Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaqua(2,2'-bipyridine-5,5'dicarboxylato- $\kappa^2 N, N'$)nickel(II) dihydrate

Hua Yang

Department of Chemistry, Mudanjiang Teachers College, Mudanjiang 157012, People's Republic of China Correspondence e-mail: youngflower7799@yahoo.com.cn

Received 2 September 2009; accepted 5 September 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.025; *wR* factor = 0.065; data-to-parameter ratio = 12.3.

In the title compound, $[Ni(C_{12}H_6N_2O_4)(H_2O)_4]\cdot 2H_2O$, obtained from a basic solution of 2,2'-bipyridine-5,5'dicarboxylate and nickel(II) chloride in water, the central Ni(II) cation (site symmetry 2) is coordinated by two N atoms from the 2,2'-bipyridine-5,5'-dicarboxylate ligand and four aqua O atoms. The N-Ni-N angle is 78.64 (8)°. Weak but significant π - π stacking interactions exist between the pyridine rings with a centroid-centroid distance of 3.652 (8) Å. In addition, four O atoms of the two carboxyl groups form hydrogen bonds with both coordinated and uncoordinated water molecules, forming an infinite threedimensional network.

Related literature

For attempts to synthesize 5,5'- and 6,6'-substituted 2,2'bipyridine derivatives, see: He *et al.* (2009); Karaca *et al.* (2009); Yousefi *et al.* (2008).

Experimental

Crystal data [Ni(C₁₂H₆N₂O₄)(H₂O)₄]·2H₂O *M_r* = 408.97

Monoclinic, C2/ca = 12.4787 (2) Å b = 9.8152 (2) Åc = 12.6533 (2) Å $\beta = 92.107 (2)^{\circ}$ $V = 1548.74 (5) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.730, T_{max} = 0.828$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.065$ S = 0.981691 reflections 138 parameters 6 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$05-H52\cdots 03^{i}$ $02-H22\cdots 03^{ii}$ $05-H51\cdots 04^{iii}$ $02-H21\cdots 04^{iv}$ $01-H11\cdots 04^{iv}$ $01-H11\cdots 03^{iv}$	$\begin{array}{c} 0.837\ (10)\\ 0.834\ (10)\\ 0.834\ (10)\\ 0.833\ (10)\\ 0.843\ (9)\\ 0.843\ (9) \end{array}$	2.178 (16) 1.921 (12) 1.913 (11) 1.852 (10) 2.650 (17) 2.097 (10)	2.9566 (19) 2.7410 (18) 2.7286 (19) 2.6831 (17) 3.1740 (18) 2.9386 (18)	155 (3) 168 (3) 166 (2) 175 (2) 121.6 (16) 175.9 (19)
O1−H12···O5	0.834 (10)	1.861 (11)	2.688 (2)	171 (3)
	1 . 1	1 (**)	1 (***)	1

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y, z - \frac{1}{2}$; (iii) -x, -y + 1, -z + 2; (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The author thanks the financial support of Natural Foundation of Heilongjiang Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2636).

References

Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- He, X., Qu, G.-R., Deng, D. & Ji, B. (2009). Acta Cryst. E65, 0985.
- Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m335–m336.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.

Mo $K\alpha$ radiation

 $0.18 \times 0.16 \times 0.10 \text{ mm}$

8276 measured reflections

1691 independent reflections

1379 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.31 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.037$

refinement

 $\Delta \rho_{\rm max} = 0.44$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

supporting information

Acta Cryst. (2009). E65, m1207 [doi:10.1107/S1600536809035910]

Tetraaqua(2,2'-bipyridine-5,5'-dicarboxylato- $\kappa^2 N, N'$)nickel(II) dihydrate

Hua Yang

S1. Comment

2,2'-Bipyridine was used very commonly as ending complexing ligand. Great efforts have been made to synthesize 5,5' and 6,6' position substituted derivatives (He *et al.*, 2009; Karaca *et al.*, 2009; Yousefi *et al.*, 2008). Here we reported the crystal structure of a complexing compound of Ni(II) coordinating to 4,4'dicarboxyl substituted 2,2'-bipyridine derivative.

The central Ni cation coordinated to two N atoms from dianions of one 2,2'-bipyridine-5,5'-dicarboxylate and four O atoms from four waters, forming a distorted octahedral system. Ni(II) cation lies on the twofold axis of the crystal lattice. Two Ni—N bonds were generated by *C*2 symmetry operation from each other with bond length 2.0706 (14). Four Ni—O bond lengths are nearly equal, two of which 2.0610 (12), and another two 2.0801 (13). Each of two equivalent carboxyl anions has two unequivalent oxygen atoms, C—O bond lengths of which are equalized to be 1.266 (2) and 1.254 (2), respectively. All O atoms of carboxyls formed hydrogen bonds with both complexed waters from another complexing supermolecule and free waters into three dimentional infinite hydrgon bonding network, which stablized the whole crystal structure, along with pi-pi stacking of aromatic pyridine rings.

S2. Experimental

A solution of 2,2'-bipyridine-5,5'-dicarboxylate (23.2 mg, 0.1 mmol) and NiCl₂.6H₂O (23.8 mg, 0.1 mmol) was added an aqueous solution of NaOH (0.1 mmol/ml) to adjust pH as 7.0–7.5 at room temperature. A small amount of white precipitate was removed from the resulting solution. Prism colorless crystals were obtained by slow evaporation at room temperature over a period of 10 days.

S3. Refinement

All H atoms bonded to O atoms of ligand water and free water molecules were located in a difference map, and the distances of the O–H bonds were fixed to 0.82 Å. The other H atoms were placed in calculated positions and refined as riding, with C–H = 0.93 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.

The packing diagram of molecules, viewed down the *b* axis, with the weak interactions shown as dashed lines.

Tetraaqua(2,2'-bipyridine-5,5'-dicarboxylato- $\kappa^2 N, N'$) nickel(II) dihydrate

Crystal data

[Ni(C₁₂H₆N₂O₄)(H₂O)₄]·2H₂O M_r = 408.97 Monoclinic, C2/c Hall symbol: -C 2yc a = 12.4787 (2) Å b = 9.8152 (2) Å c = 12.6533 (2) Å β = 92.107 (2)° V = 1548.74 (5) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.730, T_{\max} = 0.828$ F(000) = 848.0 $D_x = 1.754 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8276 reflections $\theta = 3.1-27.0^{\circ}$ $\mu = 1.31 \text{ mm}^{-1}$ T = 120 KPrism, colourless $0.18 \times 0.16 \times 0.10 \text{ mm}$

8276 measured reflections 1691 independent reflections 1379 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -15 \rightarrow 15$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.065$	neighbouring sites
S = 0.98	H atoms treated by a mixture of independent
1691 reflections	and constrained refinement
138 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0426P)^2]$
6 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.44 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.0000	0.27554 (3)	0.7500	0.01072 (11)	
01	0.03285 (11)	0.42083 (13)	0.86619 (11)	0.0142 (3)	
H11	0.0898 (11)	0.4670 (18)	0.8664 (17)	0.019 (6)*	
H12	-0.0189 (14)	0.475 (2)	0.864 (2)	0.044 (8)*	
02	0.15591 (10)	0.29226 (13)	0.70290 (10)	0.0129 (3)	
H21	0.1953 (16)	0.315 (2)	0.7545 (13)	0.032 (7)*	
H22	0.184 (2)	0.2274 (19)	0.672 (2)	0.052 (9)*	
03	0.26260 (10)	-0.06943 (12)	1.12935 (10)	0.0145 (3)	
O4	0.21890 (10)	0.15053 (12)	1.12590 (10)	0.0166 (3)	
05	-0.12732 (13)	0.60197 (15)	0.83875 (13)	0.0301 (4)	
H51	-0.1494 (18)	0.6770 (14)	0.8598 (18)	0.033 (7)*	
H52	-0.1726 (19)	0.580 (3)	0.7913 (18)	0.067 (10)*	
N1	0.04499 (11)	0.11232 (14)	0.84534 (11)	0.0106 (3)	
C1	0.21332 (13)	0.03194 (17)	1.08927 (14)	0.0119 (4)	
C2	0.14678 (14)	0.01069 (17)	0.98899 (14)	0.0116 (4)	
C3	0.13045 (14)	-0.11715 (17)	0.94398 (14)	0.0119 (4)	
H3	0.1595	-0.1960	0.9778	0.014*	
C4	0.07152 (14)	-0.12874 (17)	0.84950 (14)	0.0126 (4)	
H4	0.0596	-0.2156	0.8180	0.015*	
C5	0.03040 (13)	-0.01275 (17)	0.80161 (14)	0.0108 (4)	
C7	0.10106 (14)	0.12224 (17)	0.93712 (14)	0.0117 (4)	
H7	0.1100	0.2097	0.9683	0.014*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01160 (18)	0.00978 (17)	0.01056 (18)	0.000	-0.00259 (12)	0.000
01	0.0113 (7)	0.0133 (7)	0.0177 (7)	0.0017 (5)	-0.0029 (5)	-0.0029 (5)
02	0.0122 (6)	0.0148 (7)	0.0115 (7)	0.0004 (5)	-0.0030 (5)	-0.0024 (5)
03	0.0155 (7)	0.0126 (6)	0.0151 (7)	-0.0005 (5)	-0.0059 (5)	0.0034 (5)
04	0.0203 (7)	0.0133 (7)	0.0156 (7)	0.0013 (5)	-0.0064 (6)	-0.0043 (5)
05	0.0286 (9)	0.0212 (8)	0.0392 (10)	0.0123 (6)	-0.0167 (7)	-0.0135 (7)
N1	0.0109 (8)	0.0106 (8)	0.0103 (8)	-0.0013 (5)	-0.0011 (6)	0.0005 (6)
C1	0.0101 (9)	0.0143 (9)	0.0113 (9)	-0.0019 (7)	0.0008 (7)	0.0014 (7)
C2	0.0108 (8)	0.0148 (9)	0.0092 (9)	-0.0002(7)	0.0003 (7)	0.0005 (7)
С3	0.0110 (9)	0.0118 (9)	0.0128 (9)	0.0010 (6)	-0.0007 (7)	0.0020 (7)
C4	0.0132 (9)	0.0108 (9)	0.0140 (9)	-0.0006 (7)	0.0011 (7)	-0.0018 (7)
C5	0.0094 (8)	0.0124 (9)	0.0106 (9)	-0.0006 (6)	0.0009 (7)	-0.0007 (7)
C7	0.0110 (9)	0.0124 (9)	0.0118 (9)	-0.0014(7)	0.0013 (7)	-0.0015 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Ni1—O2 ⁱ	2.0622 (12)	O5—H52	0.837 (10)
Nil—O2	2.0622 (12)	N1—C7	1.337 (2)
Ni1—N1 ⁱ	2.0706 (14)	N1—C5	1.356 (2)
Ni1—N1	2.0706 (14)	C1—C2	1.505 (2)
Nil—O1	2.0782 (13)	C2—C7	1.388 (2)
Nil-Oli	2.0782 (13)	C2—C3	1.390 (2)
01—H11	0.843 (9)	C3—C4	1.385 (2)
O1—H12	0.834 (10)	С3—Н3	0.9500
O2—H21	0.833 (10)	C4—C5	1.380 (2)
O2—H22	0.834 (10)	C4—H4	0.9500
O3—C1	1.266 (2)	C5C5 ⁱ	1.486 (3)
O4—C1	1.254 (2)	С7—Н7	0.9500
O5—H51	0.834 (10)		
Ω^{2i} _Ni1_ Ω^{2}	170 87 (7)	C7N1C5	118 59 (14)
02^{i} Ni1 N1 ⁱ	89 51 (5)	C7 - N1 - Ni1	124 87 (11)
$O_2 = N_1 = N_1^{i}$	07.57 (5)	C_{5} N1 Ni1	115 66 (12)
$O2^{i}$ Ni1 N1	97.57 (5)	$O_4 C_1 O_3$	124 20 (16)
02 - Ni1 - N1	97.57 (5) 89.51 (5)	04-C1-C2	117 49 (15)
$N1^{i}$ Ni1 Ni	78 63 (8)	03-C1-C2	118 27 (15)
Ω^{i} Ni1 Ω^{i}	84 53 (5)	C_{7} C_{7	117.82 (16)
02 - Ni1 - 01	89.21 (5)	$C_{7} - C_{2} - C_{1}$	119.58 (15)
$N1^{i}$ Ni1 -01	170 17 (6)	$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	122 59 (15)
N1 - Ni1 - O1	9439(5)	C_{4} C_{2} C_{1}	119 54 (15)
Ω^{i} Ni1 Ω^{1i}	94.59 (5) 89.21 (5)	$C_{4} = C_{3} = C_{2}$	120.2
$02 - Ni1 - 01^{i}$	84 53 (5)	$C^2 - C^3 - H^3$	120.2
$N1^{i}$ $N1^{i}$ $O1^{i}$	94.39(5)	$C_{2} = C_{3} = C_{3}$	119 24 (16)
$N1 - Ni1 - O1^{i}$	170 17 (6)	C5 - C4 - H4	120.4
01 Ni1 01^{i}	93 34 (7)	$C_3 - C_4 - H_4$	120.4
01-01-01	99.9 4 (7)	0,-0+-11+	120.7

121.0 (15)	N1—C5—C4	121.70 (16)
106.4 (18)	$N1-C5-C5^{i}$	114.53 (10)
109.3 (17)	N1—C7—C2	123.09 (15)
119.7 (19)	N1—C7—H7	118.5
109 (2)	С2—С7—Н7	118.5
104 (3)		
-99.70 (14)	C7—C2—C3—C4	1.0 (3)
74.51 (14)	C1—C2—C3—C4	-177.65 (16)
172.33 (18)	C2—C3—C4—C5	0.2 (3)
-14.65 (15)	C7—N1—C5—C4	0.2 (3)
127.1 (3)	Ni1—N1—C5—C4	169.99 (14)
91.22 (12)	C7—N1—C5—C5 ⁱ	-178.46 (17)
-94.57 (12)	Ni1—N1—C5—C5 ⁱ	-8.7 (2)
3.25 (9)	C3—C4—C5—N1	-0.9 (3)
176.26 (12)	C3-C4-C5-C5 ⁱ	177.6 (2)
-42.0 (4)	C5—N1—C7—C2	1.2 (3)
4.6 (3)	Ni1—N1—C7—C2	-167.62 (13)
-173.22 (16)	C3—C2—C7—N1	-1.8 (3)
-176.75 (16)	C1-C2-C7-N1	176.94 (15)
5.4 (3)		
	121.0 (15) $106.4 (18)$ $108 (2)$ $109.3 (17)$ $119.7 (19)$ $109 (2)$ $104 (3)$ $-99.70 (14)$ $74.51 (14)$ $172.33 (18)$ $-14.65 (15)$ $127.1 (3)$ $91.22 (12)$ $-94.57 (12)$ $3.25 (9)$ $176.26 (12)$ $-42.0 (4)$ $4.6 (3)$ $-173.22 (16)$ $-176.75 (16)$ $5.4 (3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
05—H52···O3 ⁱⁱ	0.84 (1)	2.18 (2)	2.9566 (19)	155 (3)
O2—H22…O3 ⁱⁱⁱ	0.83 (1)	1.92 (1)	2.7410 (18)	168 (3)
O5—H51…O4 ^{iv}	0.83 (1)	1.91 (1)	2.7286 (19)	166 (2)
O2—H21…O4 ^v	0.83 (1)	1.85 (1)	2.6831 (17)	175 (2)
O1—H11···O4 ^v	0.84 (1)	2.65 (2)	3.1740 (18)	122 (2)
O1—H11···O3 ^v	0.84 (1)	2.10(1)	2.9386 (18)	176 (2)
O1—H12···O5	0.83 (1)	1.86 (1)	2.688 (2)	171 (3)

Symmetry codes: (ii) x-1/2, -y+1/2, z-1/2; (iii) x, -y, z-1/2; (iv) -x, -y+1, -z+2; (v) -x+1/2, -y+1/2, -z+2.