Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methoxybenzohydrazide

Uzma Ashig,^a* Rifat Ara Jamal,^a Muhammad Nadeem Arshad,^b Zahida Tasneem Magsood^a and Islam Ullah Khan^b

^aDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: uzzmma@yahoo.com

Received 14 September 2009; accepted 21 September 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 12.4.

The title compound, $C_8H_{10}N_2O_2$, crystallizes as two independent molecules linked by $N-H\cdots N$ and $N-H\cdots O$ hydrogen bonds into a linear chain running along the *a* axis of the monoclinic unit cell. The intra- and intermolecular hydrogen bonds are described as a two-ring $R_2^2(10)$ motif. The sixmembered $R_1^1(6)$ rings formed by the intramolecular interactions are almost planar (r.m.s. deviations 0.06 and 0.08 Å). In one molecule, the aromatic and hydrogen-bonded rings are oriented at 4.8 $(2)^{\circ}$, whereas in the other molecule these rings are oriented at 6.1 (4) $^{\circ}$.

Related literature

For related structures, see: Ashiq et al. (2009); Kallel et al. (1992); Saraogi et al. (2002). For the biological activity of hydrazides, see: Ara et al. (2007); El-Emam et al. (2004); Maqsood et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

 $C_8H_{10}N_2O_2$ $M_r = 166.18$ Monoclinic, $P2_1/c$ a = 7.6486 (5) Å b = 10.7123 (7) Å c = 20.4781 (13) Å $\beta = 95.563 \ (3)^{\circ}$

V = 1669.95 (19) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.22\,\times\,0.19\,\times\,0.11$ mm

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: none 15129 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.110$	independent and constrained
S = 1.02	refinement
2938 reflections	$\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$
237 parameters	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

2938 independent reflections

 $R_{\rm int} = 0.045$

1695 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N2 - H21N\cdots O3^{i} \\ N3 - H3N\cdots N2^{ii} \\ N4 - H41N\cdots O3^{iii} \\ N4 - H42N\cdots O1^{iv} \\ N1 - H1N\cdots O2 \\ N3 - H3N\cdots O4 \end{array}$	0.88 (2) 0.87 (2) 0.96 (2) 0.87 (2) 0.87 (2) 0.89 (2) 0.86 (2)	2.27 (2) 2.44 (2) 2.25 (3) 2.26 (2) 1.98 (2) 2.01 (2)	3.091 (3) 3.111 (3) 3.136 (3) 3.055 (3) 2.655 (2) 2.653 (2)	155 (2) 134.2 (18) 152.3 (19) 153 (2) 130.8 (17) 129.9 (19)

Symmetry codes: (i) x - 1, y - 1, z; (ii) x, y + 1, z; (iii) -x + 2, -y + 2, -z; (iv) x + 1, y + 1, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Higher Education Commission Pakistan for providing the diffractometer at GCU, Lahore, and Bana International for support in collecting the crystallographic data. The authors also thank the University of Karachi, Pakistan, for financial support (Dean of the Faculty of Science Research Grant).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2643).

References

- Ara, R., Ashiq, U., Mahroof-Tahir, M., Magsood, Z. T., Khan, K. M., Lodhi, M. A. & Choudhary, M. I. (2007). Chem. Biodivers. 4, 58-71.
- Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. & Khan, I. U. (2009). Acta Cryst. E65. 01551.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kallel, A., Amor, B. H., Svoboda, I. & Fuess, H. (1992). Z. Kristallogr. 198, 137-140.
- Maqsood, Z. T., Khan, K. M., Ashiq, U., Jamal, R. A., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enzym. Inhib. Med. Chem. 21, 37-42.
- Saraogi, I., Mruthyunjayaswamy, B. H. M., Ijare, O. B., Jadegoud, Y. & Guru Row, T. N. (2002). Acta Cryst. E58, o1341-o1342.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, o2542 [doi:10.1107/S1600536809038227]

2-Methoxybenzohydrazide

Uzma Ashiq, Rifat Ara Jamal, Muhammad Nadeem Arshad, Zahida Tasneem Maqsood and Islam Ullah Khan

S1. Comment

Hydrazides are known to have different biological activities and have been used for the synthesis of various heterocyclic compounds (El-Emam *et al.*, 2004). In order to study the biological activity of 2-methoxybenzohydrazide, we undertook the synthesis of title compound and report its crystal structure in this paper. The title compound I was found to be antifungal (Maqsood *et al.*, 2006) and phytotoxic (Ara *et al.*, 2007). The unit cell contains two crystallographically unique molecules (Fig. 1). The structures of benzhydrazide (Kallel *et al.*, 1992), *para*-chloro (Saraogi *et al.*, 2002) and *para*-methoxy (Ashiq *et al.*, 2009), analogues of (I) have already been reported.

The molecular packing diagram (Fig. 2) shows the presence of intermolecular hydrogen bonds of N—H···N and N— H···O types (details are given in Table 1) results in the formation of two ring motifs with graphic notation $R_2^2(10)$ (Bernstein *et al.*, 1995), for each. Intramolecular interactions give rise six membered rings C (O2/C6/C1/C7/N1/H1N) and D (O4/C14/C9/C15/N3/H3N) $R_1^1(6)$ (Bernstein *et al.*, 1995), in each molecule. In one molecule, the A and C rings are oriented at 4.8 (2)°, whereas in the other molecule, the B and D rings are oriented at 6.1 (4)°.

S2. Experimental

All reagent-grade chemicals were obtained from Aldrich and Sigma Chemical companies and were used without further purification. To a solution of ethyl-2-methoxybenzoate (3.6 g, 20 mmol) in 75 ml e thanol, hydrazine hydrate (5.0 ml, 100 mmol) was added. The mixture was refluxed for 5 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with hexane to afford 2-methoxybenzohydrazide (yield 78%) (Ara *et al.*, 2007). Colourless single crystals of (I) were obtained by slow evaporation of methanol solution at room temperature.

S3. Refinement

The Hydrogen atoms bonded to aryl and methyl Carbon atoms were positioned geometrically, with C—H = 0.93 Å and C —H = 0.96 Å respectively. The thermal parameter of H-atoms of methyl group was taken 1.5 times of the parent C-atom, whereas for aromatic H-atoms it was taken 1.2 times of their parent atoms. Atoms H1N, H21N, H22N H3N, H41N, H42N with N–H= 0.86 (2)–0.96 (2)Å are located in a difference Fourier map and constrained to ride on their parent atom, with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

ORTEP plot of the title compound with the ellipsoids drawn at the 40% probability level, showing the atomic labels.

Figure 2

A unit cell packing diagram of (I) showing hydrogen bonds drawn by dashed lines. Hydrogen atoms not involved in Hbonding have been omitted.

2-Methoxybenzohydrazide

Crystal data	
$C_8H_{10}N_2O_2$	$V = 1669.95 (19) \text{ Å}^3$
$M_r = 166.18$	Z = 8
Monoclinic, $P2_1/c$	F(000) = 704
Hall symbol: -P 2ybc	$D_{\rm x} = 1.322 {\rm Mg m^{-3}}$
a = 7.6486(5) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 10.7123 (7) Å	Cell parameters from 2389 reflections
c = 20.4781 (13) Å	$\theta = 2.7 - 22.7^{\circ}$
$\beta = 95.563$ (3)°	$\mu = 0.10 \mathrm{~mm^{-1}}$

T = 296 KNeedle, colourless

Data collection

1695 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.045$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$h = -9 \longrightarrow 9$
$k = -12 \rightarrow 12$
$l = -24 \rightarrow 24$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.2288P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

 $0.22\times0.19\times0.11~mm$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1822 (2)	0.26307 (16)	0.04342 (10)	0.0827 (6)	
O2	0.6697 (2)	0.39866 (15)	0.11303 (8)	0.0656 (5)	
N2	0.4302 (3)	0.0831 (2)	0.06058 (12)	0.0615 (6)	
N1	0.4586 (2)	0.21149 (17)	0.07266 (9)	0.0525 (5)	
H1N	0.569 (3)	0.235 (2)	0.0811 (11)	0.063*	
H21N	0.335 (3)	0.066 (2)	0.0792 (11)	0.063*	
H22N	0.400 (3)	0.081 (2)	0.0191 (12)	0.063*	
C1	0.3759 (3)	0.43070 (19)	0.07062 (10)	0.0437 (5)	
C2	0.2404 (3)	0.5132 (2)	0.05221 (12)	0.0618 (7)	
H2	0.1317	0.4815	0.0359	0.074*	
C3	0.2614 (5)	0.6394 (3)	0.05727 (14)	0.0803 (9)	
Н3	0.1683	0.6925	0.0442	0.096*	
C4	0.4197 (5)	0.6872 (3)	0.08160 (14)	0.0802 (9)	
H4	0.4341	0.7732	0.0853	0.096*	

C5	0.5589 (4)	0.6088 (2)	0.10075 (12)	0.0669 (7)
H5	0.6664	0.6419	0.1174	0.080*
C6	0.5379 (3)	0.4812 (2)	0.09505 (10)	0.0486 (6)
C7	0.3323 (3)	0.2961 (2)	0.06103 (10)	0.0462 (6)
C8	0.8411 (3)	0.4463 (3)	0.13126 (16)	0.0977 (10)
H8A	0.8430	0.4878	0.1729	0.147*
H8B	0.8720	0.5045	0.0986	0.147*
H8C	0.9239	0.3787	0.1346	0.147*
O3	1.10200 (18)	0.94743 (13)	0.10222 (7)	0.0552 (4)
O4	0.64141 (19)	0.94752 (16)	0.19111 (7)	0.0652 (5)
N3	0.8244 (2)	1.01543 (17)	0.09341 (9)	0.0471 (5)
H3N	0.720 (3)	1.012 (2)	0.1063 (10)	0.057*
N4	0.8484 (3)	1.1070 (2)	0.04533 (11)	0.0558 (5)
H41N	0.862 (3)	1.062 (2)	0.0055 (12)	0.067*
H42N	0.950 (3)	1.140 (2)	0.0583 (11)	0.067*
C9	0.9165 (3)	0.85915 (19)	0.17588 (10)	0.0406 (5)
C10	1.0450 (3)	0.7726 (2)	0.19540 (11)	0.0572 (6)
H10	1.1445	0.7682	0.1728	0.069*
C11	1.0305 (4)	0.6926 (2)	0.24713 (13)	0.0740 (8)
H11	1.1178	0.6341	0.2587	0.089*
C12	0.8864 (4)	0.7004 (3)	0.28123 (13)	0.0738 (8)
H12	0.8768	0.6476	0.3168	0.089*
C13	0.7564 (3)	0.7843 (2)	0.26394 (11)	0.0615 (7)
H13	0.6591	0.7886	0.2878	0.074*
C14	0.7681 (3)	0.8634 (2)	0.21101 (10)	0.0459 (5)
C15	0.9534 (3)	0.94351 (18)	0.12070 (10)	0.0400 (5)
C16	0.4932 (4)	0.9605 (4)	0.22740 (15)	0.1152 (13)
H16A	0.4315	0.8825	0.2275	0.173*
H16B	0.4164	1.0236	0.2075	0.173*
H16C	0.5316	0.9842	0.2717	0.173*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0401 (10)	0.0727 (12)	0.1326 (16)	-0.0064 (9)	-0.0057 (10)	0.0055 (11)
O2	0.0463 (10)	0.0639 (11)	0.0838 (12)	-0.0039 (8)	-0.0079 (8)	-0.0035 (9)
N2	0.0550 (13)	0.0518 (14)	0.0805 (15)	-0.0044 (10)	0.0207 (12)	-0.0025 (12)
N1	0.0415 (11)	0.0404 (12)	0.0756 (14)	-0.0010 (10)	0.0055 (10)	-0.0032 (10)
C1	0.0458 (13)	0.0462 (14)	0.0409 (12)	0.0049 (11)	0.0136 (10)	0.0060 (10)
C2	0.0587 (15)	0.0638 (18)	0.0644 (16)	0.0143 (13)	0.0142 (12)	0.0144 (13)
C3	0.100 (2)	0.061 (2)	0.083 (2)	0.0307 (18)	0.0275 (18)	0.0185 (16)
C4	0.123 (3)	0.0454 (17)	0.079 (2)	0.0049 (19)	0.045 (2)	0.0001 (15)
C5	0.086 (2)	0.0551 (17)	0.0623 (17)	-0.0126 (15)	0.0217 (14)	-0.0100 (13)
C6	0.0554 (14)	0.0487 (15)	0.0436 (13)	0.0014 (12)	0.0136 (11)	0.0008 (11)
C7	0.0389 (13)	0.0556 (15)	0.0452 (13)	0.0005 (12)	0.0104 (10)	0.0047 (11)
C8	0.0504 (16)	0.114 (3)	0.124 (3)	-0.0211 (16)	-0.0132 (16)	-0.007 (2)
03	0.0440 (9)	0.0614 (10)	0.0626 (10)	0.0031 (7)	0.0167 (7)	0.0124 (8)
O4	0.0523 (10)	0.0894 (13)	0.0575 (10)	0.0187 (9)	0.0243 (8)	0.0182 (9)

supporting information

N3	0.0421 (11)	0.0499 (12)	0.0506 (11)	0.0010 (9)	0.0107 (9)	0.0135 (9)
N4	0.0528 (12)	0.0576 (14)	0.0571 (13)	-0.0035 (10)	0.0063 (10)	0.0184 (11)
C9	0.0446 (12)	0.0366 (12)	0.0410 (12)	-0.0033 (10)	0.0069 (10)	-0.0014 (10)
C10	0.0569 (15)	0.0503 (15)	0.0657 (16)	0.0051 (12)	0.0131 (12)	0.0071 (13)
C11	0.081 (2)	0.0605 (17)	0.0807 (19)	0.0116 (14)	0.0108 (16)	0.0273 (15)
C12	0.089 (2)	0.0649 (18)	0.0679 (18)	-0.0072 (16)	0.0074 (16)	0.0266 (15)
C13	0.0641 (17)	0.0711 (18)	0.0512 (15)	-0.0101 (14)	0.0149 (12)	0.0114 (13)
C14	0.0463 (13)	0.0507 (14)	0.0406 (13)	-0.0027 (11)	0.0039 (10)	0.0005 (11)
C15	0.0416 (12)	0.0389 (12)	0.0401 (12)	-0.0015 (10)	0.0079 (10)	-0.0031 (10)
C16	0.078 (2)	0.184 (4)	0.093 (2)	0.051 (2)	0.0534 (18)	0.039 (2)

Geometric parameters (Å, °)

01—C7	1.222 (2)	O3—C15	1.233 (2)
O2—C6	1.364 (3)	O4—C14	1.356 (2)
O2—C8	1.423 (3)	O4—C16	1.421 (3)
N2—N1	1.410 (3)	N3—C15	1.331 (3)
N2—H21N	0.88 (2)	N3—N4	1.414 (2)
N2—H22N	0.86 (2)	N3—H3N	0.87 (2)
N1—C7	1.329 (3)	N4—H41N	0.96 (2)
N1—H1N	0.88 (2)	N4—H42N	0.87 (2)
C1—C2	1.386 (3)	C9—C10	1.382 (3)
C1—C6	1.399 (3)	C9—C14	1.403 (3)
C1—C7	1.488 (3)	C9—C15	1.495 (3)
C2—C3	1.364 (4)	C10—C11	1.375 (3)
С2—Н2	0.9300	C10—H10	0.9300
C3—C4	1.364 (4)	C11—C12	1.363 (3)
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.383 (4)	C12—C13	1.362 (3)
C4—H4	0.9300	C12—H12	0.9300
C5—C6	1.380 (3)	C13—C14	1.385 (3)
С5—Н5	0.9300	C13—H13	0.9300
C8—H8A	0.9600	C16—H16A	0.9600
C8—H8B	0.9600	C16—H16B	0.9600
C8—H8C	0.9600	C16—H16C	0.9600
С6—О2—С8	118.5 (2)	C14—O4—C16	119.39 (19)
N1—N2—H21N	104.3 (15)	C15—N3—N4	123.54 (18)
N1—N2—H22N	102.9 (16)	C15—N3—H3N	120.8 (14)
H21N—N2—H22N	105 (2)	N4—N3—H3N	115.5 (15)
C7—N1—N2	122.49 (19)	N3—N4—H41N	105.8 (14)
C7—N1—H1N	120.3 (15)	N3—N4—H42N	104.1 (15)
N2—N1—H1N	116.3 (15)	H41N—N4—H42N	107 (2)
C2C1C6	117.6 (2)	C10—C9—C14	117.5 (2)
C2—C1—C7	115.5 (2)	C10—C9—C15	116.33 (18)
C6—C1—C7	126.91 (19)	C14—C9—C15	126.12 (19)
C3—C2—C1	122.1 (3)	C11—C10—C9	122.2 (2)
С3—С2—Н2	118.9	C11—C10—H10	118.9

	118.9	C9—C10—H10	118.9
C2—C3—C4	119.6 (3)	C12—C11—C10	119.1 (2)
С2—С3—Н3	120.2	C12—C11—H11	120.4
С4—С3—Н3	120.2	C10-C11-H11	120.4
C3—C4—C5	120.4 (3)	C13—C12—C11	120.9 (2)
C3—C4—H4	119.8	C13—C12—H12	119.6
C5—C4—H4	119.8	C11—C12—H12	119.6
C6—C5—C4	119.9 (3)	C12—C13—C14	120.4 (2)
С6—С5—Н5	120.1	C12—C13—H13	119.8
С4—С5—Н5	120.1	C14—C13—H13	119.8
O2—C6—C5	122.8 (2)	O4—C14—C13	122.9 (2)
O2—C6—C1	116.9 (2)	O4—C14—C9	117.24 (18)
C5—C6—C1	120.3 (2)	C13—C14—C9	119.9 (2)
O1—C7—N1	120.0 (2)	O3—C15—N3	121.28 (19)
O1—C7—C1	120.8 (2)	O3—C15—C9	119.98 (19)
N1—C7—C1	119.20 (19)	N3—C15—C9	118.72 (17)
O2—C8—H8A	109.5	O4—C16—H16A	109.5
O2—C8—H8B	109.5	O4—C16—H16B	109.5
H8A—C8—H8B	109.5	H16A—C16—H16B	109.5
O2—C8—H8C	109.5	O4—C16—H16C	109.5
H8A—C8—H8C	109.5	H16A—C16—H16C	109.5
H8B_C8_H8C	100.5	U16D C16 U16C	100.5
1100-00-1100	109.5	птов—сто—птос	109.5
	109.5	n10b	109.3
C6-C1-C2-C3	0.1 (3)	C14—C9—C10—C11	0.0 (3)
C6-C1-C2-C3 C7-C1-C2-C3	0.1 (3) -179.1 (2)	C14—C9—C10—C11 C15—C9—C10—C11	0.0 (3) 177.5 (2)
C6—C1—C2—C3 C7—C1—C2—C3 C1—C2—C3—C4	0.1 (3) -179.1 (2) -0.5 (4)	C14—C9—C10—C11 C15—C9—C10—C11 C9—C10—C11—C12	0.0 (3) 177.5 (2) -1.3 (4)
C6-C1-C2-C3 C7-C1-C2-C3 C1-C2-C3-C4 C2-C3-C4-C5	0.1 (3) -179.1 (2) -0.5 (4) 0.4 (4)	C14—C9—C10—C11 C15—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13	0.0 (3) 177.5 (2) -1.3 (4) 1.2 (4)
C6-C1-C2-C3 C7-C1-C2-C3 C1-C2-C3-C4 C2-C3-C4-C5 C3-C4-C5-C6	$\begin{array}{c} 0.1 \ (3) \\ -179.1 \ (2) \\ -0.5 \ (4) \\ 0.4 \ (4) \\ 0.2 \ (4) \end{array}$	C14—C9—C10—C11 C15—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14	0.0 (3) 177.5 (2) -1.3 (4) 1.2 (4) 0.2 (4)
C6—C1—C2—C3 C7—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C8—O2—C6—C5	$\begin{array}{c} 0.1 \ (3) \\ -179.1 \ (2) \\ -0.5 \ (4) \\ 0.2 \ (4) \\ -7.4 \ (3) \end{array}$	C14—C9—C10—C11 C15—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14 C16—O4—C14—C13	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \end{array}$
$\begin{array}{c} C6-C1-C2-C3\\ C7-C1-C2-C3\\ C1-C2-C3-C4\\ C2-C3-C4-C5\\ C3-C4-C5-C6\\ C8-O2-C6-C5\\ C8-O2-C6-C1\\ \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \end{array}$	C14—C9—C10—C11 C15—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14 C16—O4—C14—C13 C16—O4—C14—C9	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \end{array}$
$\begin{array}{c} C6 & -C1 & -C2 & -C3 \\ C7 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ C8 & -O2 & -C6 & -C5 \\ C8 & -O2 & -C6 & -C1 \\ C4 & -C5 & -C6 & -O2 \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \end{array}$	C14—C9—C10—C11 C15—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14 C16—O4—C14—C13 C16—O4—C14—C9 C12—C13—C14—O4	0.0 (3) 177.5 (2) -1.3 (4) 1.2 (4) 0.2 (4) 3.1 (3) -176.4 (2) 179.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \end{array}$	$\begin{array}{c} C14-C9-C10-C11\\ C15-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C16-O4-C14-C13\\ C16-O4-C14-C9\\ C12-C13-C14-O4\\ C12-C13-C14-C9\\ \end{array}$	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \end{array}$
$\begin{array}{c} C6-C1-C2-C3\\ C7-C1-C2-C3\\ C1-C2-C3-C4\\ C2-C3-C4-C5\\ C3-C4-C5-C6\\ C8-O2-C6-C5\\ C8-O2-C6-C1\\ C4-C5-C6-O2\\ C4-C5-C6-O2\\ C4-C5-C6-C1\\ C2-C1-C6-O2\\ \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \end{array}$	$\begin{array}{c} C14 \\ \hline C9 \\ \hline C10 \\ \hline C15 \\ \hline C9 \\ \hline C10 \\ \hline C11 \\ \hline C12 \\ \hline C10 \\ \hline C11 \\ \hline C12 \\ \hline C13 \\ \hline C11 \\ \hline C12 \\ \hline C13 \\ \hline C14 \\ \hline C13 \\ \hline C16 \\ \hline O4 \\ \hline C14 \\ \hline C13 \\ \hline C12 \\ \hline C13 \\ \hline C14 \\ \hline C9 \\ \hline C12 \\ \hline C13 \\ \hline C14 \\ \hline C9 \\ \hline C12 \\ \hline C13 \\ \hline C14 \\ \hline O4 \\ \hline C12 \\ \hline C13 \\ \hline C14 \\ \hline O4 \\ \hline C14 \\ \hline O4 \\ \hline O5 $	0.0 (3) 177.5 (2) -1.3 (4) 1.2 (4) 0.2 (4) 3.1 (3) -176.4 (2) 179.1 (2) -1.5 (3) -179.18 (19)
$\begin{array}{c} C6-C1-C2-C3\\ C7-C1-C2-C3\\ C1-C2-C3-C4\\ C2-C3-C4-C5\\ C3-C4-C5-C6\\ C8-O2-C6-C5\\ C8-O2-C6-C1\\ C4-C5-C6-O2\\ C4-C5-C6-O2\\ C4-C5-C6-C1\\ C2-C1-C6-O2\\ C7-C1-C6-O2\\ \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \end{array}$	$\begin{array}{c} C14 - C9 - C10 - C11\\ C15 - C9 - C10 - C11\\ C9 - C10 - C11 - C12\\ C10 - C11 - C12 - C13\\ C11 - C12 - C13 - C14\\ C16 - O4 - C14 - C13\\ C16 - O4 - C14 - C13\\ C16 - O4 - C14 - C9\\ C12 - C13 - C14 - O4\\ C12 - C13 - C14 - O4\\ C15 - C9 - C14 - O4\\ C15 - C9 - C14 - O4\\ \end{array}$	0.0 (3) 177.5 (2) -1.3 (4) 1.2 (4) 0.2 (4) 3.1 (3) -176.4 (2) 179.1 (2) -1.5 (3) -179.18 (19) 3.7 (3)
$\begin{array}{c} C6 & -C1 & -C2 & -C3 \\ C7 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ C8 & -O2 & -C6 & -C5 \\ C8 & -O2 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C2 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -O2 \\ C2 & -C1 & -C6 & -C5 \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \end{array}$	$\begin{array}{c} C14 - C9 - C10 - C11 \\ C15 - C9 - C10 - C11 \\ C9 - C10 - C11 - C12 \\ C10 - C11 - C12 - C13 \\ C11 - C12 - C13 - C14 \\ C16 - O4 - C14 - C13 \\ C16 - O4 - C14 - C13 \\ C16 - O4 - C14 - C9 \\ C12 - C13 - C14 - O4 \\ C12 - C13 - C14 - O4 \\ C15 - C9 - C14 - O4 \\ C15 - C9 - C14 - O4 \\ C10 - C9 - C14 - C13 \end{array}$	0.0 (3) 177.5 (2) -1.3 (4) 1.2 (4) 0.2 (4) 3.1 (3) -176.4 (2) 179.1 (2) -1.5 (3) -179.18 (19) 3.7 (3) 1.3 (3)
$\begin{array}{c} C6 & -C1 & -C2 & -C3 \\ C7 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ C8 & -O2 & -C6 & -C5 \\ C8 & -O2 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C2 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -C5 \\ C7 & -C1 & -C6 & -C5 \\ C7 & -C1 & -C6 & -C5 \\ \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \\ 179.5 (2) \end{array}$	$\begin{array}{c} C14-C9-C10-C11\\ C15-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C16-O4-C14-C13\\ C16-O4-C14-C9\\ C12-C13-C14-O4\\ C12-C13-C14-O4\\ C12-C13-C14-O4\\ C15-C9-C14-O4\\ C15-C9-C14-O4\\ C10-C9-C14-C13\\ C15-C9-C14-C13\\ C15-C9-C14-C14-C13\\ C15-C9-C14-C14-C14-C13\\ C15-C9-C14-C14-C14\\ C15-C9-C14-C14-C14\\ C15-C9-C14-C14-C14\\ $	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \\ -179.18 (19) \\ 3.7 (3) \\ 1.3 (3) \\ -175.8 (2) \end{array}$
$\begin{array}{c} C6 & -C1 & -C2 & -C3 \\ C7 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ C8 & -O2 & -C6 & -C5 \\ C8 & -O2 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C2 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -O2 \\ C2 & -C1 & -C6 & -C5 \\ C7 & -C1 & -C6 & -C5 \\ N2 & -N1 & -C7 & -O1 \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \\ 179.5 (2) \\ 5.1 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \\ -179.18 (19) \\ 3.7 (3) \\ 1.3 (3) \\ -175.8 (2) \\ -4.7 (3) \end{array}$
$\begin{array}{c} C6-C1-C2-C3\\ C7-C1-C2-C3\\ C1-C2-C3-C4\\ C2-C3-C4-C5\\ C3-C4-C5-C6\\ C8-O2-C6-C5\\ C8-O2-C6-C1\\ C4-C5-C6-O2\\ C4-C5-C6-O2\\ C4-C5-C6-O2\\ C2-C1-C6-O2\\ C2-C1-C6-O2\\ C2-C1-C6-C5\\ C7-C1-C6-C5\\ C7-C1-C6-C5\\ N2-N1-C7-O1\\ N2-N1-C7-C1\\ \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \\ 179.5 (2) \\ 5.1 (3) \\ -175.71 (19) \end{array}$	$\begin{array}{c} C14-C9-C10-C11\\ C15-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C16-O4-C14-C13\\ C16-O4-C14-C9\\ C12-C13-C14-O4\\ C12-C13-C14-O4\\ C12-C13-C14-O4\\ C15-C9-C14-O4\\ C15-C9-C14-O4\\ C15-C9-C14-C13\\ C15-C9-C14-C13\\ C15-C9-C14-C13\\ N4-N3-C15-O3\\ N4-N3-C15-C9\end{array}$	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \\ -179.18 (19) \\ 3.7 (3) \\ 1.3 (3) \\ -175.8 (2) \\ -4.7 (3) \\ 173.79 (19) \end{array}$
$\begin{array}{c} C6 & -C1 & -C2 & -C3 \\ C7 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ C8 & -O2 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C2 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -C5 \\ C7 & -C1 & -C6 & -C5 \\ N2 & -N1 & -C7 & -O1 \\ N2 & -N1 & -C7 & -O1 \\ N2 & -N1 & -C7 & -O1 \\ \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \\ 179.5 (2) \\ 5.1 (3) \\ -175.71 (19) \\ -6.0 (3) \end{array}$	$\begin{array}{c} C14-C9-C10-C11\\ C15-C9-C10-C11\\ C9-C10-C11-C12\\ C10-C11-C12-C13\\ C11-C12-C13-C14\\ C16-O4-C14-C13\\ C16-O4-C14-C9\\ C12-C13-C14-O4\\ C12-C13-C14-O4\\ C12-C13-C14-O4\\ C15-C9-C14-O4\\ C15-C9-C14-O4\\ C15-C9-C14-C13\\ C15-C9-C14-C13\\ C15-C9-C14-C13\\ N4-N3-C15-O3\\ N4-N3-C15-O3\\ N4-N3-C15-O3\\ \end{array}$	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \\ -179.18 (19) \\ 3.7 (3) \\ 1.3 (3) \\ -175.8 (2) \\ -4.7 (3) \\ 173.79 (19) \\ -11.5 (3) \end{array}$
$\begin{array}{c} C6 & -C1 & -C2 & -C3 \\ C7 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ C8 & -O2 & -C6 & -C5 \\ C8 & -O2 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C1 \\ C2 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -O2 \\ C7 & -C1 & -C6 & -C5 \\ C7 & -C1 & -C6 & -C5 \\ N2 & -N1 & -C7 & -O1 \\ N2 & -N1 & -C7 & -O1 \\ N2 & -N1 & -C7 & -O1 \\ C6 & -C1 & -C7 & -O1 \end{array}$	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \\ 179.5 (2) \\ 5.1 (3) \\ -175.71 (19) \\ -6.0 (3) \\ 175.0 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \\ -179.18 (19) \\ 3.7 (3) \\ 1.3 (3) \\ -175.8 (2) \\ -4.7 (3) \\ 173.79 (19) \\ -11.5 (3) \\ 165.7 (2) \end{array}$
C6-C1-C2-C3 C7-C1-C2-C3 C1-C2-C3-C4 C2-C3-C4-C5 C3-C4-C5-C6 C8-02-C6-C5 C8-02-C6-C1 C4-C5-C6-02 C4-C5-C6-02 C4-C5-C6-02 C7-C1-C6-02 C2-C1-C6-02 C2-C1-C6-C5 N2-N1-C7-01 N2-N1-C7-01 C2-C1-C7-01 C2-C1-C7-01 C2-C1-C7-N1	$\begin{array}{c} 0.1 (3) \\ -179.1 (2) \\ -0.5 (4) \\ 0.4 (4) \\ 0.2 (4) \\ -7.4 (3) \\ 173.2 (2) \\ -180.0 (2) \\ -0.7 (3) \\ 179.89 (18) \\ -1.1 (3) \\ 0.5 (3) \\ 179.5 (2) \\ 5.1 (3) \\ -175.71 (19) \\ -6.0 (3) \\ 175.0 (2) \\ 174.84 (19) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0 (3) \\ 177.5 (2) \\ -1.3 (4) \\ 1.2 (4) \\ 0.2 (4) \\ 3.1 (3) \\ -176.4 (2) \\ 179.1 (2) \\ -1.5 (3) \\ -179.18 (19) \\ 3.7 (3) \\ 1.3 (3) \\ -175.8 (2) \\ -4.7 (3) \\ 173.79 (19) \\ -11.5 (3) \\ 165.7 (2) \\ 169.98 (19) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H21 <i>N</i> ···O3 ⁱ	0.88 (2)	2.27 (2)	3.091 (3)	155 (2)
N3—H3 <i>N</i> ···N2 ⁱⁱ	0.87 (2)	2.44 (2)	3.111 (3)	134.2 (18)

Acta Cryst. (2009). E65, o2542

supporting information

N4—H41 <i>N</i> ···O3 ⁱⁱⁱ	0.96 (2)	2.25 (3)	3.136 (3)	152.3 (19)
N4—H42 N ···O1 ^{iv}	0.87 (2)	2.26 (2)	3.055 (3)	153 (2)
N1—H1 <i>N</i> ···O2	0.89 (2)	1.98 (2)	2.655 (2)	130.8 (17)
N3—H3 <i>N</i> ····O4	0.86 (2)	2.01 (2)	2.653 (2)	129.9 (19)

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+2, -*y*+2, -*z*; (iv) *x*+1, *y*+1, *z*.