

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido(2,9-dipropoxy-1,10phenanthroline- $\kappa^2 N$, N')cadmium(II)

Cao-Yuan Niu,* Xian-Fu Zheng and Yu-Li Dang

College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niu_cy2000@yahoo.com.cn

Received 26 August 2009; accepted 21 September 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean $\sigma(C-C) = 0.009$ Å; R factor = 0.039; wR factor = 0.101; data-to-parameter ratio = 16.3.

In the title complex, $[CdCl_2(C_{18}H_{20}N_2O_2)]$, the Cd^{II} ion is coordinated by two N atoms from a bis-chelating 2,9dipropoxy-1,10-phenanthroline ligand and two Cl atoms in a distorted tetrahedral environment. The two Cd-Cl bond distances are significantly different from each other and the N-Cd-N bond angle is acute. In the crystal structure, there are $\pi - \pi$ stacking interactions between symmetry-related phenanthroline ring systems, with a centroid-centroid distance of 3.585 (3) Å.

Related literature

For details of the coordination chemistry of 1,10-phenanthroline derivatives, see: Arpi et al. (2006); Bie et al. (2006). For synthetic details, see: Pijper et al. (1984).

Mo $K\alpha$ radiation

 $0.18 \times 0.07 \times 0.04 \text{ mm}$

 $\mu = 1.37 \text{ mm}^-$

T = 291 K

Z = 16

Experimental

Crystal data

 $[CdCl_2(C_{18}H_{20}N_2O_2)]$ $M_r = 479.66$ Tetragonal, $I4_1/a$ a = 31.3159 (10) Åc = 8.1662(5) Å V = 8008.5 (6) Å³

Data collection

Bruker APEXII CCD 21000 measured reflections diffractometer 3722 independent reflections Absorption correction: multi-scan 2656 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2005) $R_{\rm int}=0.051$ $T_{\min} = 0.791, T_{\max} = 0.947$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	21 restraints
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
3722 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
228 parameters	

Table 1

Selected geometric parameters (Å, °).

Cd1-N2	2.285 (4)	Cd1-Cl2	2.3623 (14)
Cd1-N1	2.297 (4)	Cd1-Cl1	2.4182 (15)
N2-Cd1-N1	72.66 (13)	N2-Cd1-Cl1	103.88 (10)
N2-Cd1-Cl2	121.73 (11)	N1-Cd1-Cl1	109.63 (9)
N1-Cd1-Cl2	119.18 (10)	Cl2-Cd1-Cl1	120.03 (5)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

The authors are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2892).

References

Arpi, M., Matthias, W., Alexander, N. K., Jean-Pascal, S., Nathalie, D. & Samiran, M. (2006). Inorg. Chim. Acta, 359, 3841-3846.

Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475-2479.

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Pijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1245 [doi:10.1107/S1600536809038124]

Dichlorido(2,9-dipropoxy-1,10-phenanthroline- $\kappa^2 N, N'$) cadmium(II)

Cao-Yuan Niu, Xian-Fu Zheng and Yu-Li Dang

S1. Comment

The compound 1,10-phenanthroline and its derivatives have been used with d^{10} metals to synthesize some luminescent materials (Arpi, *et al.*, 2006; Bie, *et al.*, 2006). The compound 2,9-diethoxy-1,10-phenanthroline has been shown to possesses antimycoplasmal activity in the presence of copper (Pijper, *et al.*, 1984). Herein, we present the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig.1. The Cd^{II} ion is four-coordinated to two nitrogen atoms from one 1,10-phenanthroline ring (N1, N2) and two chlorine atoms (Cl1, Cl2), defining a distorted tetrahedral coordination geometry. The two Cd—Cl bond distances are significantly different from each other. The the N—Zn—N bond angle is acute. In the crystal structure, there are π - π stacking interactions between phenanthroline ring systems with centroid to centroid distances of 3.5847 (1) Å (Fig. 2).

S2. Experimental

2,9-Dipropoxy-1,10-phenanthroline was prepared according to the literature procedure (Pijper, *et al.*, 1984). Slow evaporation of a mixture of the ligand (0.027 g, 0.1 mmol) and cadmium dichloride (0.016 g, 0.1 mmol) in 30 ml methanol afforded suitable colourless block crystals in about 7 days (yield about 45%).

S3. Refinement

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms]. The final difference Fourier map had a highest peak 0.94 Å from atom C17 and a deepest hole at 0.85 Å from atom H18, but were otherwise featureless.

Figure 1

The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

Packing diagram showing the π - π interaction (purple dotted line). All H atoms have been omitted for clarity.

Dichlorido(2,9-dipropoxy-1,10-phenanthroline- $\kappa^2 N, N'$) cadmium(II)

Crystal data	
$\begin{bmatrix} CdCl_{2}(C_{18}H_{20}N_{2}O_{2}) \end{bmatrix}$ $M_{r} = 479.66$ Tetragonal, $I4_{1}/a$ Hall symbol: -I 4ad a = 31.3159 (10) Å c = 8.1662 (5) Å $V = 8008.5 (6) Å^{3}$ Z = 16 F(000) = 3840	$D_x = 1.591 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3326 reflections $\theta = 2.6-25.5^{\circ}$ $\mu = 1.37 \text{ mm}^{-1}$ T = 291 K Needle, colourless $0.18 \times 0.07 \times 0.04 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.791, T_{max} = 0.947$	21000 measured reflections 3722 independent reflections 2656 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -36 \rightarrow 37$ $k = -37 \rightarrow 29$ $l = -8 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.02	H-atom parameters constrained
3722 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0421P)^2 + 20.3768P]$
228 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
21 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.80 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.329113 (11)	0.831007 (11)	0.02856 (5)	0.05269 (15)
N1	0.26377 (11)	0.80406 (11)	-0.0466 (4)	0.0434 (9)
N2	0.32414 (12)	0.76370 (11)	0.1350 (5)	0.0498 (9)
Cl1	0.37894 (5)	0.82330 (5)	-0.19572 (19)	0.0758 (4)
C12	0.33196 (5)	0.89205 (5)	0.19815 (19)	0.0805 (5)
01	0.24631 (11)	0.86473 (11)	-0.1694 (4)	0.0632 (9)
O2	0.38663 (13)	0.77153 (12)	0.2600 (5)	0.0803 (12)
C1	0.23473 (14)	0.82433 (15)	-0.1329 (6)	0.0497 (11)
C2	0.19693 (16)	0.80477 (18)	-0.1842 (6)	0.0606 (13)
H2	0.1768	0.8200	-0.2440	0.073*
C3	0.19006 (16)	0.76326 (19)	-0.1456 (6)	0.0640 (14)
Н3	0.1653	0.7498	-0.1815	0.077*
C4	0.22027 (16)	0.73999 (15)	-0.0509 (6)	0.0534 (12)
C5	0.21500 (19)	0.69696 (18)	-0.0030 (7)	0.0678 (16)
Н5	0.1904	0.6823	-0.0328	0.081*
C6	0.2456 (2)	0.67679 (17)	0.0860 (8)	0.0715 (16)
H6	0.2417	0.6484	0.1154	0.086*
C7	0.28325 (17)	0.69825 (15)	0.1348 (6)	0.0564 (13)
C8	0.3164 (2)	0.67952 (17)	0.2272 (7)	0.0697 (16)
H8	0.3142	0.6510	0.2572	0.084*
С9	0.3512 (2)	0.70209 (17)	0.2734 (7)	0.0659 (15)
Н9	0.3727	0.6895	0.3355	0.079*
C10	0.35403 (17)	0.74526 (16)	0.2245 (6)	0.0582 (13)
C11	0.28890 (15)	0.74128 (14)	0.0899 (6)	0.0474 (11)
C12	0.25695 (14)	0.76273 (14)	-0.0050 (5)	0.0464 (11)

C13	0.2158 (2)	0.8939 (2)	-0.2393 (8)	0.0847 (19)
H13A	0.1992	0.8794	-0.3228	0.102*
H13B	0.2307	0.9176	-0.2903	0.102*
C14	0.1869 (3)	0.9102 (3)	-0.1088 (12)	0.118 (3)
H14A	0.1706	0.8865	-0.0652	0.141*
H14B	0.1670	0.9302	-0.1572	0.141*
C15	0.2103 (3)	0.9323 (3)	0.0324 (12)	0.133 (3)
H15A	0.2297	0.9125	0.0826	0.199*
H15B	0.1899	0.9418	0.1121	0.199*
H15C	0.2259	0.9564	-0.0089	0.199*
C16	0.41947 (19)	0.7591 (2)	0.3744 (9)	0.094 (2)
H16A	0.4306	0.7311	0.3465	0.112*
H16B	0.4081	0.7580	0.4848	0.112*
C17	0.4545 (3)	0.7927 (3)	0.3621 (14)	0.155 (4)
H17A	0.4765	0.7853	0.4407	0.187*
H17B	0.4671	0.7903	0.2541	0.187*
C18	0.4437 (3)	0.8368 (3)	0.3878 (16)	0.182 (4)
H18A	0.4241	0.8459	0.3045	0.272*
H18B	0.4691	0.8538	0.3825	0.272*
H18C	0.4307	0.8400	0.4935	0.272*

Atomic displacement parameters $(Å^2)$

Cd1 (N1 (N2 (C11 (0.0529 (2) 0.044 (2)	0.0449 (2)	0.0603 (3)			
N1 (N2 (C11 (0.044 (2)		0.0005 (5)	-0.00643 (15)	-0.00647 (17)	-0.00164 (17)
N2 (0.05((2))	0.041 (2)	0.045 (2)	0.0000 (16)	-0.0002 (17)	-0.0051 (17)
C11 (0.056 (2)	0.042 (2)	0.052 (2)	0.0049 (18)	-0.0024 (19)	-0.0005 (18)
	0.0642 (8)	0.0880 (10)	0.0751 (10)	-0.0247 (7)	0.0081 (7)	-0.0212 (8)
Cl2 (0.0959 (11)	0.0639 (9)	0.0818 (10)	-0.0271 (8)	0.0134 (8)	-0.0216 (8)
01 (0.059 (2)	0.060 (2)	0.071 (2)	0.0051 (17)	-0.0177 (18)	0.0077 (18)
02 (0.073 (3)	0.070 (3)	0.098 (3)	0.009 (2)	-0.033 (2)	0.009 (2)
C1 (0.046 (3)	0.058 (3)	0.045 (3)	0.001 (2)	-0.003 (2)	-0.005 (2)
C2 (0.051 (3)	0.074 (4)	0.057 (3)	0.001 (3)	-0.009 (2)	-0.010 (3)
C3 (0.050 (3)	0.084 (4)	0.058 (3)	-0.015 (3)	0.005 (3)	-0.022 (3)
C4 (0.056 (3)	0.055 (3)	0.049 (3)	-0.010 (2)	0.013 (2)	-0.011 (2)
C5 (0.071 (4)	0.060 (3)	0.073 (4)	-0.022 (3)	0.023 (3)	-0.018 (3)
C6 (0.094 (4)	0.043 (3)	0.078 (4)	-0.018 (3)	0.033 (4)	-0.011 (3)
C7 (0.075 (3)	0.041 (3)	0.053 (3)	0.000 (2)	0.021 (3)	-0.004 (2)
C8 (0.100 (5)	0.042 (3)	0.067 (4)	0.012 (3)	0.029 (3)	0.005 (3)
C9 (0.082 (4)	0.056 (3)	0.060 (3)	0.024 (3)	0.008 (3)	0.010 (3)
C10 (0.061 (3)	0.055 (3)	0.058 (3)	0.010 (2)	0.001 (3)	0.002 (3)
C11 (0.061 (3)	0.037 (2)	0.044 (3)	-0.004 (2)	0.015 (2)	-0.006 (2)
C12 (0.049 (3)	0.046 (3)	0.045 (3)	-0.005 (2)	0.009 (2)	-0.008 (2)
C13 (0.080 (4)	0.080 (4)	0.094 (5)	0.018 (3)	-0.021 (4)	0.017 (4)
C14 (0.101 (6)	0.116 (6)	0.136 (7)	0.036 (5)	0.000 (6)	0.013 (6)
C15 (0.142 (8)	0.119 (7)	0.138 (8)	0.032 (6)	0.017 (6)	-0.025 (6)
C16 (0.076 (4)	0.101 (5)	0.104 (5)	0.015 (4)	-0.034 (4)	0.017 (4)
C17 (0.111 (6)	0.151 (6)	0.204 (8)	0.025 (5)	-0.095 (6)	-0.038 (6)

						0
C18	0.170 (8)	0.168 (7)	0.207 (8)	-0.013 (6)	-0.038 (7)	-0.011 (7)
Geom	etric parameters	(Å, °)				
Cd1—	-N2	2.2	85 (4)	С7—С8		1.411 (8)
Cd1-	-N1	2.2	97 (4)	C8—C9		1.353 (8)
Cd1—	-C12	2.3	523 (14)	C8—H8		0.9300
Cd1—	-C11	2.4	182 (15)	C9—C10		1.412 (7)
N1-0	C1	1.3	14 (5)	С9—Н9		0.9300
N1-0	C12	1.3	55 (5)	C11—C12		1.433 (6)
N2-0	C10	1.3	21 (6)	C13—C14		1.488 (10)
N2-0	C11	1.3	59 (6)	C13—H13A		0.9700
01-0	C1	1.34	49 (6)	C13—H13B		0.9700
01-0	C13	1.4	39 (6)	C14—C15		1.530 (11)
02-0	C10	1.34	43 (6)	C14—H14A		0.9700
02-0	C16	1.4	43 (6)	C14—H14B		0.9700
C1-C	22	1.39	97 (7)	C15—H15A		0.9600
C2—C	C3	1.3	55 (7)	C15—H15B		0.9600
C2—F	12	0.9	300	C15—H15C		0.9600
C3—0	24	1.42	23 (7)	C16—C17		1.524 (8)
C3—F	- 	0.9	300	C16—H16A		0.9700
C4—0	C12	1.4	03 (6)	C16—H16B		0.9700
C4—C	C5	1.4	13 (7)	C17—C18		1.436 (8)
C5—C	C6	1.3	58 (8)	C17—H17A		0.9700
C5—H	15	0.9	300	C17—H17B		0.9700
C6—0	C7	1.4	15 (7)	C18—H18A		0.9600
C6—F	16	0.9	300	C18—H18B		0.9600
C7—C	C11	1.40	08 (6)	C18—H18C		0.9600
N2—0	Cd1—N1	72.0	66 (13)	O2—C10—C9		125.0 (5)
N20	Cd1—Cl2	121	.73 (11)	N2-C11-C7		121.7 (5)
N1-0	Cd1—Cl2	119	.18 (10)	N2-C11-C12		118.1 (4)
N20	Cd1—Cl1	103	.88 (10)	C7—C11—C12		120.1 (4)
N1-0	Cd1—Cl1	109	.63 (9)	N1-C12-C4		123.1 (4)
Cl2—	Cd1—Cl1	120	.03 (5)	N1-C12-C11		118.3 (4)
C1—N	N1—C12	119	.1 (4)	C4—C12—C11		118.6 (4)
C1—N	N1—Cd1	125	.6 (3)	O1—C13—C14		109.7 (5)
C12—	-N1—Cd1	115	.1 (3)	O1—C13—H13A		109.7
C10—	-N2—C11	120	.0 (4)	C14—C13—H13	A	109.7
C10-	-N2—Cd1	124	.4 (3)	O1—C13—H13B		109.7
C11—	-N2—Cd1	115	.4 (3)	C14—C13—H131	В	109.7
C1-C	D1—C13	120	.3 (4)	H13A—C13—H1	3B	108.2
C10—	-O2—C16	121	.0 (4)	C13—C14—C15		113.8 (7)
N1-0	C1—01	112	.7 (4)	C13—C14—H14	A	108.8
N1-0	C1—C2	122	.4 (5)	C15—C14—H14	A	108.8
01-0	C1—C2	124	.9 (5)	C13—C14—H141	В	108.8
С3—С	C2—C1	119	.0 (5)	C15—C14—H14	В	108.8
C3—C	С2—Н2	120	.5	H14A—C14—H1	4B	107.7

supporting information

С1—С2—Н2	120.5	C14—C15—H15A	109 5
$C^2 - C^3 - C^4$	120.8 (5)	C14— $C15$ — $H15B$	109.5
$C_2 = C_3 = H_3$	119.6	H15A - C15 - H15B	109.5
C4 - C3 - H3	119.6	C14-C15-H15C	109.5
$C_{12} - C_{4} - C_{5}$	120.4 (5)	$H_{15} - C_{15} - H_{15} C$	109.5
C_{12} C_{4} C_{3}	120.+(5) 115.5(4)	HISR CIS HISC	109.5
$C_{12} - C_{4} - C_{5}$	113.3(4) 124.1(5)	$\begin{array}{c} 1113b - c 13 - 1113c \\ 02 c 16 c 17 \end{array}$	109.5
$C_{5} = C_{4} = C_{5}$	124.1(5) 120.6(5)	02 - C16 + U16A	100.4(3)
C6 C5 H5	120.0 (5)	C_{17} C_{16} H_{16A}	110.4
$C_0 = C_5 = H_5$	119.7	C1/-C10HI0A	110.4
C4 - C3 - H3	119.7	02 - 010 - 010	110.4
$C_{5} = C_{6} = C_{7}$	121.2 (5)		110.4
	119.4	H16A - C16 - H16B	108.6
С/—С6—Н6	119.4		119.1 (8)
C11-C7-C8	116.4 (5)	С18—С17—Н17А	107.5
C11—C7—C6	119.1 (5)	С16—С17—Н17А	107.5
C8—C7—C6	124.5 (5)	C18—C17—H17B	107.5
C9—C8—C7	121.6 (5)	С16—С17—Н17В	107.5
С9—С8—Н8	119.2	H17A—C17—H17B	107.0
С7—С8—Н8	119.2	C17—C18—H18A	109.5
C8—C9—C10	118.2 (5)	C17—C18—H18B	109.5
С8—С9—Н9	120.9	H18A—C18—H18B	109.5
С10—С9—Н9	120.9	C17—C18—H18C	109.5
N2-C10-O2	113.0 (4)	H18A—C18—H18C	109.5
N2—C10—C9	122.0 (5)	H18B—C18—H18C	109.5
N2-Cd1-N1-C1	179.1 (4)	Cd1—N2—C10—O2	5.6 (6)
Cl2—Cd1—N1—C1	61.9 (4)	C11—N2—C10—C9	1.4 (7)
Cl1—Cd1—N1—C1	-82.0 (4)	Cd1—N2—C10—C9	-173.5 (4)
N2—Cd1—N1—C12	-5.3 (3)	C16—O2—C10—N2	171.6 (5)
Cl2—Cd1—N1—C12	-122.5 (3)	C16—O2—C10—C9	-9.3 (8)
Cl1—Cd1—N1—C12	93.6 (3)	C8—C9—C10—N2	-0.6 (8)
N1-Cd1-N2-C10	-179.2 (4)	C8—C9—C10—O2	-179.6 (5)
Cl2—Cd1—N2—C10	-65.1 (4)	C10—N2—C11—C7	-0.6(7)
Cl1— $Cd1$ — $N2$ — $Cl0$	74.2 (4)	Cd1 - N2 - C11 - C7	174.7 (3)
N1-Cd1-N2-C11	58(3)	C10 - N2 - C11 - C12	1790(4)
Cl_{2} Cd_{1} N_{2} Cl_{1}	1198(3)	Cd1 - N2 - C11 - C12	-5.7(5)
Cl1— $Cd1$ — $N2$ — $Cl1$	$-100 \ 8 \ (3)$	C8-C7-C11-N2	-0.8(7)
$C_{12} = N_1 = C_1 = O_1$	-1781(4)	C6-C7-C11-N2	1791(4)
$C_{1} = N_{1} = C_{1} = O_{1}$	-2.7(6)	C_{8} C_{7} C_{11} C_{12}	179.1(4)
$C_{12} N_{1} C_{1} C_{2}$	-0.2(7)	C6-C7-C11-C12	-0.5(7)
$\begin{array}{cccc} Cd1 & N1 & C1 & C2 \\ \end{array}$	0.2(7) 175 2 (3)	$C_1 = N_1 = C_{12} = C_4$	0.5(7)
$C_{1} = N_{1} = C_{1} = C_{2}$	-160.7(5)	$C_1 = N_1 = C_1 = C_4$	-175.2(2)
$C_{13} = 01 = C_{1} = 01$	-109.7(3)	$C_{1} = N_{1} = C_{12} = C_{4}$	-173.3(3) -170.7(4)
$C_{1} = C_{1} = C_{1} = C_{2}$	12.3(7)	$C_{1} = N_{1} = C_{12} = C_{11}$	1/9./(4)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-0.8(8)	$C_{1} = N_{1} = C_{12} = C_{11}$	4.3 (3) 170.9 (4)
01 - 01 - 02 - 03	$1/0.\delta(3)$	$C_{2} = C_{4} = C_{12} = N_{1}$	-1/9.8(4)
C1 - C2 - C3 - C4	1.5 (8)	$C_{5} - C_{4} - C_{12} - N_{1}$	0.1(7)
12 - 13 - 14 - 112	-1.1 (/)	$C_{2} = C_{4} = C_{12} = C_{11}$	0.5 (/)
C2-C3-C4-C5	1/8./ (5)	C3—C4—C12—C11	-179.7 (4)

C12—C4—C5—C6	-10(7)	N2—C11—C12—N1	0.8 (6)	
C_{12} C_{4} C_{5} C_{6}	1.0(7) 170 2 (5)	C7 C11 C12 N1	-179.6(4)	
$C_{3} - C_{4} - C_{5} - C_{6}$	179.2(3)	$N_{2} = C_{11} = C_{12} = C_{14}$	-179.0(4)	
$C_{4} = C_{5} = C_{0} = C_{7}$	0.7(8)	$N_2 = C_{11} = C_{12} = C_4$	1/3.4(4)	
$C_{5} = C_{6} = C_{7} = C_{11}^{8}$	0.0(6)	$C_{1} = C_{11} = C_{12} = C_{14}$	0.2(0)	
$C_{3} = C_{0} = C_{1} = C_{8}$	180.0(3)	C1 = O1 = C13 = C14	77.9 (7) 57.2 (0)	
$C_{11} = C_{12} = C_{13} = C_{13}$	1.3(7)	01 - 013 - 014 - 013	57.5 (9) 170 5 (6)	
$C_{0} - C_{1} - C_{0} - C_{1}$	-1/8.4(3)	C10-02-C10-C17	170.3(0)	
$C_{-}C_{8} - C_{9} - C_{10}$	-0.8(8)	02-016-017-018	55.8 (12)	
02	-1/9.6 (4)			