*
H15B	-0.0586	0.3004	0.9223	0.043*
C16	0.1185 (2)	0.3083(2)	0.88496 (17)	0.0480(7)
H16A	0.1210	0.3227	0.9402	0.072*
H16B	0.1189	0.3735	0.8364	0.072*
H16C	0.1861	0.2631	0.8664	0.072*
03	-0.03481(12)	0.44284(12)	0.63303 (11)	0.0377(4)
04	0.33503 (12)	0.04227 (11)	0.62005 (11)	0.0346(4)
N4	0.17838 (15)	0.36547 (13)	0.63042 (12)	0.0297 (5)
N5	0.28253 (15)	0.32739 (13)	0.63278(12)	0.0286(5)
N6	0.30570 (15)	0.23841 (13)	0.61518 (12)	0.0306(5)
H6N	0.2531	0.2095	0.6047	0.037*
C17	0.14665 (18)	0.46114 (16)	0.64961 (14)	0.0282(5)
C18	0.03205 (18)	0 50163 (17)	0.65099 (15)	0.0309(6)
C19	-0.0048(2)	0.59563(18)	0.66942 (16)	0.0387(7)
H19A	-0.0815	0.6237	0.6697	0.046*
C20	0.0692 (2)	0.64865(18)	0.68742(18)	0.0435(7)
H20A	0.0426	0.7124	0.7011	0.052*
C21	0.0420 0.1819(2)	0.7124 0.60992 (18)	0.68580 (17)	0.032 0.0424 (7)
H21A	0.2324	0.6470	0.6980	0.051*
C22	0.2324 0.2204 (2)	0.51652(17)	0.66619 (15)	0.031 0.0334(6)
С22 H22A	0.2204 (2)	0.4903	0.6641	0.0334 (0)
C23	-0.13987(19)	0.4905(2)	0.60961 (16)	0.0402(7)
H23A	-0.1235	0.5531	0.5569	0.048*
H23R	-0 1946	0.5113	0.6613	0.048*
C24	-0.1903(2)	0.3113 0.4117(2)	0.58680 (17)	0.0464(7)
U24 H24A	-0.2624	0.4414	0 5704	0.070*
H24R	-0.2024	0 3503	0.6395	0.070*
114 11	0.2001	0.0000	0.0575	0.070

H24C	-0.1354	0.3919	0.5356	0.070*
C25	0.41736 (17)	0.18971 (16)	0.61329 (14)	0.0264 (5)
C26	0.43230 (18)	0.08528 (16)	0.61546 (14)	0.0278 (5)
C27	0.54021 (19)	0.03263 (18)	0.61434 (15)	0.0329 (6)
H27A	0.5504	-0.0386	0.6169	0.039*
C28	0.63264 (19)	0.08407 (18)	0.60955 (15)	0.0344 (6)
H28A	0.7062	0.0479	0.6082	0.041*
C29	0.61904 (19)	0.18722 (18)	0.60672 (15)	0.0349 (6)
H29A	0.6829	0.2220	0.6034	0.042*
C30	0.51106 (18)	0.24000 (17)	0.60880 (14)	0.0310 (6)
H30A	0.5014	0.3110	0.6071	0.037*
C31	0.34302 (19)	-0.06530(16)	0.62645 (15)	0.0316 (6)
H31A	0 3618	-0.1077	0.6836	0.038*
H31B	0.4043	-0.0800	0.5749	0.038*
C32	0.2277(2)	-0.09031(18)	0 62455 (17)	0.0388 (6)
H32A	0 2299	-0.1638	0.6288	0.058*
H32R	0.2101	-0.0479	0.5677	0.058*
H32C	0.1678	-0.0755	0.6759	0.058*
05	0.70638 (12)	0.06592 (11)	0.13410 (10)	0.0317(4)
06	0.36080 (12)	0.48301(12)	0.11751 (11)	0.0362(4)
N7	0.68644 (15)	0.26576 (14)	0.11614 (12)	0.0294(5)
N8	0.67007 (15)	0.35282 (14)	0.13324 (12)	0.0293(5)
N9	0.57197 (15)	0.40407(13)	0.11906 (12)	0.0307(5)
H9N	0.5298	0.3809	0.0942	0.037*
C33	0.79371 (18)	0.21153 (16)	0.12693 (14)	0.0259 (5)
C34	0.80398 (18)	0.10554 (16)	0.13416 (14)	0.0277(5)
C35	0.90725 (19)	0.04810 (17)	0.14109 (15)	0.0318 (6)
H35A	0.9146	-0.0236	0.1455	0.038*
C36	1.00003 (19)	0.09627 (18)	0.14159 (15)	0.0348 (6)
H36A	1.0708	0.0569	0.1462	0.042*
C37	0.99072 (19)	0.20022 (18)	0.13548 (15)	0.0333 (6)
H37A	1.0546	0.2321	0.1361	0.040*
C38	0.88745 (18)	0.25806 (17)	0.12842 (14)	0.0304 (6)
H38A	0.8806	0.3296	0.1246	0.036*
C39	0.7134 (2)	-0.04229 (17)	0.14138 (16)	0.0354 (6)
H39A	0.7355	-0.0844	0.1973	0.043*
H39B	0.7717	-0.0573	0.0885	0.043*
C40	0.5947 (2)	-0.06709 (19)	0.14433 (17)	0.0426 (7)
H40A	0.5955	-0.1407	0.1493	0.064*
H40B	0.5740	-0.0249	0.0887	0.064*
H40C	0.5380	-0.0518	0.1969	0.064*
C41	0.53667 (18)	0.49534 (16)	0.14432 (14)	0.0282 (5)
C42	0.42322 (18)	0.53686 (16)	0.14433 (15)	0.0297 (6)
C43	0.3816 (2)	0.62422 (17)	0.17383 (16)	0.0364 (6)
H43A	0.3051	0.6526	0.1740	0.044*
C44	0.4523 (2)	0.67014 (17)	0.20317 (16)	0.0349 (6)
H44A	0.4235	0.7292	0.2242	0.042*
C45	0.56442 (19)	0.62991 (17)	0.20172 (15)	0.0336 (6)

H45A	0.6123	0.6614	0.2217	0.040*	
C46	0.60702 (19)	0.54372 (16)	0.17116 (15)	0.0311 (6)	
H46A	0.6848	0.5177	0.1686	0.037*	
C47	0.24610 (19)	0.52416 (19)	0.11158 (17)	0.0386 (7)	
H47A	0.2488	0.5938	0.0671	0.046*	
H47B	0.1978	0.5302	0.1713	0.046*	
C48	0.1965 (2)	0.4504 (2)	0.08185 (18)	0.0491 (7)	
H48A	0.1181	0.4761	0.0771	0.074*	
H48B	0.1943	0.3818	0.1265	0.074*	
H48C	0.2450	0.4452	0.0227	0.074*	
O7	0.46759 (14)	0.23487 (14)	0.10190 (12)	0.0507 (5)	
H7O	0.5406	0.2123	0.0967	0.061*	
C49	0.4211 (2)	0.2023 (2)	0.04551 (18)	0.0534 (8)	
H49A	0.4724	0.2190	-0.0161	0.080*	
H49B	0.3448	0.2379	0.0443	0.080*	
H49C	0.4137	0.1273	0.0690	0.080*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0283 (8)	0.0449 (9)	0.0346 (8)	-0.0153 (7)	-0.0055 (7)	-0.0076 (7)
O2	0.0295 (8)	0.0445 (8)	0.0306 (7)	-0.0119 (7)	-0.0058 (6)	-0.0146 (6)
N1	0.0236 (9)	0.0422 (10)	0.0281 (9)	-0.0098 (8)	-0.0026 (7)	-0.0110 (8)
N2	0.0233 (9)	0.0320 (9)	0.0301 (9)	-0.0036 (8)	-0.0045 (7)	-0.0087 (8)
N3	0.0280 (9)	0.0401 (10)	0.0298 (9)	-0.0109 (8)	-0.0044 (7)	-0.0141 (8)
C1	0.0267 (10)	0.0265 (11)	0.0284 (10)	-0.0023 (9)	-0.0084 (9)	-0.0067 (9)
C2	0.0279 (11)	0.0273 (11)	0.0333 (11)	-0.0019 (9)	-0.0107 (9)	-0.0061 (9)
C3	0.0244 (11)	0.0377 (12)	0.0319 (11)	0.0000 (10)	-0.0070 (9)	-0.0079 (10)
C4	0.0347 (12)	0.0389 (12)	0.0346 (11)	0.0042 (10)	-0.0138 (9)	-0.0162 (10)
C5	0.0295 (11)	0.0355 (12)	0.0426 (12)	-0.0009 (10)	-0.0144 (10)	-0.0143 (10)
C6	0.0232 (10)	0.0338 (12)	0.0323 (11)	-0.0041 (9)	-0.0065 (9)	-0.0071 (9)
C7	0.0265 (11)	0.0391 (13)	0.0384 (13)	-0.0083 (10)	-0.0054 (10)	-0.0009 (10)
C8	0.0448 (14)	0.0673 (17)	0.0480 (15)	-0.0342 (13)	-0.0114 (12)	0.0014 (13)
C9	0.0215 (10)	0.0261 (11)	0.0304 (11)	-0.0017 (9)	-0.0076 (9)	-0.0056 (9)
C10	0.0229 (10)	0.0295 (11)	0.0297 (11)	-0.0021 (9)	-0.0068 (9)	-0.0073 (9)
C11	0.0321 (12)	0.0359 (12)	0.0271 (11)	-0.0017 (10)	-0.0067 (9)	-0.0082 (9)
C12	0.0205 (11)	0.0353 (12)	0.0357 (12)	-0.0034 (10)	-0.0016 (9)	-0.0048 (10)
C13	0.0210 (10)	0.0343 (12)	0.0384 (12)	-0.0047 (9)	-0.0077 (9)	-0.0053 (10)
C14	0.0276 (11)	0.0340 (12)	0.0328 (11)	-0.0011 (10)	-0.0111 (9)	-0.0100 (9)
C15	0.0391 (12)	0.0416 (12)	0.0296 (11)	-0.0075 (11)	-0.0096 (10)	-0.0130 (10)
C16	0.0536 (14)	0.0573 (15)	0.0396 (13)	-0.0226 (13)	-0.0123 (11)	-0.0138 (11)
O3	0.0254 (7)	0.0351 (8)	0.0549 (9)	0.0009 (7)	-0.0170 (7)	-0.0115 (7)
O4	0.0244 (7)	0.0296 (8)	0.0565 (9)	-0.0027 (6)	-0.0147 (7)	-0.0174 (7)
N4	0.0237 (9)	0.0265 (9)	0.0413 (10)	0.0005 (8)	-0.0109 (8)	-0.0121 (8)
N5	0.0264 (9)	0.0287 (9)	0.0331 (9)	-0.0029 (8)	-0.0091 (7)	-0.0105 (7)
N6	0.0246 (9)	0.0318 (9)	0.0428 (10)	-0.0024 (8)	-0.0128 (8)	-0.0169 (8)
C17	0.0285 (11)	0.0252 (11)	0.0303 (11)	-0.0015 (9)	-0.0096 (9)	-0.0057 (9)
C18	0.0276 (11)	0.0306 (11)	0.0337 (11)	-0.0051 (10)	-0.0091 (9)	-0.0056 (9)

C19	0.0310 (12)	0.0328 (13)	0.0471 (14)	0.0058 (10)	-0.0101 (10)	-0.0083 (11)
C20	0.0476 (14)	0.0275 (12)	0.0586 (15)	0.0040 (11)	-0.0169 (12)	-0.0173 (11)
C21	0.0454 (14)	0.0318 (12)	0.0563 (14)	-0.0017 (11)	-0.0190 (11)	-0.0167 (11)
C22	0.0309 (11)	0.0267 (11)	0.0450 (12)	-0.0008 (10)	-0.0140 (10)	-0.0103 (10)
C23	0.0271 (11)	0.0489 (15)	0.0403 (13)	-0.0016 (11)	-0.0130 (10)	-0.0036 (11)
C24	0.0311 (12)	0.0602 (16)	0.0468 (14)	-0.0024 (12)	-0.0165 (11)	-0.0086 (12)
C25	0.0202 (10)	0.0325 (11)	0.0276 (10)	-0.0022 (9)	-0.0069 (8)	-0.0095 (9)
C26	0.0255 (10)	0.0300 (11)	0.0315 (11)	-0.0014 (9)	-0.0111 (9)	-0.0105 (9)
C27	0.0314 (11)	0.0322 (12)	0.0385 (12)	0.0021 (10)	-0.0133 (9)	-0.0131 (9)
C28	0.0223 (10)	0.0445 (13)	0.0405 (12)	0.0034 (10)	-0.0130 (9)	-0.0159 (10)
C29	0.0239 (10)	0.0405 (13)	0.0440 (12)	-0.0068 (10)	-0.0135 (9)	-0.0109 (10)
C30	0.0289 (11)	0.0334 (11)	0.0368 (11)	-0.0043 (9)	-0.0128 (9)	-0.0138 (9)
C31	0.0330 (12)	0.0255 (11)	0.0373 (12)	-0.0024 (9)	-0.0071 (10)	-0.0123 (9)
C32	0.0396 (13)	0.0343 (12)	0.0462 (13)	-0.0080 (11)	-0.0119 (11)	-0.0136 (10)
05	0.0277 (7)	0.0287 (8)	0.0415 (8)	-0.0052 (6)	-0.0109 (6)	-0.0107 (6)
O6	0.0265 (7)	0.0356 (8)	0.0526 (9)	-0.0013 (7)	-0.0171 (7)	-0.0152 (7)
N7	0.0251 (9)	0.0313 (9)	0.0330 (9)	-0.0027 (8)	-0.0065 (7)	-0.0116 (8)
N8	0.0263 (9)	0.0283 (9)	0.0324 (9)	-0.0016 (8)	-0.0075 (8)	-0.0078 (8)
N9	0.0238 (9)	0.0305 (10)	0.0391 (10)	0.0006 (8)	-0.0112 (8)	-0.0104 (8)
C33	0.0245 (10)	0.0299 (11)	0.0261 (10)	-0.0031 (9)	-0.0079 (8)	-0.0100 (8)
C34	0.0266 (11)	0.0287 (11)	0.0285 (10)	-0.0048 (9)	-0.0078 (9)	-0.0072 (9)
C35	0.0316 (11)	0.0284 (11)	0.0378 (11)	-0.0005 (10)	-0.0110 (9)	-0.0121 (9)
C36	0.0287 (11)	0.0391 (13)	0.0365 (12)	0.0021 (10)	-0.0144 (10)	-0.0076 (10)
C37	0.0262 (11)	0.0395 (13)	0.0367 (12)	-0.0067 (10)	-0.0104 (9)	-0.0101 (10)
C38	0.0301 (11)	0.0313 (11)	0.0323 (11)	-0.0039 (10)	-0.0096 (9)	-0.0105 (9)
C39	0.0400 (12)	0.0249 (11)	0.0419 (12)	-0.0087 (10)	-0.0118 (10)	-0.0062 (10)
C40	0.0463 (14)	0.0379 (13)	0.0453 (13)	-0.0162 (11)	-0.0119 (11)	-0.0081 (11)
C41	0.0272 (11)	0.0253 (11)	0.0295 (11)	-0.0038 (9)	-0.0065 (9)	-0.0044 (9)
C42	0.0275 (11)	0.0266 (11)	0.0334 (11)	-0.0026 (9)	-0.0103 (9)	-0.0039 (9)
C43	0.0289 (12)	0.0308 (12)	0.0464 (13)	0.0012 (10)	-0.0090 (10)	-0.0094 (10)
C44	0.0353 (12)	0.0250 (11)	0.0429 (13)	-0.0004 (10)	-0.0087 (10)	-0.0100 (10)
C45	0.0324 (12)	0.0269 (11)	0.0424 (12)	-0.0043 (10)	-0.0116 (10)	-0.0084 (10)
C46	0.0266 (11)	0.0276 (11)	0.0380 (12)	-0.0018 (9)	-0.0088 (9)	-0.0077 (9)
C47	0.0249 (11)	0.0469 (14)	0.0429 (13)	0.0008 (11)	-0.0116 (10)	-0.0106 (11)
C48	0.0328 (12)	0.0644 (17)	0.0580 (15)	-0.0062 (12)	-0.0187 (11)	-0.0210 (13)
07	0.0327 (9)	0.0655 (11)	0.0647 (10)	-0.0042 (8)	-0.0145 (8)	-0.0315 (9)
C49	0.0505 (15)	0.0630 (17)	0.0545 (15)	-0.0103 (14)	-0.0170 (13)	-0.0214 (13)

Geometric parameters (Å, °)

01—C2	1.369 (3)	C24—H24B	0.9800
O1—C7	1.437 (3)	C24—H24C	0.9800
O2—C10	1.367 (3)	C25—C30	1.390 (3)
O2—C15	1.434 (3)	C25—C26	1.398 (3)
N1—N2	1.291 (2)	C26—C27	1.392 (3)
N1-C1	1.415 (3)	C27—C28	1.384 (3)
N2—N3	1.308 (3)	C27—H27A	0.9500
N3—C9	1.407 (3)	C28—C29	1.379 (3)

N3—H3N	0.8800	C28—H28A	0.9500
C1—C6	1.385 (3)	C29—C30	1.392 (3)
C1—C2	1.407 (3)	С29—Н29А	0.9500
C2—C3	1.395 (3)	C30—H30A	0.9500
C3—C4	1.390 (3)	C31—C32	1.503 (3)
С3—НЗА	0.9500	C31—H31A	0.9900
C4—C5	1.389 (3)	C31—H31B	0.9900
C4—H4A	0.9500	C32—H32A	0.9800
C5—C6	1.386 (3)	С32—Н32В	0.9800
C5—H5A	0.9500	С32—Н32С	0.9800
С6—Н6А	0.9500	O5—C34	1.377 (3)
C7—C8	1.494 (4)	O5—C39	1.434 (3)
C7—H7A	0.9900	O6—C42	1.367 (3)
С7—Н7В	0.9900	O6—C47	1.438 (3)
C8—H8A	0.9800	N7—N8	1.276 (3)
C8—H8B	0.9800	N7—C33	1.425 (3)
C8—H8C	0.9800	N8—N9	1.328 (2)
C9—C14	1.388 (3)	N9—C41	1.398 (3)
C9—C10	1,399 (3)	N9—H9N	0.8800
C10—C11	1.404 (3)	C33—C38	1,396 (3)
C11—C12	1.390 (3)	C33—C34	1.402(3)
C11—H11A	0.9500	C34—C35	1387(3)
C12-C13	1 382 (3)	C35—C36	1 392 (3)
C12—H12A	0.9500	C35—H35A	0.9500
C12 - C12	1 386 (3)	C36—C37	1.379(3)
C13—H13A	0.9500	C36—H36A	0.9500
C14—H14A	0.9500	$C_{37} - C_{38}$	1.390(3)
C15-C16	1 503 (3)	C37 - H37A	0.9500
C15—H15A	0.9900	C38—H38A	0.9500
C15—H15B	0.9900	C_{39} C_{40}	1.514(3)
C16H16A	0.9900	C39_H39A	0.9900
C16—H16B	0.9800	C39_H39B	0.9900
	0.9800	C40—H40A	0.9900
03-C18	1 369 (3)	C40—H40B	0.9800
03-023	1.309(3) 1 438(3)	C40 - H40C	0.9800
03-025	1.458 (5)	C_{41} C_{46}	1 388 (3)
$04 - C_{20}$	1.371(3) 1.428(3)	C_{41} C_{42}	1.303(3)
N4 N5	1.428(3) 1.208(2)	$C_{41} = C_{42}$	1.407(3)
$N_4 = N_5$	1.298(2) 1.407(3)	C_{42} C_{43} C_{43}	1.391(3) 1 306(4)
N4-017 N5 N6	1.407(3) 1.304(3)	$C_{43} = C_{44}$	0.0500
NG C25	1.304(3) 1.412(2)	C43 = C45	1.394(2)
NG HEN	1.412(3)	C44 - C43	1.364(3)
C_{17} C_{22}	0.0000	C44— $n44AC45$ — $C46$	0.9300
C17 - C22	1.387(3)	C45 = U45 A	1.387 (3)
C_{1} C_{10} C_{10}	1.413(3) 1.296(2)	C_{4J} Π_{4JA}	0.9300
$C_{10} = C_{20}$	1.380 (3)	C40 - H40A	0.9300
$C_{19} = C_{20}$	1.380 (4)	C47 = U47	1.306 (4)
С19—Н19А	0.9300	C47 - H4/A	0.9900
C20-C21	1.385 (4)	C4/—H4/B	0.9900

C20—H20A	0.9500	C48—H48A	0.9800
C21—C22	1.388 (3)	C48—H48B	0.9800
C21—H21A	0.9500	C48—H48C	0.9800
C22—H22A	0.9500	O7—C49	1.407 (3)
C23—C24	1.501 (4)	O7—H7O	0.8807
С23—Н23А	0.9900	C49—H49A	0.9800
С23—Н23В	0.9900	C49—H49B	0.9800
C24—H24A	0.9800	С49—Н49С	0.9800
C2C7	117.58 (18)	C30—C25—C26	119.43 (19)
C10—O2—C15	117.73 (16)	C30—C25—N6	123.6 (2)
N2—N1—C1	115.95 (19)	C26—C25—N6	116.94 (19)
N1—N2—N3	112.46 (18)	O4—C26—C27	125.0 (2)
N2—N3—C9	117.88 (19)	O4—C26—C25	115.26 (18)
N2—N3—H3N	121.1	C27—C26—C25	119.7 (2)
C9—N3—H3N	121.1	C28—C27—C26	120.0 (2)
C6—C1—C2	119.2 (2)	С28—С27—Н27А	120.0
C6-C1-N1	124.47 (18)	С26—С27—Н27А	120.0
C2—C1—N1	116.3 (2)	C29—C28—C27	120.7 (2)
O1—C2—C3	124.33 (19)	C29—C28—H28A	119.7
O1—C2—C1	115.8 (2)	C27—C28—H28A	119.7
C3—C2—C1	119.9 (2)	C28—C29—C30	119.5 (2)
C4—C3—C2	119.6 (2)	С28—С29—Н29А	120.2
С4—С3—НЗА	120.2	С30—С29—Н29А	120.2
С2—С3—НЗА	120.2	C25—C30—C29	120.6 (2)
C5—C4—C3	120.8 (2)	С25—С30—Н30А	119.7
C5—C4—H4A	119.6	С29—С30—Н30А	119.7
C3—C4—H4A	119.6	O4—C31—C32	107.13 (18)
C6—C5—C4	119.3 (2)	O4—C31—H31A	110.3
С6—С5—Н5А	120.4	C32—C31—H31A	110.3
С4—С5—Н5А	120.4	O4—C31—H31B	110.3
C1—C6—C5	121.2 (2)	C32—C31—H31B	110.3
С1—С6—Н6А	119.4	H31A—C31—H31B	108.5
С5—С6—Н6А	119.4	C31—C32—H32A	109.5
O1—C7—C8	107.4 (2)	C31—C32—H32B	109.5
O1—C7—H7A	110.2	H32A—C32—H32B	109.5
С8—С7—Н7А	110.2	C31—C32—H32C	109.5
O1—C7—H7B	110.2	H32A—C32—H32C	109.5
С8—С7—Н7В	110.2	H32B—C32—H32C	109.5
H7A—C7—H7B	108.5	C34—O5—C39	117.07 (16)
С7—С8—Н8А	109.5	C42—O6—C47	117.96 (18)
С7—С8—Н8В	109.5	N8—N7—C33	113.74 (18)
H8A—C8—H8B	109.5	N7—N8—N9	112.79 (19)
С7—С8—Н8С	109.5	N8—N9—C41	118.98 (19)
H8A—C8—H8C	109.5	N8—N9—H9N	120.5
H8B—C8—H8C	109.5	C41—N9—H9N	120.5
C14—C9—C10	119.84 (19)	C38—C33—C34	119.4 (2)
C14—C9—N3	123.3 (2)	C38—C33—N7	124.04 (19)

C10—C9—N3	116.9 (2)	C34—C33—N7	116.52 (19)
O2—C10—C9	116.08 (17)	O5—C34—C35	124.6 (2)
O2—C10—C11	124.3 (2)	O5—C34—C33	115.34 (18)
C9—C10—C11	119.6 (2)	C35—C34—C33	120.1 (2)
C12—C11—C10	119.6 (2)	C34—C35—C36	119.5 (2)
C12—C11—H11A	120.2	С34—С35—Н35А	120.2
C10-C11-H11A	120.2	С36—С35—Н35А	120.2
C13—C12—C11	120.4 (2)	C37—C36—C35	121.0 (2)
C13—C12—H12A	119.8	С37—С36—Н36А	119.5
C11—C12—H12A	119.8	С35—С36—Н36А	119.5
C12—C13—C14	120.2 (2)	C36—C37—C38	119.7 (2)
C12—C13—H13A	119.9	С36—С37—Н37А	120.2
C14—C13—H13A	119.9	С38—С37—Н37А	120.2
C13—C14—C9	120.4 (2)	C37—C38—C33	120.3 (2)
C13—C14—H14A	119.8	C37—C38—H38A	119.8
C9—C14—H14A	119.8	C33—C38—H38A	119.8
O2—C15—C16	107.77 (18)	O5—C39—C40	106.65 (18)
O2—C15—H15A	110.2	O5—C39—H39A	110.4
C16—C15—H15A	110.2	С40—С39—Н39А	110.4
O2—C15—H15B	110.2	O5—C39—H39B	110.4
C16—C15—H15B	110.2	С40—С39—Н39В	110.4
H15A—C15—H15B	108.5	H39A—C39—H39B	108.6
C15—C16—H16A	109.5	C39—C40—H40A	109.5
C15—C16—H16B	109.5	C39—C40—H40B	109.5
H16A—C16—H16B	109.5	H40A—C40—H40B	109.5
C15—C16—H16C	109.5	С39—С40—Н40С	109.5
H16A—C16—H16C	109.5	H40A—C40—H40C	109.5
H16B—C16—H16C	109.5	H40B—C40—H40C	109.5
C18—O3—C23	118.40 (18)	C46—C41—N9	123.0 (2)
C26—O4—C31	118.17 (16)	C46—C41—C42	119.7 (2)
N5—N4—C17	115.73 (19)	N9—C41—C42	117.3 (2)
N4—N5—N6	112.45 (18)	O6—C42—C43	125.2 (2)
N5—N6—C25	118.21 (19)	O6—C42—C41	115.1 (2)
N5—N6—H6N	120.9	C43—C42—C41	119.6 (2)
C25—N6—H6N	120.9	C42—C43—C44	120.0 (2)
C22—C17—N4	124.1 (2)	C42—C43—H43A	120.0
C22—C17—C18	119.4 (2)	C44—C43—H43A	120.0
N4—C17—C18	116.5 (2)	C45—C44—C43	120.2 (2)
O3—C18—C19	124.8 (2)	C45—C44—H44A	119.9
O3—C18—C17	115.8 (2)	C43—C44—H44A	119.9
C19—C18—C17	119.4 (2)	C44—C45—C46	120.2 (2)
C20—C19—C18	120.3 (2)	C44—C45—H45A	119.9
С20—С19—Н19А	119.8	C46—C45—H45A	119.9
C18—C19—H19A	119.8	C45—C46—C41	120.3 (2)
C19—C20—C21	120.7 (2)	C45—C46—H46A	119.8
C19—C20—H20A	119.6	C41—C46—H46A	119.8
C21—C20—H20A	119.6	O6—C47—C48	107.2 (2)
C20—C21—C22	119.6 (2)	O6—C47—H47A	110.3

C20—C21—H21A	120.2	C48—C47—H47A	110.3
C22—C21—H21A	120.2	O6—C47—H47B	110.3
C17—C22—C21	120.6 (2)	C48—C47—H47B	110.3
C17—C22—H22A	119.7	H47A—C47—H47B	108.5
C21—C22—H22A	119.7	C47—C48—H48A	109.5
O3—C23—C24	107.0 (2)	C47—C48—H48B	109.5
O3—C23—H23A	110.3	H48A—C48—H48B	109.5
C24—C23—H23A	110.3	C47—C48—H48C	109.5
O3—C23—H23B	110.3	H48A—C48—H48C	109.5
C24—C23—H23B	110.3	H48B—C48—H48C	109.5
H23A—C23—H23B	108.6	C49—O7—H7O	111.0
C23—C24—H24A	109.5	O7—C49—H49A	109.5
C23—C24—H24B	109.5	O7—C49—H49B	109.5
H24A—C24—H24B	109.5	H49A—C49—H49B	109.5
C23—C24—H24C	109.5	O7—C49—H49C	109.5
H24A—C24—H24C	109.5	H49A—C49—H49C	109.5
H_{24B} C_{24} H_{24C}	109.5	H49B—C49—H49C	109.5
	10,10		10,10
C1—N1—N2—N3	-177.34 (17)	C18—O3—C23—C24	175.79 (18)
N1—N2—N3—C9	-178.95(17)	N5—N6—C25—C30	-15.0(3)
N2—N1—C1—C6	1.2 (3)	N5—N6—C25—C26	165.52 (18)
N2—N1—C1—C2	178.45 (18)	C31—O4—C26—C27	1.6 (3)
C7—O1—C2—C3	10.1 (3)	C31—O4—C26—C25	-177.33 (18)
C7—O1—C2—C1	-169.62 (18)	C30—C25—C26—O4	179.89 (19)
C6-C1-C2-O1	-178.68 (19)	N6—C25—C26—O4	-0.6 (3)
N1-C1-C2-O1	3.9 (3)	C30—C25—C26—C27	0.9 (3)
C6—C1—C2—C3	1.6 (3)	N6-C25-C26-C27	-179.60 (19)
N1—C1—C2—C3	-175.85 (19)	O4—C26—C27—C28	180.0 (2)
O1—C2—C3—C4	178.2 (2)	C25—C26—C27—C28	-1.1(3)
C1—C2—C3—C4	-2.1(3)	C26—C27—C28—C29	0.6 (3)
C2—C3—C4—C5	1.0 (3)	C27—C28—C29—C30	0.1 (3)
C3—C4—C5—C6	0.6 (3)	C26—C25—C30—C29	-0.2(3)
C2—C1—C6—C5	0.1 (3)	N6-C25-C30-C29	-179.7 (2)
N1—C1—C6—C5	177.3 (2)	C28—C29—C30—C25	-0.3 (3)
C4—C5—C6—C1	-1.1(3)	C26—O4—C31—C32	-176.52 (18)
C2—O1—C7—C8	177.48 (19)	C33—N7—N8—N9	177.30 (16)
N2—N3—C9—C14	-6.8 (3)	N7—N8—N9—C41	173.13 (17)
N2—N3—C9—C10	171.86 (18)	N8—N7—C33—C38	-18.7 (3)
C15—O2—C10—C9	-178.17 (18)	N8—N7—C33—C34	162.85 (18)
C15—O2—C10—C11	-0.1 (3)	C39—O5—C34—C35	-0.3 (3)
C14—C9—C10—O2	179.74 (18)	C39—O5—C34—C33	179.99 (18)
N3—C9—C10—O2	1.0 (3)	C38—C33—C34—O5	178.60 (18)
C14—C9—C10—C11	1.5 (3)	N7—C33—C34—O5	-2.9(3)
N3—C9—C10—C11	-177.20 (19)	C38—C33—C34—C35	-1.1(3)
O2—C10—C11—C12	-179.1 (2)	N7—C33—C34—C35	177.37 (19)
C9—C10—C11—C12	-1.1 (3)	O5—C34—C35—C36	-179.2 (2)
C10-C11-C12-C13	0.3 (3)	C33—C34—C35—C36	0.5 (3)
C11—C12—C13—C14	0.0 (3)	C34—C35—C36—C37	0.1 (3)
	× /		

C12—C13—C14—C9	0.5 (3)	C35—C36—C37—C38	-0.2 (3)
C10—C9—C14—C13	-1.3 (3)	C36—C37—C38—C33	-0.4 (3)
N3—C9—C14—C13	177.4 (2)	C34—C33—C38—C37	1.1 (3)
C10—O2—C15—C16	-179.05 (19)	N7—C33—C38—C37	-177.32 (19)
C17—N4—N5—N6	179.42 (16)	C34—O5—C39—C40	177.32 (18)
N4—N5—N6—C25	178.42 (17)	N8—N9—C41—C46	9.9 (3)
N5—N4—C17—C22	3.0 (3)	N8—N9—C41—C42	-168.33 (18)
N5-N4-C17-C18	-177.49 (18)	$\begin{array}{c} C47O6C42C43\\ C47O6C42C41\\ C46C41C42O6\\ N9C41C42O6\\ C46C41C42C43\\ N9C41C42C43\\ O6C42C43C44\\ O6C42C43C44\\ O11C42C44\\ O11C42C42C44\\ O11C42C42C44\\ O11C42C42C44\\ O11C42C42C44\\ O11C42C42C44\\ O11C42C42C42\\ O11C42C42C42C42\\ O11C42C42C42\\ O11C42C42C42C42\\ O11C42C42C42C42\\ O11C42C42C42C42C42C42\\ O11C42C42C42C42C42C42C42C$	5.7 (3)
C23-O3-C18-C19	16.0 (3)		-176.92 (18)
C23-O3-C18-C17	-163.72 (18)		-179.48 (18)
C22-C17-C18-O3	179.33 (19)		-1.2 (3)
N4-C17-C18-O3	-0.2 (3)		-1.9 (3)
C22-C17-C18-C19	-0.4 (3)		176.37 (19)
N4-C17-C18-C19	-179.97 (19)		177.3 (2)
03-C18-C19-C20 C17-C18-C19-C20 C18-C19-C20-C21 C19-C20-C21-C22 N4-C17-C22-C21 C18-C17-C22-C21 C20-C21-C22-C21 C20-C21-C22-C21	$ \begin{array}{r} -0.8 (3) \\ 1.2 (4) \\ -0.3 (4) \\ -179.2 (2) \\ 1.3 (3) \\ -1.0 (4) \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 (3) 1.0 (3) 0.0 (3) -1.9 (3) -175.31 (19) 2.9 (3) -179.43 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
N3—H3 <i>N</i> ····N4	0.88	2.20	3.024 (3)	156
N6—H6 <i>N</i> ···N1	0.88	2.20	3.033 (3)	158
N9—H9 <i>N</i> ···O7	0.88	2.19	2.920 (3)	140
O7—H7 <i>O</i> ···N7	0.88	2.15	2.839 (3)	134
C28—H28A···Cg1 ⁱ	0.95	2.89	3.712 (3)	146
C36—H36 A ···Cg2 ⁱ	0.95	2.74	3.549 (3)	144
C15—H15A···Cg3 ⁱⁱ	0.99	2.76	3.463 (3)	128
C32—H32 <i>C</i> ··· <i>C</i> g3 ⁱ	0.98	2.80	3.593 (3)	138
C40—H40 C ··· $Cg4^{i}$	0.98	2.84	3.632 (3)	138

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*+1.