

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 9-Methoxy-6a,11a-dimethyl-6a,11adihydro-6*H*-1-benzofuro[3,2-c]chromen-3-ol from *Dalbergia oliveri*

### Sujittra Deesamer,<sup>a</sup> Warinthorn Chavasiri,<sup>a</sup>\* Narongsak Chaichit,<sup>b</sup> Nongnuj Muangsin<sup>a</sup> and Udom Kokpol<sup>a</sup>

<sup>a</sup>Department of Chemistry, Faculty of Science, Chulalongkorn University, Payathai, Bangkok 10330, Thailand, and <sup>b</sup>Department of Physics, Faculty of Science and Technology, Thammasart University, Pathumthani 12121, Thailand Correspondence e-mail: warintho@yahoo.com

Received 23 August 2009; accepted 28 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; *R* factor = 0.034; *wR* factor = 0.093; data-to-parameter ratio = 10.7.

The title compound, commonly known as (+)-(6a*S*,11a*S*)medicarpin, C<sub>16</sub>H<sub>14</sub>O<sub>4</sub>, was isolated from *Dalbergia oliveri* and displays a rigid molecule consisting of four fused rings. The benzofuran system is inclined at an angle of 76.49 (2)° with respect to the chroman unit. The compound exists as a polymeric chain arising from intermolecular O-H···O bonding.

#### **Related literature**

For general background to (+)-(6a*S*,11a*S*)-medicarpin, see: Deesamer *et al.* (2007); Hargreaves *et al.* (1976). For a related structure, see: Aree *et al.* (2003).



#### **Experimental**

Crystal data  $C_{16}H_{14}O_4$  $M_r = 270.27$ 

Monoclinic,  $P2_1$ a = 6.6289 (3) Å b = 8.7963 (4) Å c = 11.3150 (5) Å  $\beta = 99.4820 (10)^{\circ}$   $V = 650.76 (5) \text{ Å}^{3}$ Z = 2

### Data collection

Refinement

Bruker SMART diffractometer1949 independent reflectionsAbsorption correction: none2867 reflections with  $I > 2\sigma(I)$ 4783 measured reflections $R_{int} = 0.013$ 

 $R[F^2 > 2\sigma(F^2)] = 0.034$   $wR(F^2) = 0.093$  S = 1.091949 reflections 182 parameters

### **Table 1** Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$  D-H  $H\cdots A$   $D\cdots A$   $D-H\cdots A$ 
 $O4-H4A\cdots O3^{i}$  0.82 2.07 2.882 (2)
 169

Symmetry code: (i) x, y, z + 1.

Data collection: *SMART* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors gratefully acknowledge funding from the Royal Golden Jubilee PhD program (RGJ), the Center for Petroleum, Petrochemicals and Advanced Materials, the A1–B1 project and the Faculty of Science of Chulalongkorn University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2631).

#### References

- Aree, T., Tip-pyang, S., Seesukphronrarak, S. & Chaichit, N. (2003). Acta Cryst. E**59**, 0363–0365.
- Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deesamer, S., Kokpola, U., Chavasiria, W., Douillardb, S., Peyrotb, V., Vidalc, N. & Combesc, S. (2007). *Tetrahedron*, **63**, 12986–12993.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hargreaves, J. A., Mansfield, J. W. & Coxon, D. T. (1976). *Nature (London)*, **262**, 318–319.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.40 \times 0.25 \times 0.20$  mm

H-atom parameters constrained

Mo  $K\alpha$  radiation

 $\mu = 0.10 \text{ mm}^{-1}$ 

T = 293 K

1 restraint

 $\Delta \rho_{\text{max}} = 0.16 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$ 

# supporting information

Acta Cryst. (2009). E65, o2387 [doi:10.1107/S1600536809034485]

# 9-Methoxy-6a,11a-dimethyl-6a,11a-dihydro-6*H*-1-benzofuro[3,2-c]chromen-3ol from *Dalbergia oliveri*

# Sujittra Deesamer, Warinthorn Chavasiri, Narongsak Chaichit, Nongnuj Muangsin and Udom Kokpol

## S1. Comment

*Dalbergia Oliveri* Gamble is widely found in Thailand and used in traditional Thai medicine for treament of chronic ulcer. One of major compositions of  $CH_2Cl_2$  crude products extracted from the heartwoods of *Dalbergia Oliveri* (Deesamer *et al.*, 2007) was (+)(6*aS*,11*aS*)-Medicarpin. It was identified as phytoalexin (Hargreaves *et al.*, 1976).

The rigid molecule of the title compound consists of four fused rings adopts a bent-shaped conformation. The benzofuran ring system is inclined at the angle of 76.49 (2)° with respect to the chroman moiety. The tetrahydropyranyl group adopts an envelope conformation with atom C6 deviates from the plane by 0.4144 Å.

The compound exists as a polymeric chain arising from intermolecular O—H…O bonding.

## **S2. Experimental**

Four kilograms of dried and powder heartwoods of *D. oliveri* were extracted with hexane. The marc was then extracted with CH<sub>2</sub>Cl<sub>2</sub>, EtOAc and MeOH, respectively. The CH<sub>2</sub>Cl<sub>2</sub> crudeextract was subjected to silica gel colume chromatography eluting with 60%EtOAc:Hexane to afford the title compound (3.92 g). The suitable single crystals of the title compound were recrystallized from acetone-water as colourless needle crystals.

m.p. 132.0–133.5°C; m/z: 270[*M*<sup>+</sup>]

The specific rotation of D3 as  $[\alpha]_D^+$  223.1° (c 0.16 in acetone, at 20°C) indicated the absolute configuration to be (+) (6*aS*,11*aS*)-medicarpin.

<sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ (p.p.m.) 3.55(1*H*,m,H-6a), 3.65 (1*H*, dd, J =10.9 and 10.9 Hz, H-6*ax*), 4.26 (1*H*, dd, J = 4.8, 10.9 Hz, H-6*eq*) and 5.23 (1*H*, d, J = 6.7 Hz, H-116*a*),

## S3. Refinement

All non-hydrogen atoms were anisotropically refined. The hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93Å (aromatic), 0.97Å (CH<sub>2</sub>) and 0.98Å (CH<sub>3</sub>), and O—H = 0.82 Å, and  $U_{iso}$ (H) = 1.2Ueq (C<sub>aromatic</sub>), 1.5Ueq (C<sub>CH2</sub>), 1.5Ueq (C<sub>CH3</sub>) and 1.2Ueq (C<sub>o</sub>), respectively. In the structure, Friedel pairs [1949] were merged and the stereochemistry assumed from the specific rotation and the previously reported structure (Deesamer *et al.* 2007).



**Figure 1** View of the title compound (50% probability displacement ellipsoids)



**Figure 2** Packing diagram of a polymeric hydrogen bonding chain along the *c* axis.

## 9-Methoxy-6a,11a-dimethyl-6a,11a-dihydro-6H-1-benzofuro[3,2-c]chromen-3-ol from Dalbergia Oliveri

| Crystal data                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{16}H_{14}O_4$ $M_r = 270.27$ Monoclinic, P2 <sub>1</sub> Hall symbol: P 2yb $a = 6.6289 (3) \text{ Å}$ $b = 8.7963 (4) \text{ Å}$ $c = 11.3150 (5) \text{ Å}$ $\beta = 99.482 (1)^{\circ}$ $V = 650.76 (5) \text{ Å}^3$ | Z = 2<br>F(000) = 284<br>$D_x = 1.379 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>$\mu = 0.10 \text{ mm}^{-1}$<br>T = 293  K<br>Needle, colourless<br>$0.40 \times 0.25 \times 0.20 \text{ mm}$                                                         |
| Data collection<br>Bruker SMART<br>diffractometer<br>Radiation source: Mo<br>ω scans<br>4783 measured reflections<br>3198 independent reflections                                                                           | 1949 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.013$<br>$\theta_{\text{max}} = 30.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$<br>$h = -7 \rightarrow 9$<br>$k = -12 \rightarrow 12$<br>$l = -15 \rightarrow 13$                                                   |
| RefinementRefinement on $F^2$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.093$ $S = 1.09$ 1949 reflections182 parameters                                                                        | 1 restraint<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0583P)^2 + 0.0162P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} < 0.001$<br>$\Delta\rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$<br>$\Delta\rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x          | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|------------|--------------|--------------|-----------------------------|--|
| C1   | 0.0057 (2) | 0.4390 (2)   | 0.69102 (16) | 0.0414 (4)                  |  |
| H1   | -0.1252    | 0.398        | 0.6736       | 0.05*                       |  |
| C2   | 0.0496 (3) | 0.5393 (3)   | 0.78509 (16) | 0.0458 (4)                  |  |
| H2   | -0.0512    | 0.5664       | 0.8294       | 0.055*                      |  |
| C3   | 0.2455 (3) | 0.6001 (2)   | 0.81356 (14) | 0.0413 (4)                  |  |
| C4   | 0.3960 (3) | 0.5576 (2)   | 0.74813 (15) | 0.0399 (4)                  |  |
| H4   | 0.5278     | 0.5962       | 0.7678       | 0.048*                      |  |
| C4A  | 0.3482 (2) | 0.45666 (19) | 0.65285 (14) | 0.0351 (3)                  |  |
| C6   | 0.4820 (3) | 0.2767 (2)   | 0.53202 (17) | 0.0426 (4)                  |  |
| H6A  | 0.4918     | 0.1964       | 0.5915       | 0.051*                      |  |
| H6B  | 0.5928     | 0.2632       | 0.4867       | 0.051*                      |  |
| C6A  | 0.2800 (2) | 0.26311 (19) | 0.44829 (15) | 0.0365 (3)                  |  |
| H6A1 | 0.2669     | 0.1601       | 0.4149       | 0.044*                      |  |
| C6B  | 0.2447 (2) | 0.37674 (19) | 0.34730 (14) | 0.0338 (3)                  |  |
|      |            |              |              |                             |  |

| C7   | 0.3662 (3)    | 0.4270 (2)   | 0.26630 (15) | 0.0393 (3) |
|------|---------------|--------------|--------------|------------|
| H7   | 0.5007        | 0.3937       | 0.2723       | 0.047*     |
| C8   | 0.2854 (3)    | 0.5275 (2)   | 0.17639 (16) | 0.0424 (4) |
| H8   | 0.367         | 0.5633       | 0.123        | 0.051*     |
| C9   | 0.0829 (3)    | 0.5752 (2)   | 0.16556 (14) | 0.0388 (4) |
| C10  | -0.0419 (3)   | 0.5288 (2)   | 0.24674 (15) | 0.0374 (3) |
| H10  | -0.1764       | 0.5621       | 0.2409       | 0.045*     |
| C10A | 0.0455 (2)    | 0.43038 (19) | 0.33679 (13) | 0.0332 (3) |
| C11A | 0.0957 (2)    | 0.29610 (19) | 0.51234 (15) | 0.0363 (3) |
| H11A | 0.0382        | 0.2002       | 0.5358       | 0.044*     |
| C11B | 0.1513 (2)    | 0.39649 (18) | 0.62068 (14) | 0.0343 (3) |
| C12  | -0.1997 (3)   | 0.7026 (3)   | 0.04448 (19) | 0.0579 (5) |
| H12A | -0.2266       | 0.7714       | -0.0221      | 0.087*     |
| H12B | -0.2447       | 0.7474       | 0.113        | 0.087*     |
| H12C | -0.2719       | 0.6091       | 0.0244       | 0.087*     |
| 01   | 0.50439 (17)  | 0.42138 (16) | 0.59175 (11) | 0.0436 (3) |
| O2   | -0.05777 (17) | 0.37602 (17) | 0.42345 (10) | 0.0401 (3) |
| O3   | 0.0152 (2)    | 0.67276 (19) | 0.07158 (11) | 0.0518 (4) |
| O4   | 0.2992 (2)    | 0.7012 (2)   | 0.90549 (12) | 0.0550 (4) |
| H4A  | 0.2102        | 0.7028       | 0.9479       | 0.083*     |
|      |               |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|------|-------------|-------------|------------|-------------|-------------|-------------|
| C1   | 0.0296 (7)  | 0.0524 (10) | 0.0410 (8) | -0.0031 (7) | 0.0021 (6)  | 0.0049 (8)  |
| C2   | 0.0390 (8)  | 0.0594 (11) | 0.0391 (8) | 0.0030 (8)  | 0.0070 (7)  | 0.0028 (8)  |
| C3   | 0.0482 (9)  | 0.0424 (9)  | 0.0321 (7) | -0.0012 (7) | 0.0026 (6)  | 0.0048 (7)  |
| C4   | 0.0368 (7)  | 0.0448 (9)  | 0.0372 (7) | -0.0089 (6) | 0.0034 (6)  | 0.0037 (7)  |
| C4A  | 0.0323 (7)  | 0.0385 (8)  | 0.0343 (7) | -0.0031 (6) | 0.0045 (6)  | 0.0059 (6)  |
| C6   | 0.0361 (7)  | 0.0445 (10) | 0.0460 (9) | 0.0054 (7)  | 0.0030 (7)  | 0.0002 (7)  |
| C6A  | 0.0372 (8)  | 0.0295 (7)  | 0.0414 (8) | 0.0010 (6)  | 0.0022 (6)  | -0.0007 (6) |
| C6B  | 0.0347 (7)  | 0.0306 (7)  | 0.0354 (7) | 0.0000 (6)  | 0.0039 (6)  | -0.0039 (6) |
| C7   | 0.0361 (7)  | 0.0411 (8)  | 0.0420 (8) | 0.0012 (6)  | 0.0102 (6)  | -0.0054 (7) |
| C8   | 0.0455 (9)  | 0.0459 (9)  | 0.0379 (8) | -0.0007 (7) | 0.0130 (7)  | -0.0007 (7) |
| C9   | 0.0474 (9)  | 0.0392 (9)  | 0.0296 (7) | 0.0014 (7)  | 0.0055 (6)  | -0.0027 (6) |
| C10  | 0.0359 (7)  | 0.0423 (8)  | 0.0331 (7) | 0.0048 (6)  | 0.0035 (6)  | -0.0023 (6) |
| C10A | 0.0336 (7)  | 0.0359 (7)  | 0.0301 (6) | -0.0033 (6) | 0.0049 (5)  | -0.0032 (6) |
| C11A | 0.0351 (7)  | 0.0338 (8)  | 0.0384 (8) | -0.0057 (6) | 0.0010 (6)  | 0.0056 (6)  |
| C11B | 0.0310 (6)  | 0.0360 (8)  | 0.0342 (7) | -0.0033 (6) | 0.0004 (5)  | 0.0071 (6)  |
| C12  | 0.0621 (12) | 0.0648 (13) | 0.0431 (9) | 0.0143 (11) | -0.0022 (9) | 0.0089 (9)  |
| 01   | 0.0305 (5)  | 0.0527 (8)  | 0.0482 (6) | -0.0086 (5) | 0.0087 (4)  | -0.0075 (6) |
| O2   | 0.0299 (5)  | 0.0536 (7)  | 0.0358 (5) | -0.0032 (5) | 0.0020 (4)  | 0.0073 (5)  |
| 03   | 0.0604 (8)  | 0.0588 (9)  | 0.0363 (6) | 0.0084 (7)  | 0.0076 (5)  | 0.0106 (6)  |
| O4   | 0.0639 (9)  | 0.0619 (9)  | 0.0394 (7) | -0.0071 (7) | 0.0088 (6)  | -0.0089 (6) |

Geometric parameters (Å, °)

| C1—C2        | 1.376 (3)   | C6B—C10A       | 1.389 (2)   |
|--------------|-------------|----------------|-------------|
| C1—C11B      | 1.399 (2)   | C7—C8          | 1.387 (3)   |
| C1—H1        | 0.93        | C7—H7          | 0.93        |
| C2—C3        | 1.393 (3)   | C8—C9          | 1.393 (2)   |
| С2—Н2        | 0.93        | C8—H8          | 0.93        |
| C3—O4        | 1.370 (2)   | C9—O3          | 1.382 (2)   |
| C3—C4        | 1.388 (3)   | C9—C10         | 1.395 (2)   |
| C4—C4A       | 1.392 (2)   | C10-C10A       | 1.389 (2)   |
| C4—H4        | 0.93        | C10—H10        | 0.93        |
| C4A—O1       | 1.372 (2)   | C10A—O2        | 1.3709 (19) |
| C4A—C11B     | 1.400 (2)   | C11A—O2        | 1.484 (2)   |
| C6—O1        | 1.437 (2)   | C11A—C11B      | 1.507 (2)   |
| C6—C6A       | 1.512 (2)   | C11A—H11A      | 0.98        |
| С6—Н6А       | 0.97        | C12—O3         | 1.431 (3)   |
| C6—H6B       | 0.97        | C12—H12A       | 0.96        |
| C6A—C6B      | 1.507 (2)   | C12—H12B       | 0.96        |
| C6A—C11A     | 1.547 (2)   | C12—H12C       | 0.96        |
| C6A—H6A1     | 0.98        | O4—H4A         | 0.82        |
| C6B—C7       | 1.389 (2)   |                |             |
|              |             |                |             |
| C2-C1-C11B   | 122.26 (15) | C6B—C7—H7      | 120.3       |
| C2—C1—H1     | 118.9       | C7—C8—C9       | 120.45 (16) |
| C11B—C1—H1   | 118.9       | C7—C8—H8       | 119.8       |
| C1—C2—C3     | 119.68 (17) | С9—С8—Н8       | 119.8       |
| C1—C2—H2     | 120.2       | O3—C9—C8       | 116.15 (16) |
| С3—С2—Н2     | 120.2       | O3—C9—C10      | 122.38 (15) |
| O4—C3—C4     | 117.40 (16) | C8—C9—C10      | 121.46 (16) |
| O4—C3—C2     | 122.73 (17) | C10A—C10—C9    | 116.39 (15) |
| C4—C3—C2     | 119.87 (17) | C10A—C10—H10   | 121.8       |
| C3—C4—C4A    | 119.56 (15) | C9—C10—H10     | 121.8       |
| C3—C4—H4     | 120.2       | O2-C10A-C6B    | 113.57 (14) |
| C4A—C4—H4    | 120.2       | O2-C10A-C10    | 123.03 (14) |
| O1—C4A—C4    | 116.13 (14) | C6B-C10A-C10   | 123.39 (15) |
| O1—C4A—C11B  | 122.15 (14) | O2-C11A-C11B   | 108.81 (14) |
| C4—C4A—C11B  | 121.72 (14) | O2—C11A—C6A    | 106.09 (13) |
| O1—C6—C6A    | 112.14 (14) | C11B—C11A—C6A  | 112.62 (13) |
| O1—C6—H6A    | 109.2       | O2-C11A-H11A   | 109.7       |
| С6А—С6—Н6А   | 109.2       | C11B—C11A—H11A | 109.7       |
| O1—C6—H6B    | 109.2       | C6A—C11A—H11A  | 109.7       |
| C6A—C6—H6B   | 109.2       | C1—C11B—C4A    | 116.87 (15) |
| H6A—C6—H6B   | 107.9       | C1C11BC11A     | 121.33 (14) |
| C6B—C6A—C6   | 115.68 (14) | C4A—C11B—C11A  | 121.74 (14) |
| C6B—C6A—C11A | 101.24 (12) | O3—C12—H12A    | 109.5       |
| C6—C6A—C11A  | 112.20 (14) | O3—C12—H12B    | 109.5       |
| C6B—C6A—H6A1 | 109.1       | H12A—C12—H12B  | 109.5       |
| С6—С6А—Н6А1  | 109.1       | O3—C12—H12C    | 109.5       |

# supporting information

| С11А—С6А—Н6А1 | 109.1       | H12A—C12—H12C | 109.5       |
|---------------|-------------|---------------|-------------|
| C7—C6B—C10A   | 118.82 (15) | H12B—C12—H12C | 109.5       |
| C7—C6B—C6A    | 132.64 (14) | C4A—O1—C6     | 114.15 (13) |
| C10A—C6B—C6A  | 108.46 (13) | C10A—O2—C11A  | 106.43 (12) |
| C8—C7—C6B     | 119.42 (15) | C9—O3—C12     | 117.65 (15) |
| С8—С7—Н7      | 120.3       | C3—O4—H4A     | 109.5       |

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|-------------|-------|-----------|-------------------------|
| O4—H4 <i>A</i> ···O3 <sup>i</sup> | 0.82        | 2.07  | 2.882 (2) | 169                     |

Symmetry code: (i) x, y, z+1.