organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

13-[4,5-Bis(methylsulfanyl)-1,3-dithiol-2ylidene]-6-oxa-3,9,12,14-tetrathiabicyclo[9.3.0]tetradec-1(11)-ene

Rui-Bin Hou,^a Bao Li,^b Tie Che,^a Bing-Zhu Yin^{a*} and Li-Xin Wu^b

^aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and ^bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: zqcong@ybu.edu.cn

Received 14 September 2009; accepted 15 September 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.056; wR factor = 0.170; data-to-parameter ratio = 21.8.

In the title molecule, $C_{14}H_{18}OS_8$, one O atom, two S atoms and six C atoms form an 11-membered ring with a chair-like conformation; the planes of the two five-membered rings connected by a carbon–carbon double bond form a dihedral angle of 29.97 (11)°. In the crystal, pairs of weak intermolecular C–H···S hydrogen bonds link two molecules into inversion dimers.

Related literature

For background to crown ether-annulated 1,3-dithiol-2-thiones, see: Hansen *et al.* (1993). For the synthesis, see: Chen *et al.* (2005). For a related structure, see: Hou *et al.* (2009)

Experimental

Crystal data $C_{14}H_{18}OS_8$ $M_r = 458.76$ Triclinic, $P\overline{1}$

a = 8.4542 (17) Å

b = 10.158 (2) Å

c = 13.612 (3) Å
$\alpha = 105.00 \ (3)^{\circ}$
$\beta = 97.83 \ (3)^{\circ}$
$\gamma = 112.22 \ (3)^{\circ}$
V = 1008.8 (3) Å ³

Z =	2			
Mo	Κα	rad	iatic	n
	0.8	8 m	m^{-1}	

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.170$ S = 1.104572 reflections 210 parameters

Table 1Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C7-H7B\cdots S2^{i}$ 0.97
 3.00
 3.793 (6)
 140

T = 291 K

 $R_{\rm int} = 0.032$

18 restraints

 $\Delta \rho_{\text{max}} = 1.09 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.64 \text{ e } \text{\AA}^{-3}$

 $0.14 \times 0.12 \times 0.12 \text{ mm}$

9961 measured reflections4572 independent reflections

3655 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry code: (i) -x, -y, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programm of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2642).

References

- Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.
- Hansen, T. K., Jorgensen, T., Jensen, F., Thygesen, P. H., Christiansen, K., Hursthouse, M. B., Harman, M. E., Malik, M. A. & Girmay, B. (1993). J. Org. Chem. 58, 1359–1366.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hou, R.-B., Li, B., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o1710.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2538 [doi:10.1107/S1600536809037301]

13-[4,5-Bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-6-oxa-3,9,12,14-tetrathiabicyclo[9.3.0]tetradec-1(11)-ene

Rui-Bin Hou, Bao Li, Tie Che, Bing-Zhu Yin and Li-Xin Wu

S1. Comment

Tetrathiafulvalene (TTF) derivatives with a fused crown ether ring have received much attention as component molecules for cation sensors (Hansen *et al.*, 1993). We are incorporated TTF with a sulfur hybrid crown ether to synthesize the title compound

The molecule structure of tiltle compound, (I), $C_{14}H_{18}S_8O$, as shown in Fig. 1, all bond lengths and angles are normal and comparable with the related structure (Hou *et al.*, 2009). In the crystal, weak intermolecular C—H···S hydrogen bonds (Table 1) link the molecules into dimer.

S2. Experimental

The title compound, (I), was prepared according to literature (Chen *et al.*,2005) and the single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$.

Figure 1

The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.

13-[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]-6-oxa-3,9,12,14- tetrathiabicyclo[9.3.0]tetradec-1(11)-ene

Crystal data	
$C_{14}H_{18}OS_8$ $M_r = 458.76$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 8.4542 (17) Å b = 10.158 (2) Å c = 13.612 (3) Å $a = 105.00 (3)^{\circ}$ $\beta = 97.83 (3)^{\circ}$ $\gamma = 112.22 (3)^{\circ}$ $V = 1008.8 (3) \text{ Å}^3$	Z = 2 F(000) = 476 $D_x = 1.510 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8201 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.88 \text{ mm}^{-1}$ T = 291 K Block, yellow $0.14 \times 0.12 \times 0.12 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.886, T_{\max} = 0.901$	9961 measured reflections 4572 independent reflections 3655 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^\circ$, $\theta_{min} = 3.1^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 13$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.170$	4572 reflections 210 parameters 18 restraints Primary atom site location: structure-in

Primary atom site location: structure-invariant direct methods

S = 1.10

Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.0884P)^2 + 0.6622P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.016$
neighbouring sites	$\Delta \rho_{\rm max} = 1.09 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0932 (11)	0.6629 (10)	0.3460 (6)	0.147 (3)
H1A	0.1923	0.7484	0.3443	0.220*
H1B	0.0094	0.6954	0.3720	0.220*
H1C	0.0378	0.5904	0.2761	0.220*
C2	0.3190 (6)	0.5333 (5)	0.3702 (3)	0.0698 (11)
C3	0.4341 (5)	0.4102 (4)	0.2243 (3)	0.0507 (7)
C4	0.4512 (4)	0.3545 (3)	0.1275 (2)	0.0461 (7)
C5	0.3940 (4)	0.2608 (3)	-0.0741 (2)	0.0413 (6)
C6	0.2894 (5)	0.2050 (4)	-0.1861 (3)	0.0525 (8)
H6A	0.3691	0.2087	-0.2314	0.063*
H6B	0.2366	0.2724	-0.1949	0.063*
C7	0.2424 (8)	-0.0950 (6)	-0.2145 (6)	0.1025 (17)
H7A	0.3145	-0.0519	-0.1423	0.123*
H7B	0.1583	-0.1969	-0.2240	0.123*
C8	0.3534 (6)	-0.1067 (5)	-0.2800 (5)	0.0943 (17)
H8A	0.2905	-0.1288	-0.3517	0.113*
H8B	0.3794	-0.1915	-0.2786	0.113*
C9	0.6658 (6)	0.0075 (5)	-0.2091 (4)	0.0740 (12)
H9A	0.7526	0.0358	-0.2487	0.089*
H9B	0.6321	-0.0978	-0.2166	0.089*
C10	0.7491 (5)	0.1017 (4)	-0.0953 (3)	0.0649 (10)
H10A	0.8265	0.0635	-0.0660	0.078*
H10B	0.6563	0.0882	-0.0589	0.078*
C11	0.7040 (4)	0.3605 (4)	-0.0996 (3)	0.0469 (7)
H11A	0.7589	0.4682	-0.0874	0.056*
H11B	0.6438	0.3094	-0.1740	0.056*
C12	0.5700 (4)	0.3284 (3)	-0.0371 (2)	0.0407 (6)
C13	0.4928 (6)	0.6013 (4)	0.4070 (3)	0.0661 (10)
C14	0.7619 (13)	0.8815 (12)	0.4955 (7)	0.176 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14A	0.8239	0.8368	0.4545	0.264*	
H14B	0.8442	0.9598	0.5587	0.264*	
H14C	0.7053	0.9239	0.4552	0.264*	
01	0.5140 (4)	0.0229 (3)	-0.2531 (2)	0.0707 (7)	
S1	0.1683 (2)	0.5780 (2)	0.43099 (13)	0.1162 (6)	
S2	0.22953 (15)	0.37585 (11)	0.25246 (8)	0.0674 (3)	
S3	0.26931 (11)	0.23691 (10)	0.01898 (7)	0.0513 (2)	
S4	0.11564 (12)	0.01405 (12)	-0.22817 (9)	0.0704 (3)	
S5	0.87487 (12)	0.30094 (10)	-0.06741 (8)	0.0602 (3)	
S6	0.65644 (11)	0.38520 (10)	0.10015 (6)	0.0504 (2)	
S7	0.61409 (14)	0.52278 (11)	0.33593 (7)	0.0619 (3)	
S8	0.6096 (2)	0.74971 (15)	0.52682 (9)	0.1030 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.123 (4)	0.173 (5)	0.156 (5)	0.087 (4)	0.053 (4)	0.031 (4)
C2	0.087 (3)	0.059 (2)	0.060(2)	0.022 (2)	0.044 (2)	0.0171 (18)
C3	0.062 (2)	0.0419 (16)	0.0491 (17)	0.0220 (15)	0.0185 (14)	0.0151 (13)
C4	0.0529 (18)	0.0395 (15)	0.0474 (16)	0.0223 (13)	0.0130 (13)	0.0134 (13)
C5	0.0474 (16)	0.0328 (13)	0.0428 (15)	0.0202 (12)	0.0075 (12)	0.0091 (11)
C6	0.0540 (19)	0.0458 (17)	0.0492 (17)	0.0240 (15)	-0.0016 (14)	0.0069 (14)
C7	0.090 (3)	0.068 (3)	0.143 (4)	0.032 (2)	0.033 (3)	0.029 (3)
C8	0.068 (3)	0.057 (2)	0.122 (4)	0.027 (2)	0.009 (3)	-0.017 (3)
C9	0.065 (2)	0.053 (2)	0.098 (3)	0.0339 (19)	0.016 (2)	0.005 (2)
C10	0.063 (2)	0.0484 (19)	0.089 (3)	0.0315 (18)	0.0179 (19)	0.0217 (19)
C11	0.0480 (17)	0.0389 (15)	0.0520 (17)	0.0195 (13)	0.0122 (13)	0.0119 (13)
C12	0.0467 (16)	0.0331 (13)	0.0423 (15)	0.0210 (12)	0.0087 (12)	0.0083 (11)
C13	0.089 (3)	0.0504 (19)	0.0500 (19)	0.019 (2)	0.0335 (19)	0.0126 (16)
C14	0.172 (5)	0.168 (5)	0.142 (5)	0.025 (4)	0.065 (4)	0.040 (4)
01	0.0666 (17)	0.0519 (15)	0.090 (2)	0.0287 (13)	0.0162 (14)	0.0151 (14)
S 1	0.1153 (12)	0.1136 (11)	0.1043 (11)	0.0336 (9)	0.0798 (10)	0.0109 (9)
S2	0.0694 (6)	0.0561 (5)	0.0642 (6)	0.0132 (5)	0.0322 (5)	0.0144 (4)
S3	0.0450 (4)	0.0472 (4)	0.0537 (5)	0.0173 (3)	0.0116 (3)	0.0093 (3)
S4	0.0446 (5)	0.0586 (6)	0.0766 (7)	0.0161 (4)	0.0007 (4)	-0.0092(5)
S5	0.0433 (5)	0.0514 (5)	0.0791 (6)	0.0218 (4)	0.0133 (4)	0.0108 (4)
S 6	0.0480 (4)	0.0542 (5)	0.0435 (4)	0.0262 (4)	0.0036 (3)	0.0059 (3)
S 7	0.0723 (6)	0.0586 (5)	0.0457 (5)	0.0226 (5)	0.0151 (4)	0.0123 (4)
S 8	0.1440 (13)	0.0685 (7)	0.0543 (6)	0.0108 (8)	0.0411 (7)	0.0005 (5)

Geometric parameters (Å, °)

C1—S1	1.794 (9)	C8—O1	1.405 (6)	
C1—H1A	0.9600	C8—H8A	0.9700	
C1—H1B	0.9600	C8—H8B	0.9700	
C1—H1C	0.9600	C9—O1	1.421 (5)	
C2—C13	1.319 (7)	C9—C10	1.495 (6)	
C2—S1	1.744 (4)	С9—Н9А	0.9700	

C_{2} S_{2}	1 769 (1)	CO HOD	0.0700
$C_2 = S_2$	1.708 (4)	С10 С5	0.9700
C3—C4	1.344 (5)	C10—S5	1.798 (4)
C3—S2	1.747 (4)	C10—H10A	0.9700
C3—S7	1.756 (4)	C10—H10B	0.9700
C4—S3	1.747 (3)	C11—C12	1.498 (4)
C4—S6	1.753 (3)	C11—S5	1.809 (3)
C5—C12	1.335 (4)	C11—H11A	0.9700
C5—C6	1,496 (4)	C11—H11B	0.9700
C5—S3	1 762 (3)	C12 - S6	1 763 (3)
C6 S4	1.702(5) 1.814(4)	C13 S8	1.763(3) 1.752(4)
	0.0700	C12 S7	1.752(4)
Со—поа	0.9700	C13—S7	1.763 (4)
С6—Н6В	0.9700	C14—S8	1.665 (9)
С7—С8	1.397 (8)	C14—H14A	0.9600
C7—S4	1.833 (6)	C14—H14B	0.9600
С7—Н7А	0.9700	C14—H14C	0.9600
С7—Н7В	0.9700		
S1—C1—H1A	109.5	С10—С9—Н9А	108.9
S1—C1—H1B	109.5	01—C9—H9B	108.9
$H_1 A - C_1 - H_1 B$	109.5	C10-C9-H9B	108.9
	100.5		107.7
	109.5	$\begin{array}{c} 113A - C_{2} - 113B \\ C_{2} - C_{1} - C_{2} \\ C_{3} - C_{3} \\ C$	107.7
HIA—CI—HIC	109.5	C9-C10-S5	110.1 (3)
HIB—CI—HIC	109.5	C9—C10—H10A	108.3
C13—C2—S1	125.9 (3)	S5—C10—H10A	108.3
C13—C2—S2	117.2 (3)	C9—C10—H10B	108.3
S1—C2—S2	116.8 (3)	S5-C10-H10B	108.3
C4—C3—S2	123.3 (3)	H10A—C10—H10B	107.4
C4—C3—S7	123.7 (3)	C12—C11—S5	113.4 (2)
S2—C3—S7	112.98 (18)	C12—C11—H11A	108.9
$C_{3} - C_{4} - S_{3}$	122.6(3)	S5—C11—H11A	108.9
C_{3} C_{4} S_{6}	123.2(3)	C12— $C11$ — $H11B$	108.9
S3 C4 S6	123.2(3) 114.08(18)	S5 C11 H11B	108.9
53-0+-50	114.00(10)		107.7
C12 - C5 - C0	127.5 (5)		107.7
C12—C5—S3	116.9 (2)	C5C12C11	127.1 (3)
C6—C5—S3	115.8 (2)	C5—C12—S6	117.2 (2)
C5—C6—S4	113.5 (3)	C11—C12—S6	115.7 (2)
С5—С6—Н6А	108.9	C2—C13—S8	125.2 (3)
S4—C6—H6A	108.9	C2—C13—S7	116.7 (3)
С5—С6—Н6В	108.9	S8—C13—S7	117.7 (3)
S4—C6—H6B	108.9	S8—C14—H14A	109.5
Н6А—С6—Н6В	107.7	S8—C14—H14B	109.5
C8-C7-S4	1197(5)	H14A— $C14$ — $H14B$	109.5
$C_8 - C_7 - H_7 \Delta$	107.4	S8-C14-H14C	109.5
$S_{1} = C_{1} = H_{1} = H_{1}$	107.4		109.5
S_{+-} $C_{}$ Π/Λ	107.4	$\frac{1114}{114} - \frac{114}{114} -$	109.5
	107.4	H14B-01-00	109.5
S4—C/—H/B	107.4	C8—O1—C9	114.7 (4)
H7A—C7—H7B	106.9	C2—S1—C1	100.8 (3)
C7—C8—O1	114.6 (4)	C3—S2—C2	94.04 (19)

supporting information

С7—С8—Н8А	108.6	C4—S3—C5	94.20 (15)
O1—C8—H8A	108.6	C6—S4—C7	102.0 (2)
C7—C8—H8B	108.6	C10—S5—C11	102.29 (17)
O1—C8—H8B	108.6	C4—S6—C12	93.92 (15)
H8A—C8—H8B	107.6	C3—S7—C13	94.02 (19)
O1—C9—C10	113.4 (3)	C14—S8—C13	104.6 (3)
O1—C9—H9A	108.9		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C7— $H7B$ ···S2 ⁱ	0.97	3.00	3.793 (6)	140

Symmetry code: (i) -x, -y, -z.