Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[1-(Hydroxyimino)ethyl]-N-(4-nitrobenzylidene)aniline

Li Zhao, Wen-Kui Dong,* Jian-Chao Wu, Yin-Xia Sun and Li Xu

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China Correspondence e-mail: dongwk@mail.lzjtu.cn

Received 18 May 2009; accepted 24 August 2009

Key indicators: single-crystal X-ray study: T = 298 K: mean $\sigma(C-C) = 0.005$ Å: R factor = 0.043; wR factor = 0.115; data-to-parameter ratio = 8.7.

In the title compound, C₁₅H₁₃N₃O₃, the dihedral angle formed by the two benzene rings is $44.23 (2)^\circ$. The crystal structure is stabilized by aromatic π - π stacking interactions, with centroid-centroid distances of 3.825 (3) and 3.870 (4) Å between the aniline and the nitrobenzene rings of neighbouring molecules, respectively. In addition, the stacked molecules exhibit intermolecular C-H···N and C-H···O interactions.

Related literature

For background to Schiff bases, see: Lozier et al. (1975). For the synthesis, see: Rafiq et al. (2008); Duan et al. (2007); Dong et al. (2008). For related structures, see: Bomfim et al. (2005); Fun et al. (2008).

Experimental

Crystal data

 $C_{15}H_{13}N_3O_3$ $M_r = 283.28$ Orthorhombic, P212121 a = 7.375 (1) Å b = 10.770 (2) Å c = 16.906 (2) Å

V = 1342.8 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^-$

T = 298 K $0.50\,\times\,0.35\,\times\,0.10$ mm


```
Bruker SMART1000 CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.952, T_{\max} = 0.990
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.115$	independent and constrained
S = 1.03	refinement
1700 reflections	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
195 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$
2 restraints	

7656 measured reflections

 $R_{\rm int} = 0.068$

1700 independent reflections

899 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N2^{i} \\ C1 - H1A \cdots O3^{ii} \end{array}$	0.95 (4)	1.97 (4)	2.887 (4)	162 (4)
	0.96	2.62	3.469 (5)	148

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (ii) x, y, z + 1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Foundation of the Education Department of Gansu Province (No. 20873).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2109).

References

- Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, 053-056.
- Dong, W.-K., He, X.-N., Sun, Y.-X., Xu, L. & Guan, Y.-H. (2008). Acta Cryst. E64, o1917.
- Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.
- Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, 01308.
- Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962. Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, o2462 [doi:10.1107/S1600536809033753]

4-[1-(Hydroxyimino)ethyl]-N-(4-nitrobenzylidene)aniline

Li Zhao, Wen-Kui Dong, Jian-Chao Wu, Yin-Xia Sun and Li Xu

S1. Comment

It is well known that Schiff bases are one of the most popular mixed-donor ligands in the field of coordination chemistry. Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier *et al.*, 1975). Some structures of oxime compounds forming by Schiff bases reaction have been reported (Bomfim *et al.*, 2005; Fun *et al.*, 2008). Here we report the synthesis and crystal structure of the title compound (I), (Fig. 1).

The dihedral angle in (I) formed by the aniline and nitrobenzene rings is 44.23 (2)°. The molecular packing (Fig. 2) is stabilized by aromatic $\pi \cdots \pi$ interactions between the aniline and the nitrobenzene rings of neighbouring molecules, with a $Cg1 \cdots Cg2^{iii}$ separation of 3.825 (3) Å and a $Cg1 \cdots Cg2^{iv}$ separation of 3.870 (4) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C3—C8 benzene and the C10–C15 benzene rings, respectively). Additionally, intermolecular O–H…N and C—H…O interactions in the structure were observed (Table 1 and Fig. 2).

The title compound is not chiral, but space group is p212121. This is because the title compound is rigid in the crystal, and adopts a chiral helicalx-type structure.

S2. Experimental

4-Aminophenylethanone oxime was prepared by 1-(4-aminophenyl)ethanone, hydroxylamine sulfate and sodium acetate (Rafiq *et al.*, 2008; Duan *et al.*, 2007; Dong *et al.*, 2008). To an ethanol solution (5 ml) of 4-aminophenylethanone oxime (150.2 mg, 1.00 mmol) was added dropwise an ethanol solution (5 ml) of 4-nitrobenzaldehyde (152.5 mg, 1.01 mmol). The mixture solution was stirred at 328–333 K for 5 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried *in vacuo* and purified by recrystallization from ethanol to yield 367.5 mg (Yield, 82.6%) of solid; m.p. 484–485 K. Pale-yellow block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of ethyl acetate of (I) at room temperature for about one month. Anal. Calcd. for $C_{15}H_{13}N_3O_3$: C, 62.6; H, 4.63; N, 14.83 Found: C, 62.1; H, 4.59; N, 14.87.

S3. Refinement

Atom H1 of the hydroxy group was found in a difference Fourier map and was refined with an O—H distance restraint of 0.95 (4) Å. The other H atoms were treated as riding atoms with distances C—H = 0.96 (CH₃), 0.93 Å (CH), and U_{iso} (H) = 1.2 U_{eq} (C) and 1.5 U_{eq} (O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figure 1

The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Figure 2

 $\pi \cdots \pi$, O—H…N and C—H…O interactions (dotted lines) in the crystal structure of the title compound. *Cg* denotes the ring centroids. [Symmetry code: (i) -*x* + 3/2, -*y* + 1, *z* + 1/2; (ii) *x*, *y*, *z* + 1; (iii) *x* + 1/2, -*y* + 3/2, -*z* + 1; (iv) *x* - 1/2, -*y* + 3/2, -*z* + 1; (v) -*x* + 3/2, -*y* + 1, *z* - 1/2.]

4-[1-(Hydroxyimino)ethyl]-N-(4-nitrobenzylidene)aniline

Crystal data	
$C_{15}H_{13}N_3O_3$	F(000) = 592
$M_r = 283.28$	$D_{\rm x} = 1.401 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1209 reflections
a = 7.375 (1) Å	$\theta = 2.2 - 21.4^{\circ}$
b = 10.770 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 16.906 (2) Å	T = 298 K
V = 1342.8 (3) Å ³	Block-like, pale-yellow
Z = 4	$0.50 \times 0.35 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART1000 CCD area-detector diffractometer	Absorption correction: multi-scan (SADABS: Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.952, T_{\rm max} = 0.990$
Graphite monochromator	7656 measured reflections
phi and ω scans	1700 independent reflections

899 reflections with $I > 2\sigma(I)$	$h = -9 \rightarrow 9$
$R_{\rm int} = 0.068$	$k = -13 \rightarrow 13$
$\theta_{\max} = 27.0^{\circ}, \theta_{\min} = 2.2^{\circ}$	$l = -14 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.115$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
1700 reflections	and constrained refinement
195 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0438P)^2 + 0.0834P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.20$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	Z	U_{iso}^*/U_{eq}	
N1	0 7084 (5)	0 5375 (3)	0 90756 (16)	0.0478 (9)	
N2	0.6140 (4)	0.6960(3)	0.54920 (16)	0.0389(8)	
N3	0.6281 (5)	0.8627 (4)	0.1831 (2)	0.0601 (11)	
01	0.7150 (4)	0.5267 (3)	0.99032 (15)	0.0636 (10)	
H1	0.784 (6)	0.454 (4)	0.999 (3)	0.100 (18)*	
O2	0.6733 (5)	0.9635 (3)	0.15589 (17)	0.0830 (11)	
03	0.5894 (6)	0.7723 (3)	0.14311 (17)	0.0939 (13)	
C1	0.5534 (7)	0.7318 (4)	0.9402 (2)	0.0755 (15)	
H1A	0.5821	0.7090	0.9936	0.113*	
H1B	0.4241	0.7352	0.9339	0.113*	
H1C	0.6046	0.8117	0.9286	0.113*	
C2	0.6304 (5)	0.6371 (3)	0.8846 (2)	0.0384 (9)	
C3	0.6214 (5)	0.6542 (3)	0.79802 (19)	0.0319 (9)	
C4	0.5531 (5)	0.7611 (3)	0.76460 (19)	0.0394 (10)	
H4	0.5084	0.8235	0.7972	0.047*	
C5	0.5498 (5)	0.7776 (3)	0.6832 (2)	0.0391 (10)	
H5	0.5041	0.8510	0.6621	0.047*	
C6	0.6133 (5)	0.6869 (3)	0.63323 (19)	0.0328 (9)	
C7	0.6787 (5)	0.5777 (3)	0.6663 (2)	0.0381 (10)	
H7	0.7201	0.5145	0.6334	0.046*	
C8	0.6832 (5)	0.5618 (3)	0.7469 (2)	0.0377 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8	0.7283	0.4880	0.7677	0.045*	
C9	0.6249 (5)	0.8019 (3)	0.5170 (2)	0.0402 (10)	
H9	0.6364	0.8719	0.5489	0.048*	
C10	0.6198 (5)	0.8171 (3)	0.43071 (19)	0.0375 (10)	
C11	0.6747 (5)	0.9298 (3)	0.3977 (2)	0.0454 (11)	
H11	0.7098	0.9948	0.4305	0.055*	
C12	0.6773 (5)	0.9453 (4)	0.3167 (2)	0.0466 (11)	
H12	0.7156	1.0198	0.2944	0.056*	
C13	0.6223 (5)	0.8484 (4)	0.2699 (2)	0.0407 (10)	
C14	0.5622 (5)	0.7378 (3)	0.3007 (2)	0.0436 (11)	
H14	0.5223	0.6743	0.2678	0.052*	
C15	0.5627 (5)	0.7232 (3)	0.3816 (2)	0.0405 (10)	
H15	0.5237	0.6485	0.4034	0.049*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.069 (3)	0.0466 (19)	0.0279 (16)	0.0068 (19)	-0.0017 (17)	0.0065 (15)
N2	0.043 (2)	0.0377 (17)	0.0363 (18)	0.0016 (17)	0.0005 (16)	0.0021 (14)
N3	0.060 (3)	0.080 (3)	0.040(2)	0.017 (3)	0.003 (2)	0.013 (2)
O1	0.097 (3)	0.0590 (19)	0.0348 (15)	0.014 (2)	-0.0051 (16)	0.0064 (14)
O2	0.100 (3)	0.094 (2)	0.0551 (19)	0.010 (2)	0.0065 (19)	0.0338 (19)
O3	0.139 (4)	0.100 (3)	0.0422 (19)	0.005 (3)	-0.002 (2)	-0.0081 (19)
C1	0.111 (4)	0.072 (3)	0.044 (2)	0.031 (3)	-0.003 (3)	-0.011 (2)
C2	0.043 (3)	0.034 (2)	0.038 (2)	-0.007 (2)	0.0012 (18)	-0.0009 (17)
C3	0.030 (2)	0.034 (2)	0.032 (2)	-0.0030 (19)	-0.0013 (17)	0.0024 (16)
C4	0.042 (3)	0.038 (2)	0.038 (2)	0.002 (2)	0.0005 (18)	-0.0033 (18)
C5	0.042 (3)	0.033 (2)	0.043 (2)	0.0047 (19)	-0.0014 (18)	0.0071 (17)
C6	0.034 (2)	0.037 (2)	0.027 (2)	-0.0009 (19)	0.0004 (17)	0.0015 (15)
C7	0.042 (3)	0.035 (2)	0.037 (2)	-0.001 (2)	0.0061 (19)	-0.0006 (17)
C8	0.043 (3)	0.0325 (19)	0.037 (2)	0.002 (2)	-0.0015 (18)	0.0024 (17)
C9	0.044 (3)	0.041 (2)	0.035 (2)	0.000 (2)	-0.0051 (19)	-0.0031 (17)
C10	0.038 (3)	0.039 (2)	0.035 (2)	0.0029 (19)	0.0034 (19)	-0.0022 (17)
C11	0.045 (3)	0.042 (2)	0.049 (2)	0.002 (2)	-0.005 (2)	0.0022 (18)
C12	0.048 (3)	0.042 (2)	0.050 (3)	0.004 (2)	0.000(2)	0.0166 (19)
C13	0.039 (3)	0.051 (2)	0.032 (2)	0.013 (2)	0.0026 (18)	0.0079 (18)
C14	0.043 (3)	0.044 (2)	0.044 (2)	0.008 (2)	-0.0051 (18)	-0.0009 (19)
C15	0.039 (3)	0.042 (2)	0.041 (2)	0.003 (2)	0.0038 (18)	0.0064 (18)

Geometric parameters (Å, °)

N1—C2	1.278 (4)	С5—Н5	0.9300	
N1-01	1.405 (4)	C6—C7	1.388 (4)	
N2—C9	1.266 (4)	C7—C8	1.375 (5)	
N2—C6	1.424 (4)	С7—Н7	0.9300	
N3—O3	1.219 (4)	C8—H8	0.9300	
N3—O2	1.225 (4)	C9—C10	1.469 (5)	
N3—C13	1.476 (5)	С9—Н9	0.9300	

01—H1	0.95 (4)	C10—C15	1.375 (5)
C1—C2	1.498 (5)	C10—C11	1.396 (5)
C1—H1A	0.9600	C11—C12	1.378 (5)
C1—H1B	0.9600	C11—H11	0.9300
C1—H1C	0.9600	C12—C13	1.371 (5)
C2—C3	1.477 (4)	C12—H12	0.9300
C3-C4	1.378 (4)	C13—C14	1.374 (5)
C3—C8	1 395 (4)	C14—C15	1 376 (4)
C4-C5	1.399(1) 1 388(4)	C14—H14	0.9300
C4—H4	0.9300	C15—H15	0.9300
C5-C6	1 374 (5)		0.9000
05 00	1.571(5)		
C2—N1—O1	112.8 (3)	C8—C7—C6	120.9 (3)
C9—N2—C6	119.4 (3)	С8—С7—Н7	119.6
O3—N3—O2	124.2 (4)	С6—С7—Н7	119.6
O3—N3—C13	117.5 (4)	C7—C8—C3	121.1 (3)
O2—N3—C13	118.3 (4)	С7—С8—Н8	119.4
N1—O1—H1	104 (3)	С3—С8—Н8	119.4
C2—C1—H1A	109.5	N2—C9—C10	121.7 (3)
C2-C1-H1B	109.5	N2-C9-H9	119.1
H1A—C1—H1B	109.5	C10—C9—H9	119.1
C2-C1-H1C	109.5	C15-C10-C11	119.1 (3)
H1A - C1 - H1C	109.5	C15-C10-C9	121.7(3)
HIB-CI-HIC	109.5	C11 - C10 - C9	1192(3)
N1-C2-C3	115.2 (3)	C12-C11-C10	119.2(3) 1204(4)
N1-C2-C1	123.5(3)	C12 $-C11$ $-H11$	119.8
C_{3} C_{2} C_{1}	123.3(3)	C10-C11-H11	119.8
C_{4} C_{2} C_{1} C_{4} C_{3} C_{8}	121.5(3) 1175(3)	C13 - C12 - C11	119.0 118.5(4)
$C_{4} - C_{3} - C_{3}$	117.3(3)	C13 - C12 - C11 C13 - C12 - H12	120.8
C^{\ast} C^{\ast} C^{\ast} C^{2}	121.0(3) 120.7(3)	C13 - C12 - H12	120.8
$C_3 = C_3 = C_2$	120.7(3) 121.3(3)	C12 $C13$ $C14$	120.0 122.4(3)
$C_3 = C_4 = C_3$	121.3 (5)	C12 - C13 - C14 C12 - C13 - N3	122.4(3) 1101(4)
$C_5 = C_4 = H_4$	119.5	C12 - C13 - N3	119.1(4)
C_{5}	119.5	C14 - C13 - N3	118.3(4)
C6 C5 H5	120.8 (5)	C13 - C14 - C13	118.4 (4)
C_{0}	119.0	C15 - C14 - H14	120.8
$C_{4} - C_{5} - H_{5}$	119.0	C10 C15 C14	120.8
C_{5} C_{6} N_{2}	110.5(3)	C10 - C15 - C14	121.1 (4)
C_{3} C_{0} N_{2}	124.4(3)		119.5
C/C0N2	117.5 (5)	C14—C15—H15	119.5
01 - N1 - C2 - C3	179.3 (3)	C6—N2—C9—C10	-177.8(3)
01 - N1 - C2 - C1	-0.3(6)	N2-C9-C10-C15	15.0 (6)
N1-C2-C3-C4	-175.2(3)	$N_2 - C_9 - C_{10} - C_{11}$	-164.9(4)
C1—C2—C3—C4	4.4 (6)	C15—C10—C11—C12	-2.1 (6)
N1-C2-C3-C8	4.4 (5)	C9-C10-C11-C12	177.8(3)
C1 - C2 - C3 - C8	-175.9(4)	C_{10} C_{11} C_{12} C_{13}	1.0 (6)
C8-C3-C4-C5	-1.5(5)	C_{11} C_{12} C_{13} C_{14}	1.0 (6)
C2-C3-C4-C5	178.2 (4)	C11—C12—C13—N3	-178.7(4)
			- / 0. / 1/

C3—C4—C5—C6	0.6 (6)	O3—N3—C13—C12	175.4 (4)	
C4—C5—C6—C7	0.8 (6)	O2—N3—C13—C12	-3.7 (6)	
C4—C5—C6—N2	179.7 (3)	O3—N3—C13—C14	-4.3 (6)	
C9—N2—C6—C5	28.3 (6)	O2—N3—C13—C14	176.5 (4)	
C9—N2—C6—C7	-152.8 (4)	C12—C13—C14—C15	-1.9 (6)	
C5—C6—C7—C8	-1.3 (6)	N3-C13-C14-C15	177.8 (4)	
N2—C6—C7—C8	179.8 (3)	C11—C10—C15—C14	1.3 (6)	
C6—C7—C8—C3	0.4 (6)	C9—C10—C15—C14	-178.6 (3)	
C4—C3—C8—C7	1.0 (6)	C13—C14—C15—C10	0.7 (6)	
C2—C3—C8—C7	-178.7 (3)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
$\begin{array}{c} \hline O1 - H1 \cdots N2^{i} \\ C1 - H1 A \cdots O3^{ii} \end{array}$	0.95 (4)	1.97 (4)	2.887 (4)	162 (4)
	0.96	2.62	3.469 (5)	148

Symmetry codes: (i) -x+3/2, -y+1, z+1/2; (ii) x, y, z+1.