

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(2-Methylpiperidin-1-ylcarbonyl)pyridinium hexachloridoantimonate(V)

Bo Wang

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail: wsp1314@126.com

Received 6 August 2009; accepted 10 September 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; R factor = 0.072; wR factor = 0.178; data-to-parameter ratio = 19.7.

In the hexachloridoanimonate anion of the title compound, (C₁₂H₁₇N₂O)[SbCl₆], the Sb⁵⁺ion is in a slightly distorted octahedral coordination. In the 4-(2-methylpiperidine-1carbonyl) pyridinium cation, the dihedral angle between the mean planes of the pyridine and piperzine rings is $66.3 (3)^{\circ}$. The mean plane of the carbonyl group is twisted by $80.5 (7)^{\circ}$ and 42.7 (4)° relative to the mean planes of the pyridine and piperzine rings, respectively. The methyl group is in an Rconfiguration relative to the piperidine ring which is in a slightly distorted chair conformation. The crystal packing is stabilized by N-H···O hydrogen bonds between cations, which form infinite zigzag chains parallel to [010].

Related literature

For the use of halogenidoantimonate salts in the study of phase transitions in dielectric-ferroelectric materials, see: Jakubas et al. (2005); Bednarska-Bolek et al. (2000). For related structures, see: Chen (2009); Clemente & Marzotto (2003); Kulicka et al. (2006). For puckering parameters, see: Cremer & Pople (1975).

 \times 0.20 mm

17300 measured reflections

 $R_{\rm int} = 0.065$

3918 independent reflections

2731 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

D.

(C ₁₂ H ₁₇ N ₂ O)[SbCl ₆]	V = 2000.6 (7) Å ³
$M_r = 539.73$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.1067 (16) Å	$\mu = 2.18 \text{ mm}^{-1}$
b = 12.700 (3) Å	$T = 298 { m K}$
c = 19.677 (4) Å	$0.20 \times 0.20 \times 0.20$
$\beta = 99.06 \ (3)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.638, T_{\max} = 0.646$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	8 restraints
$wR(F^2) = 0.178$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 1.08 \text{ e} \text{ Å}^{-3}$
3918 reflections	$\Delta \rho_{\rm min} = -0.82 \text{ e} \text{ Å}^{-3}$
199 parameters	

Table 1 an bond geometry (Λ°) Hydro

yurogen-bonu	geometry (A,).	
$-H\cdots A$	D - H	$H \cdots A$	D

٠A $D - H \cdot \cdot \cdot A$ $N1 - H1B \cdot \cdot \cdot O1^{i}$ 0.86 1.87 2.689 (9) 159

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2004).

References

- Bednarska-Bolek, B., Pietraszko, A., Jakubas, R., Bator, G. & Kosturek, B. (2000), J. Phys. Condens. Mat. 12, 1143-1159.
- Chen, L. Z. (2009). Acta Cryst. E65, m689.
- Clemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43-50.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Jakubas, R., Bednarska-Bolek, B., Zaleski, J., Medvcki, W., Hołderna-
- Natkaniec, K., Zieliński, P. & Gałązka, M. (2005). Solid State Sci. 7, 381-390. Kulicka, B., Jakubas, R., Pietraszko, A., Medycki, W. & Świergiel, J. (2006). J. Mol. Struct. 783, 88-95.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2009). E65, m1219 [doi:10.1107/S1600536809036587]

4-(2-Methylpiperidin-1-ylcarbonyl)pyridinium hexachloridoantimonate(V)

Bo Wang

S1. Comment

Halogenidoantimonate salts are used to study phase transitions in dielectric-ferroelectric materials (Jakubas *et al.*, 2005; Bednarska-Bolek *et al.*, 2000). In support of this work, crystal structures of pyridinium hexachloridoantimonate, (Clemente & Marzotto, 2003),4-aminopyridinium hexachloridoantimonate (Kulicka *et al.*, 2006) and diisonicotinium pentachloridoantimonate monohydrate (Chen, 2009) have beenreported. In continuation of our studies on halogenoantimonate salts, we report the crystal structure of the title compound, $C_{12}H_{17}N2_0^+$. SbCl₆⁻, (I).

In the cation (4-(2-methylpiperidine-1-carbonyl) pyridinium), the pyridine N atom is protonated. The piperidine ring (N2/C7—C11) adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and φ of 0.564 (4) Å, 177.0 (6)° and 177.084 (5)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The mean plane of the carbonyl group is twisted relative to the mean planes of the pyridine and piperzine rings by 80.5 (7)° and 42.7 (4)°, respectively. The dihedral angle between the mean planes of pyridine and piperzine rings is 66.3 (3)°. In the anion the Sb atom is hexacoordinated with Cl atoms in a slightly distorted octahedral conformation. The Sb—Cl bond lengths (2.330 (3) to 2.348 (3) Å) are similar to that observed in pyridinium hexachlorido-antimony(V) (2.32 (1)–2.35 (5) Å; Clemente & Marzotto, 2003) and slightly shorter than that reported for 4-aminopyridinium hexachloridoantimonate (2.3608 (8)–2.3912 (7) Å; Kulicka *et al.*,2006). Crystal packing is stabilized by N1–H1B…O1 hydrogen bonds between cations which form infinite zigzag chains parallel to [010] (Fig. 2).

S2. Experimental

A mixture of 4-(2-methylpiperidine-1-carbonyl)pyridine(1 mmol), $SbCl_5$ (1 mmol), ethanol(8 ml) and a few drops of HCl (6 mol/*L*) was stirred in a beaker. There were many solid powders produced and the solution was filtered. Colorless single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of the solvents over a period of 48 h.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.

Figure 2

A view of the crystal packing of the title compound, Dashed lines indicate N–H…O hydrogen bonds which form infinite, one-dimensional chains along the (011) plane of the unit cell.

4-(2-Methylpiperidin-1-ylcarbonyl)pyridinium hexachloridoantimonate(V)

Crystal data	
$(C_{12}H_{17}N_2O)$ [SbCl ₆] $M_r = 539.73$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.1067 (16) Å b = 12.700 (3) Å c = 19.677 (4) Å $\beta = 99.06$ (3)° V = 2000.6 (7) Å ³ Z = 4	F(000) = 1056 $D_x = 1.792 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7472 reflections $\theta = 3.0-27.7^{\circ}$ $\mu = 2.18 \text{ mm}^{-1}$ T = 298 K Prism, colourless $0.20 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{\min} = 0.638, T_{\max} = 0.646$	17300 measured reflections 3918 independent reflections 2731 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.072$	Hydrogen site location: inferred from
$wR(F^2) = 0.178$	neighbouring sites
S = 1.06	H-atom parameters constrained
3918 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0594P)^2 + 10.7201P]$
199 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
8 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.08 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.82 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5950 (13)	0.2859 (8)	0.2451 (5)	0.092 (3)
H1A	0.5293	0.2434	0.2685	0.110*
C2	0.6745 (15)	0.3710 (9)	0.2774 (6)	0.107 (4)
H2A	0.6625	0.3868	0.3226	0.129*
C3	0.7859 (12)	0.4104 (8)	0.1821 (6)	0.089 (3)
H3A	0.8534	0.4541	0.1604	0.107*
C4	0.7082 (13)	0.3263 (7)	0.1474 (5)	0.076 (3)
H4A	0.7221	0.3128	0.1022	0.091*
C5	0.6107 (9)	0.2626 (6)	0.1797 (4)	0.0474 (18)
C6	0.5366 (10)	0.1615 (6)	0.1476 (4)	0.055 (2)
C7	0.2968 (10)	0.2610 (6)	0.0863 (6)	0.067 (3)
H7A	0.3572	0.3219	0.1069	0.080*
H7B	0.2776	0.2704	0.0368	0.080*
C8	0.1374 (15)	0.2526 (9)	0.1110 (6)	0.094 (3)
H8A	0.0691	0.3133	0.0955	0.113*
H8B	0.1566	0.2531	0.1610	0.113*
C9	0.0415 (15)	0.1501 (9)	0.0851 (7)	0.102 (4)
H9A	-0.0581	0.1434	0.1064	0.123*
H9B	0.0074	0.1538	0.0356	0.123*
C10	0.1563 (13)	0.0526 (8)	0.1035 (5)	0.084 (3)
H10A	0.1810	0.0446	0.1530	0.100*
H10B	0.0998	-0.0105	0.0843	0.100*
C11	0.3164 (11)	0.0675 (7)	0.0745 (5)	0.068 (3)
H11A	0.3906	0.0087	0.0906	0.081*
C12	0.2905 (13)	0.0667 (7)	-0.0031 (5)	0.079 (3)

H12A	0.3957	0.0775	-0.0187	0.119*	
H12B	0.2148	0.1221	-0.0204	0.119*	
H12C	0.2446	0.0001	-0.0196	0.119*	
Cl1	0.3262 (6)	0.7906 (3)	0.19673 (17)	0.1303 (14)	
Cl2	0.3231 (4)	0.7842 (2)	0.03045 (15)	0.0970 (9)	
C13	0.0105 (4)	0.6753 (4)	0.0955 (2)	0.1479 (18)	
Cl4	0.2771 (8)	0.5277 (3)	0.19805 (19)	0.192 (3)	
C15	0.5929 (5)	0.6406 (5)	0.1308 (3)	0.199 (3)	
Cl6	0.2773 (6)	0.5279(2)	0.02829 (18)	0.1324 (15)	
N1	0.7664 (10)	0.4296 (6)	0.2450 (5)	0.075 (2)	
H1B	0.8162	0.4831	0.2658	0.091*	
N2	0.3972 (9)	0.1656 (5)	0.1039 (4)	0.0623 (19)	
01	0.6169 (8)	0.0811 (5)	0.1647 (4)	0.082 (2)	
Sb1	0.30206 (7)	0.65548 (4)	0.11435 (3)	0.0571 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.122 (9)	0.096 (8)	0.059 (6)	-0.040 (7)	0.024 (6)	-0.011 (6)
C2	0.165 (13)	0.102 (9)	0.048 (6)	-0.028 (9)	-0.004 (7)	-0.014 (6)
C3	0.089 (8)	0.075 (7)	0.110 (9)	-0.023 (6)	0.036 (7)	-0.017 (6)
C4	0.105 (8)	0.055 (6)	0.074 (6)	-0.022 (5)	0.035 (6)	-0.021 (5)
C5	0.047 (4)	0.050 (4)	0.040 (4)	-0.001 (3)	-0.008(3)	0.004 (3)
C6	0.056 (5)	0.044 (4)	0.059 (5)	0.005 (4)	-0.010 (4)	0.005 (4)
C7	0.048 (5)	0.036 (4)	0.110 (7)	0.007 (4)	-0.008(5)	0.001 (4)
C8	0.095 (9)	0.093 (8)	0.091 (8)	0.013 (7)	0.003 (6)	-0.014 (6)
C9	0.083 (8)	0.107 (10)	0.121 (10)	0.009 (7)	0.030 (7)	0.004 (8)
C10	0.094 (8)	0.078 (7)	0.076 (7)	-0.011 (6)	0.003 (6)	-0.005 (5)
C11	0.068 (6)	0.046 (5)	0.080 (6)	-0.011 (4)	-0.015 (5)	-0.006 (4)
C12	0.082 (7)	0.059 (6)	0.093 (8)	-0.001 (5)	0.004 (6)	-0.015 (5)
Cl1	0.184 (4)	0.121 (3)	0.083 (2)	-0.041 (3)	0.011 (2)	-0.042 (2)
Cl2	0.147 (3)	0.0595 (15)	0.0860 (19)	-0.0035 (16)	0.0231 (18)	0.0139 (13)
C13	0.0633 (18)	0.239 (5)	0.145 (3)	-0.026 (2)	0.0295 (19)	-0.056 (3)
Cl4	0.368 (8)	0.126 (3)	0.080 (2)	-0.056 (4)	0.026 (3)	0.043 (2)
C15	0.076 (2)	0.262 (6)	0.243 (6)	0.065 (3)	-0.019 (3)	0.038 (5)
Cl6	0.251 (5)	0.0584 (17)	0.102 (2)	-0.001 (2)	0.069 (3)	-0.0125 (16)
N1	0.069 (5)	0.056 (5)	0.091 (6)	-0.011 (4)	-0.020(5)	-0.017 (4)
N2	0.056 (4)	0.035 (3)	0.087 (5)	0.000 (3)	-0.018 (4)	-0.002 (3)
01	0.086 (5)	0.050 (4)	0.095 (5)	0.009 (3)	-0.032 (4)	0.012 (3)
Sb1	0.0608 (4)	0.0543 (4)	0.0552 (4)	-0.0006 (3)	0.0061 (2)	0.0038 (3)

Geometric parameters (Å, °)

C1—C5	1.347 (12)	C9—C10	1.557 (15)	
C1—C2	1.364 (15)	С9—Н9А	0.9700	
C1—H1A	0.9300	C9—H9B	0.9700	
C2—N1	1.291 (15)	C10—C11	1.509 (14)	
C2—H2A	0.9300	C10—H10A	0.9700	

C3—N1	1.295 (13)	C10—H10B	0.9700
C3—C4	1.367 (13)	C11—N2	1.481 (10)
С3—НЗА	0.9300	C11—C12	1.508 (13)
C4—C5	1.355 (11)	C11—H11A	0.9800
C4—H4A	0.9300	C12—H12A	0.9600
C5—C6	1.514 (10)	C12—H12B	0.9600
C6—O1	1.229 (9)	С12—Н12С	0.9600
C6—N2	1.309 (10)	Cl1—Sb1	2.347 (3)
C7—C8	1 455 (14)	Cl2—Sb1	2.348(3)
C7—N2	1 470 (9)	Cl3—Sb1	2.348 (3)
C7—H7A	0.9700	C14—Sb1	2.343(3)
C7—H7B	0.9700	Cl5—Sb1	2.336(4)
$C_8 - C_9$	1 560 (15)	C16—Sb1	2.330(1)
C8—H8A	0.9700	N1—H1B	0.8600
C8—H8B	0.9700		0.0000
Co-110D	0.9700		
C5—C1—C2	120.7 (10)	C9—C10—H10A	109.8
C5—C1—H1A	119.6	C11—C10—H10B	109.8
C2—C1—H1A	119.6	C9—C10—H10B	109.8
N1-C2-C1	119.6 (10)	H10A—C10—H10B	108.3
N1—C2—H2A	120.2	N2-C11-C12	112.6 (8)
C1-C2-H2A	120.2	N_{2} - C11 - C10	1081(8)
N1 - C3 - C4	120.2	C_{12} C_{11} C_{10}	1130(8)
N1_C3_H3A	119.7	N2H11A	107.6
C4-C3-H3A	119.7	C12— $C11$ — $H11A$	107.6
C_{5} C_{4} C_{3}	119.7	C10-C11-H11A	107.6
C_{5} C_{4} H_{4}	120.4	C_{11} C_{12} H_{12A}	107.0
$C_3 - C_4 - H_{4A}$	120.4	$C_{11} - C_{12} - H_{12R}$	109.5
C1 - C5 - C4	117 8 (8)	H12A - C12 - H12B	109.5
$C_1 = C_5 = C_4$	117.6 (8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 = C_2 = C_0$	119.0(3) 122.2(7)	H_{12} H_{12} H_{12}	109.5
$C_{4} = C_{5} = C_{0}$	122.2(7) 125.3(7)	H12R C12 H12C	109.5
01 - 00 - 002	125.5(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 122.1(0)
N2 C6 C5	110.0 (7)	$C_2 = N_1 = C_3$	122.1 (9)
$N_2 = C_0 = C_3$	119.0(0) 110.4(8)	$C_2 = N_1 = H_1 D$	119.0
C_{0} C_{1} C_{1} C_{2} C_{2	110.4 (6)	C_{5} NI $-$ HIB	119.0 125.2(7)
$C_0 - C_7 - H_7 A$	109.0	C_{0} N2 C_{11}	123.2(7)
$N_2 - C_1 - H_1 A$	109.0	$C_0 = N_2 = C_{11}$	120.4(6)
$C_0 - C_7 - H_7 D$	109.0	C/-N2-CH	114.0(0)
$N_2 - C_1 - H_1 B$	109.0	CIG = SDI = CIS	90.8(2)
H/A - C / - H/B	108.1	C16— $S01$ — $C14$	91.26 (14)
C/-C8-C9	112.0 (9)		92.5 (2)
C/-C8-H8A	109.2	Cl6—Sb1—Cl1	177.11 (13)
	109.2		89.5 (2)
	109.2	CI4—SDI—CII	91.60 (16)
C9—C8—H8B	109.2	Clo-Sbl-Cl3	89.46 (16)
H8A—C8—H8B	107.9	CI5—Sb1—CI3	178.1 (2)
C10—C9—C8	109.8 (10)	CI4—Sb1—CI3	89.4 (2)
С10—С9—Н9А	109.7	Cl1—Sb1—Cl3	90.17 (15)

С8—С9—Н9А	109 7	C16—Sh1—C12	88 89 (11)
C10-C9-H9B	109.7	C15—Sb1— $C12$	88 32 (18)
C8-C9-H9B	109.7	C14—Sb1—C12	179 19 (19)
H9A - C9 - H9B	108.2	C11—Sb1—C12	88 24 (13)
$\begin{array}{cccc} 11 & C10 & C9 \\ \end{array}$	100.2	C_{13} Sb1 C_{12}	80.84 (16)
C_{11} C_{10} U_{10A}	109.5 (9)	015-501-012	89.84 (10)
CII—CI0—HI0A	109.8		
C5—C1—C2—N1	-0.4 (11)	C9—C10—C11—C12	-66.8 (11)
N1—C3—C4—C5	-0.3 (14)	C1—C2—N1—C3	0.1 (13)
C2—C1—C5—C4	0.3 (13)	C4—C3—N1—C2	0.2 (15)
C2-C1-C5-C6	173.5 (7)	O1—C6—N2—C7	176.7 (9)
C3—C4—C5—C1	0.1 (14)	C5—C6—N2—C7	-4.7 (14)
C3—C4—C5—C6	-173.0 (8)	O1—C6—N2—C11	4.7 (15)
C1C5C6O1	-77.7 (11)	C5—C6—N2—C11	-176.7 (8)
C4—C5—C6—O1	95.2 (11)	C8—C7—N2—C6	-112.8 (10)
C1C5	103.5 (10)	C8—C7—N2—C11	59.6 (11)
C4—C5—C6—N2	-83.6 (12)	C12—C11—N2—C6	-123.4 (10)
N2—C7—C8—C9	-53.9 (12)	C10-C11-N2-C6	111.1 (10)
C7—C8—C9—C10	53.4 (13)	C12—C11—N2—C7	63.8 (11)
C8—C9—C10—C11	-55.2 (12)	C10-C11-N2-C7	-61.8 (11)
C9-C10-C11-N2	58.5 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1B····O1 ⁱ	0.86	1.87	2.689 (9)	159

Symmetry code: (i) -x+3/2, y+1/2, -z+1/2.