$\beta = 108.830 \ (1)^{\circ}$

V = 605.13 (2) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.34 \times 0.27 \text{ mm}$

14068 measured reflections

2219 independent reflections

2203 reflections with $I > 2\sigma(I)$

 $\mu = 0.88 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int}=0.023$

 $\gamma = 95.582 \ (1)^{\circ}$

Z = 1

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[bis(4-aminopyridinium) [[tetraaquanickel(II)]-µ-benzene-1,2,4,5tetracarboxylato] dihydrate]

Archimede Rotondo,* Giuseppe Bruno, Fabio Messina and Francesco Nicoló

Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, Salita Sperone, 31-98166 Messina, Italy Correspondence e-mail: arotondo@unime.it

Received 15 July 2009; accepted 29 August 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.020; wR factor = 0.055; data-to-parameter ratio = 11.9.

The asymmetric unit of the title compound, $\{(C_5H_7N_2)_2 : [Ni(C_{10}H_2O_8)(H_2O)_4] \cdot 2H_2O\}_n$, contains an Ni^{II} atom, two water molecules of coordination, one half of a benzene-1,2,4,5-tetracarboxylate (btec) anionic ligand, one 4-aminopyridinium cation (papy) and an uncoordinated water molecule. The metal center lies on an inversion center and adopts an octahedral geometry with the carboxylate groups tilted out of the mean plane formed by the btec. In the crystal, molecules are linked into one-dimensional coordination polymers running along the *ac* diagonal. The crystal structure is consolidated by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds.

Related literature

For background to 1,2,4,5-benzene-tetracarboxylate, see: Du *et al.* (2007); Fang *et al.* (2008); Loiseau *et al.* (2005); Ruiz-Pérez *et al.* (2004); Stephenson & Hardie (2006); Wang *et al.* (2005). For related structures, see: Majumder *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{3}{\rm H}_{7}{\rm N}_{2})_{2}[{\rm Ni}({\rm C}_{10}{\rm H}_{2}{\rm O}_{8})({\rm H}_{2}{\rm O})_{4}] & \cdot \\ 2{\rm H}_{2}{\rm O} \\ M_{r} = 607.17 \\ {\rm Triclinic,} \ P\overline{\rm I} \\ a = 7.2115 \ (1) \\ b = 9.3470 \ (1) \\ b \\ c = 10.6322 \ (2) \\ A \\ \alpha = 112.720 \ (1)^{\circ} \end{array}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) *T*_{min} = 0.729, *T*_{max} = 0.785

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	187 parameters
$wR(F^2) = 0.055$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
2219 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N6-H6···O1 ⁱ	0.86	2.12	2.926 (1)	156
$N12-H12B\cdots O2$	0.86	2.00	2.856 (2)	171
$N12-H12A\cdots O3W^{ii}$	0.86	2.19	3.048 (2)	174
$O1W-H1WA\cdots O2$	0.85	1.81	2.634 (1)	163
$O1W - H1WB \cdot \cdot \cdot O3W^{iii}$	0.85	1.85	2.697 (1)	175
$O2W-H2WA\cdots O4^{iv}$	0.85	1.93	2.750(1)	162
$O2W - H2WB \cdots O4^{v}$	0.85	1.90	2.732 (1)	165
O3W−H3WA···O3	0.85	1.86	2.694 (2)	168
$O3W-H3WB\cdots O3^{vi}$	0.85	2.12	2.911 (2)	154

Symmetry codes: (i) x + 1, y, z + 1; (ii) -x + 1, -y + 1, -z + 2; (iii) x, y, z + 1; (iv) -x, -y, -z + 2; (v) x - 1, y, z; (vi) -x, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

metal-organic compounds

ORTEP-3 for Windows (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *enCIFer* (Allen *et al.*, 2004).

We are grateful to the Centro Interdipartimentale per la Diffrazione dei Raggi X in Messina

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2183).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Du, Z.-X., Li, J.-X., Zhang, G.-Y. & Hou, H.-W. (2007). Z. Kristallogr. 222, 107–108.
- Fang, Q., Zhu, G., Xue, M., Wang, Z., Sun, J. & Qiu, S. (2008). Cryst. Growth Des. 8, 319–329.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Loiseau, T., Muguerra, H., Haouas, M., Taulelle, F. & Férey, G. (2005). Solid State Sci. 7, 603–609.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J.-P., Desplanches, C. & Mitra, S. (2006). *Cryst. Growth Des.* 6, 2355–2368.
- Ruiz-Pérez, C., Lorenzo-Luis, P., Hernández-Molina, M., Laz, M. M., Delgado, F. S., Gili, P. & Julve, M. (2004). *Eur. J. Inorg. Chem.* pp. 3873–3879.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423-432.
- Wang, P., Moorefield, C. N., Panzerc, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465–467.

supporting information

Acta Cryst. (2009). E65, m1203-m1204 [doi:10.1107/S1600536809034746]

catena-Poly[bis(4-aminopyridinium) [[tetraaquanickel(II)]-µ-benzene-1,2,4,5-tetracarboxylato] dihydrate]

Archimede Rotondo, Giuseppe Bruno, Fabio Messina and Francesco Nicoló

S1. Comment

The 1,2,4,5-benzene-tetracarboxylate (btec) is assessed to be a very versatile ligand able to achieve several coordination modes with different degrees of deprotonation (Du *et al.* 2007). The specific features of btec prompted researchers to explore different possible coordination polymers bearing specific features (Loiseau *et al.* 2005; Ruiz-Pérez *et al.* 2004), expecially in the presence of amines acting as ligands (Stephenson & Hardie, 2006; Wang *et al.* 2005) and as templates (Fang *et al.* 2008). Our attempts confirmed that the combination under standard conditins around pH 5 of btec, amines and metals, strictly depended on metals but also on the ancillary amines (yet to be published). The combination of equimolar solutions of nickel chloride, *p*-aminopyridine and di sodium dihydrogen btec under standard conditions gave two different kinds of green crystals, the rhomboidal-shaped ones (still under study) and the block-shaped ones which were found to be made up of the title compound, (I). The structure of (I) is isomorphous with the already described Co and Cu analogous (Majumder *et al.*, 2006).

The asymmetric unit of (I) is made by half of the metal centre with two coordinated water molecules and half btec ligand, one *p*-amino pyridinium cation (papy) and another uncoordinated water molecule. The metal centers present the octahedral coordination geometry, whereas carboxylate moieties are tilted out of the btec mean plane in order to develop specific inter-strand and intrastrand hydrogen bonding interactions. The crystallographic symmetry results in monodimensional coordination polymers running along the diagonal of a and b crystallographic axes. These polymers are kept together by arrays of hydrogen bound papy cations (Fig. 2). The overal paking is obviously stabilized by a crowded hydrogen bonding network (Table 1).

S2. Experimental

An aqueous solution of disodium-dihydrogen 1,2,4,5-benzene tetracarboxylate (25 mmol) was slowly added to an equimolar aqueous solution of NiCl₂ (50 mmol). Then an equimolar aqueous solution of *p*-aminopyridine was added to the mixture. The clear green solution at pH = 5.15 was left covered. After few days a white solid was separed from two different kind of green crystals. The rhomboidal-shaped crystals are under study (Bruno & Rotondo, to be pubblished), whereas the block-shaped ones were identified as I.

S3. Refinement

All hydrogen atoms were located in the difference map and were included in the refinements at geometrically idealized positions in the 'riding mode' with distances O–H, N–H and C–H fixed at 0.85, 0.86 and 0.93 Å, respectively, with temperature factors $U_{iso}(H) = 1.2 U_{eq}(C/N)$ and 1.5 $U_{eq}(O)$.

Figure 1

ORTEP view of I. Displacement ellipsoids are drawn at the 60% probability level. Symmetry codes for the dotted atoms: * -*x*, -*y*, -*z* + 2 and # -*x* + 1, -*y* + 1, -*z* + 2.

Figure 2

Molecular packing view of I along the diagonal of a and b axes. The crowded hydrogen bonding network is represented by dotted lines.

catena-Poly[bis(4-aminopyridinium) [[tetraaquanickel(II)]-µ-benzene-1,2,4,5-tetracarboxylato] dihydrate]

Crystal data	
$(C_{5}H_{7}N_{2})_{2}[Ni(C_{10}H_{2}O_{8})(H_{2}O)_{4}]\cdot 2H_{2}O$ $M_{r} = 607.17$ Triclinic, <i>P</i> I Hall symbol: -P 1 a = 7.2115 (1) Å b = 9.3470 (1) Å c = 10.6322 (2) Å a = 112.720 (1)° $\beta = 108.830$ (1)° $\gamma = 95.582$ (1)° V = 605.13 (2) Å ³	Z = 1 F(000) = 316 $D_x = 1.666 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9901 reflections $\theta = 2.4-31.7^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 296 K Block, green $0.5 \times 0.34 \times 0.27 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Graphite monochromator Detector resolution: 9 pixels mm ⁻¹	φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007) $T_{\min} = 0.729, T_{\max} = 0.785$

14068 measured reflections	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
2219 independent reflections	$h = -8 \rightarrow 8$
2203 reflections with $I > 2\sigma(I)$	$k = -11 \rightarrow 11$
$R_{\rm int} = 0.023$	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.020$	Hydrogen site location: inferred from
$wR(F^2) = 0.055$	neighbouring sites
S = 1.07	H-atom parameters constrained
2219 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 0.2508P]$
187 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.3 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0	0	1	0.01722 (8)	
0.42401 (18)	0.39111 (14)	1.04216 (14)	0.0178 (2)	
0.43069 (18)	0.33541 (15)	0.90138 (14)	0.0180 (2)	
0.50542 (18)	0.44605 (15)	0.86090 (14)	0.0188 (3)	
0.5083	0.4106	0.7671	0.023*	
0.32515 (19)	0.28168 (14)	1.08810 (14)	0.0186 (3)	
0.36527 (19)	0.15800 (15)	0.79578 (14)	0.0210 (3)	
0.14545 (13)	0.20052 (10)	1.00054 (10)	0.02033 (19)	
0.42075 (15)	0.28245 (12)	1.20874 (11)	0.0319 (2)	
0.2586 (2)	0.11600 (13)	0.66391 (12)	0.0458 (3)	
0.42488 (15)	0.06463 (11)	0.84885 (11)	0.0282 (2)	
0.9034 (2)	0.28646 (18)	1.77371 (15)	0.0397 (3)	
0.9397	0.244	1.8336	0.048*	
0.9976 (2)	0.4382 (2)	1.81496 (17)	0.0379 (4)	
1.1004	0.4962	1.9087	0.046*	
0.9467 (2)	0.50850 (18)	1.72376 (16)	0.0318 (3)	
1.0126	0.6143	1.7554	0.038*	
0.7933 (2)	0.42135 (17)	1.58003 (15)	0.0263 (3)	
0.6936 (2)	0.26379 (18)	1.54195 (17)	0.0323 (3)	
0.5874	0.2034	1.4502	0.039*	
0.7530 (3)	0.2008 (2)	1.6396 (2)	0.0385 (4)	
	x00.42401 (18)0.43069 (18)0.50542 (18)0.50542 (18)0.50830.32515 (19)0.36527 (19)0.14545 (13)0.42075 (15)0.2586 (2)0.42488 (15)0.9034 (2)0.93970.9976 (2)1.10040.9467 (2)1.01260.7933 (2)0.6936 (2)0.58740.7530 (3)	xy00 $0.42401 (18)$ $0.39111 (14)$ $0.43069 (18)$ $0.33541 (15)$ $0.50542 (18)$ $0.44605 (15)$ $0.50542 (18)$ $0.44605 (15)$ 0.5083 0.4106 $0.32515 (19)$ $0.28168 (14)$ $0.36527 (19)$ $0.15800 (15)$ $0.14545 (13)$ $0.20052 (10)$ $0.42075 (15)$ $0.28245 (12)$ $0.2586 (2)$ $0.11600 (13)$ $0.42488 (15)$ $0.06463 (11)$ $0.9034 (2)$ $0.28646 (18)$ 0.9397 0.244 $0.9976 (2)$ $0.4382 (2)$ 1.1004 0.4962 $0.9467 (2)$ $0.50850 (18)$ 1.0126 0.6143 $0.7933 (2)$ $0.42135 (17)$ $0.6936 (2)$ $0.26379 (18)$ 0.5874 0.2034 $0.7530 (3)$ $0.2008 (2)$	xyz001 $0.42401 (18)$ $0.39111 (14)$ $1.04216 (14)$ $0.43069 (18)$ $0.33541 (15)$ $0.90138 (14)$ $0.50542 (18)$ $0.44605 (15)$ $0.86090 (14)$ 0.5083 0.4106 0.7671 $0.32515 (19)$ $0.28168 (14)$ $1.08810 (14)$ $0.36527 (19)$ $0.15800 (15)$ $0.79578 (14)$ $0.14545 (13)$ $0.20052 (10)$ $1.00054 (10)$ $0.42075 (15)$ $0.28245 (12)$ $1.20874 (11)$ $0.2586 (2)$ $0.11600 (13)$ $0.66391 (12)$ $0.42488 (15)$ $0.06463 (11)$ $0.84885 (11)$ $0.9034 (2)$ $0.28646 (18)$ $1.77371 (15)$ 0.9397 0.244 1.8336 $0.9976 (2)$ $0.4382 (2)$ $1.81496 (17)$ 1.1004 0.4962 1.9087 $0.9467 (2)$ $0.50850 (18)$ $1.72376 (16)$ 1.0126 0.6143 1.7554 $0.7933 (2)$ $0.42135 (17)$ $1.58003 (15)$ $0.6936 (2)$ $0.26379 (18)$ $1.54195 (17)$ 0.5874 0.2034 1.4502 $0.7530 (3)$ $0.2008 (2)$ $1.6396 (2)$	xyz $U_{\rm so}^*/U_{\rm eq}$ 0010.01722 (8)0.42401 (18)0.39111 (14)1.04216 (14)0.0178 (2)0.43069 (18)0.33541 (15)0.90138 (14)0.0180 (2)0.50542 (18)0.44605 (15)0.86090 (14)0.0188 (3)0.50830.41060.76710.023*0.32515 (19)0.28168 (14)1.08810 (14)0.0186 (3)0.36527 (19)0.15800 (15)0.79578 (14)0.0210 (3)0.14545 (13)0.20052 (10)1.00054 (10)0.02033 (19)0.42075 (15)0.28245 (12)1.20874 (11)0.0319 (2)0.2586 (2)0.11600 (13)0.66391 (12)0.0458 (3)0.42488 (15)0.06463 (11)0.84885 (11)0.0282 (2)0.9034 (2)0.28646 (18)1.77371 (15)0.0397 (3)0.93970.2441.83360.048*0.9976 (2)0.4382 (2)1.81496 (17)0.0379 (4)1.10040.49621.90870.046*0.9467 (2)0.50850 (18)1.72376 (16)0.0318 (3)1.01260.61431.75540.038*0.7933 (2)0.42135 (17)1.58003 (15)0.0263 (3)0.6936 (2)0.26379 (18)1.54195 (17)0.0323 (3)0.58740.20341.45020.039*0.7530 (3)0.2008 (2)1.6396 (2)0.0385 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11	0.6883	0.0963	1.6131	0.046*	
N12	0.7487 (2)	0.48454 (16)	1.48525 (14)	0.0366 (3)	
H12A	0.8135	0.5801	1.5109	0.044*	
H12B	0.6549	0.43	1.3981	0.044*	
O1W	0.18379 (14)	0.05465 (11)	1.21508 (10)	0.0249 (2)	
H1WA	0.2767	0.1294	1.2294	0.037*	
H1WB	0.1353	0.0931	1.2806	0.037*	
O2W	-0.21078 (14)	0.11312 (11)	1.06521 (11)	0.0250 (2)	
H2WA	-0.2557	0.0702	1.1104	0.038*	
H2WB	-0.3121	0.1088	0.9937	0.038*	
O3W	0.05029 (18)	0.17265 (13)	0.43489 (12)	0.0358 (3)	
H3WA	0.1248	0.1693	0.5134	0.054*	
H3WB	-0.0649	0.1083	0.4016	0.054*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01682 (13)	0.01646 (12)	0.01797 (13)	-0.00033 (9)	0.00487 (9)	0.00990 (9)
C1	0.0150 (6)	0.0182 (6)	0.0194 (6)	0.0003 (5)	0.0045 (5)	0.0102 (5)
C2	0.0159 (6)	0.0171 (6)	0.0190 (6)	0.0011 (5)	0.0046 (5)	0.0085 (5)
C3	0.0188 (6)	0.0199 (6)	0.0172 (6)	0.0013 (5)	0.0067 (5)	0.0088 (5)
C4	0.0212 (6)	0.0155 (6)	0.0190 (6)	0.0018 (5)	0.0079 (5)	0.0082 (5)
C5	0.0220 (6)	0.0179 (6)	0.0217 (6)	0.0010 (5)	0.0090 (5)	0.0079 (5)
01	0.0182 (4)	0.0195 (4)	0.0217 (4)	-0.0017 (3)	0.0049 (4)	0.0115 (4)
O2	0.0300 (5)	0.0348 (6)	0.0243 (5)	-0.0091 (4)	-0.0002 (4)	0.0193 (4)
O3	0.0665 (8)	0.0240 (5)	0.0223 (5)	0.0006 (5)	-0.0037 (5)	0.0059 (4)
O4	0.0328 (5)	0.0210 (5)	0.0337 (5)	0.0077 (4)	0.0129 (4)	0.0150 (4)
N6	0.0492 (8)	0.0541 (9)	0.0376 (8)	0.0307 (7)	0.0234 (7)	0.0323 (7)
C7	0.0351 (8)	0.0506 (10)	0.0244 (7)	0.0195 (7)	0.0084 (6)	0.0136 (7)
C8	0.0294 (8)	0.0299 (7)	0.0264 (7)	0.0065 (6)	0.0061 (6)	0.0073 (6)
С9	0.0253 (7)	0.0269 (7)	0.0251 (7)	0.0072 (6)	0.0084 (6)	0.0111 (6)
C10	0.0324 (8)	0.0284 (7)	0.0303 (8)	0.0030 (6)	0.0082 (6)	0.0120 (6)
C11	0.0470 (10)	0.0332 (8)	0.0481 (10)	0.0153 (7)	0.0256 (8)	0.0239 (7)
N12	0.0378 (7)	0.0321 (7)	0.0301 (7)	-0.0024 (6)	-0.0001 (6)	0.0176 (6)
O1W	0.0239 (5)	0.0274 (5)	0.0216 (5)	-0.0017 (4)	0.0062 (4)	0.0132 (4)
O2W	0.0231 (5)	0.0244 (5)	0.0301 (5)	0.0040 (4)	0.0106 (4)	0.0149 (4)
O3W	0.0413 (6)	0.0364 (6)	0.0328 (6)	0.0062 (5)	0.0154 (5)	0.0185 (5)

Geometric parameters (Å, °)

Nil—Ol	2.054 (1)	N6—H6	0.86	
Ni1-O1 ⁱ	2.054 (1)	C7—C8	1.347 (2)	
Ni1—O1W	2.063 (1)	С7—Н7	0.93	
Ni1—O1W ⁱ	2.063 (1)	C8—C9	1.412 (2)	
Ni1—O2W ⁱ	2.082 (1)	C8—H8	0.93	
Ni1—O2W	2.082(1)	C9—N12	1.3249 (19)	
C1-C3 ⁱⁱ	1.3917 (18)	C9—C10	1.413 (2)	
C1—C2	1.4012 (18)	C10-C11	1.357 (2)	

C1—C4	1.5040 (16)	C10—H10	0.93
C2—C3	1.3894 (17)	C11—H11	0.93
C2—C5	1.5168 (17)	N12—H12A	0.86
C3—C1 ⁱⁱ	1.3917 (18)	N12—H12B	0.86
С3—Н3	0.93	O1W—H1WA	0.8491
C4—O2	1.2416 (16)	O1W—H1WB	0.8517
C4—O1	1.2673 (16)	O2W—H2WA	0.8491
C5-03	1.2376 (17)	O2W—H2WB	0.8517
C5-04	1 2496 (17)	O3W—H3WA	0.8491
N6-C11	1.2190(17) 1 342(2)	O3W—H3WB	0.8517
N6—C7	1.344(2)		0.0017
	1.5 (1)		
O1—Ni1—O1 ⁱ	180	C4—O1—Ni1	124.64 (8)
O1—Ni1—O1W	94.96 (4)	C11—N6—C7	120.39 (14)
O1 ⁱ —Ni1—O1W	85.04 (4)	C11—N6—H6	119.8
O1-Ni1-O1W ⁱ	85.04 (4)	C7—N6—H6	119.8
O1 ⁱ —Ni1—O1W ⁱ	94.96 (4)	N6—C7—C8	121.61 (15)
O1W—Ni1—O1W ⁱ	180	N6—C7—H7	119.2
O1—Ni1—O2W ⁱ	87.65 (4)	С8—С7—Н7	119.2
O1 ⁱ —Ni1—O2W ⁱ	92.35 (4)	C7—C8—C9	119.94 (15)
O1W—Ni1—O2W ⁱ	87.40 (4)	С7—С8—Н8	120
O1W ⁱ —Ni1—O2W ⁱ	92.60 (4)	С9—С8—Н8	120
O1—Ni1—O2W	92.35 (4)	N12—C9—C8	121.08 (14)
O1 ⁱ —Ni1—O2W	87.65 (4)	N12—C9—C10	122.01 (13)
O1W—Ni1—O2W	92.60 (4)	C8—C9—C10	116.90 (13)
O1W ⁱ —Ni1—O2W	87.40 (4)	C11—C10—C9	119.85 (15)
O2W ⁱ —Ni1—O2W	180	C11—C10—H10	120.1
C3 ⁱⁱ —C1—C2	120.00 (11)	C9—C10—H10	120.1
C3 ⁱⁱ —C1—C4	118.01 (11)	N6—C11—C10	121.24 (15)
C2—C1—C4	121.77 (11)	N6—C11—H11	119.4
C3—C2—C1	118.62 (11)	C10-C11-H11	119.4
C3—C2—C5	119.85 (11)	C9—N12—H12A	120
C1—C2—C5	121.49 (11)	C9—N12—H12B	120
C2—C3—C1 ⁱⁱ	121.37 (12)	H12A—N12—H12B	120
С2—С3—Н3	119.3	Ni1—O1W—H1WA	98.6
C1 ⁱⁱ —C3—H3	119.3	Ni1—O1W—H1WB	116.7
O2—C4—O1	125.75 (11)	H1WA—O1W—H1WB	107.6
O2—C4—C1	118.41 (11)	Ni1—O2W—H2WA	109.6
O1—C4—C1	115.78 (11)	Ni1—O2W—H2WB	114
O3—C5—O4	124.70 (12)	H2WA—O2W—H2WB	107.6
03	118.15 (12)	H3WA—O3W—H3WB	107.6
Q4—C5—C2	117.15 (11)		
C3 ⁱⁱ —C1—C2—C3	-1.1 (2)	O2—C4—O1—Ni1	-20.66 (18)
C4—C1—C2—C3	173.38 (11)	C1-C4-O1-Ni1	162.24 (8)
$C3^{n}$ — $C1$ — $C2$ — $C5$	176.81 (11)	O1W—Ni1—O1—C4	21.65 (10)
C3 ⁿ C1C2C5 C4C1C2C5	176.81 (11) -8.73 (18)	O1W—Ni1—O1—C4 O1W ⁱ —Ni1—O1—C4	21.65 (10) -158.35 (10)

C5—C2—C3—C1 ⁱⁱ	-176.83 (11)	O2W—Ni1—O1—C4	114.47 (10)	
C3 ⁱⁱ —C1—C4—O2	-54.95 (17)	C11—N6—C7—C8	-0.7 (2)	
C2-C1-C4-O2	130.48 (13)	N6-C7-C8-C9	-1.1 (2)	
C3 ⁱⁱ —C1—C4—O1	122.37 (13)	C7—C8—C9—N12	-176.02 (14)	
C2-C1-C4-O1	-52.20 (16)	C7—C8—C9—C10	2.8 (2)	
C3—C2—C5—O3	-45.83 (18)	N12-C9-C10-C11	175.97 (15)	
C1—C2—C5—O3	136.30 (14)	C8—C9—C10—C11	-2.9 (2)	
C3—C2—C5—O4	133.70 (13)	C7—N6—C11—C10	0.7 (2)	
C1—C2—C5—O4	-44.16 (17)	C9—C10—C11—N6	1.2 (2)	

Symmetry codes: (i) -*x*, -*y*, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2.

Hydrogen-bond geometry (Å, °)

HA	D—H	H····A	D····A	D—H···A
N6—H6····O1 ⁱⁱⁱ	0.86	2.12	2.926 (1)	156
N12—H12 <i>B</i> ···O2	0.86	2.00	2.856 (2)	171
N12—H12 <i>A</i> ···O3 <i>W</i> ⁱⁱ	0.86	2.19	3.048 (2)	174
O1 <i>W</i> —H1 <i>WA</i> ···O2	0.85	1.81	2.634 (1)	163
$O1W$ —H1 WB ····O3 W^{iv}	0.85	1.85	2.697 (1)	175
O2W— $H2WA$ ···O4 ⁱ	0.85	1.93	2.750(1)	162
$O2W$ — $H2WB$ ···· $O4^{v}$	0.85	1.90	2.732 (1)	165
O3 <i>W</i> —H3 <i>WA</i> ···O3	0.85	1.86	2.694 (2)	168
O3 <i>W</i> —H3 <i>WB</i> ····O3 ^{vi}	0.85	2.12	2.911 (2)	154

Symmetry codes: (i) -*x*, -*y*, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*+1, *y*, *z*+1; (iv) *x*, *y*, *z*+1; (v) *x*-1, *y*, *z*; (vi) -*x*, -*y*, -*z*+1.