

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Amino-4,6-dimethylpyrimidine- κN^1)-(2-amino-4-methylpyrimidine- κN^1)silver(I) nitrate

Hua Yang

Department of Chemistry, Mudanjiang Teachers College, Mudanjiang 157012, People's Republic of China Correspondence e-mail: youngflower7799@yahoo.com.cn

, , , ,

Received 2 August 2009; accepted 1 September 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.014 Å; R factor = 0.040; wR factor = 0.129; data-to-parameter ratio = 8.0.

Colourless crystals of the title compound, $[Ag(C_5H_7N_3)-(C_6H_9N_3)]NO_3$, separated out of a solution of 2-amino-4methylpyrimidine, 2-amino-4,6-dimethylpyrimidine and silver nitrate in water and methanol. The central Ag^I ion is coordinated by two different N atoms in the aromatic rings of the ligands, with an N-Ag-N angle of 173.9 (2)°. The crystal structure is composed of two complexed cations and stabilized by an intermolecular N-H···O and N-H···N hydrogen-bond network and there is π - π stacking of the aromatic rings [interplanar distance 3.651 (10) Å].

Related literature

For N-Ag-N coordination geometries, see: Greenwood & Earnshaw (1997). For π - π stacking, see: Munakata *et al.* (2000). For silver coordination networks, see: Seward *et al.* (2004); Shimizu *et al.* (1999).

Experimental

Crystal data [Ag(C₅H₇N₃)(C₆H₉N₃)]NO₃ M_r = 402.18

Orthorhombic, $Pbc2_1$ a = 7.5689 (4) Å b = 19.1582 (7) Å c = 20.1826 (10) Å V = 2926.6 (2) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.512, T_{max} = 0.616$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.129$ S = 1.10 3244 reflections 403 parameters1 restraint Mo K α radiation $\mu = 1.40 \text{ mm}^{-1}$ T = 120 K $0.50 \times 0.40 \times 0.35 \text{ mm}$

11376 measured reflections 3244 independent reflections 2647 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

 $\begin{array}{l} \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.95 \mbox{ e } \mbox{\dot{A}^{-3}} \\ \Delta \rho_{min} = -0.63 \mbox{ e } \mbox{\dot{A}^{-3}} \\ \mbox{Absolute structure: Flack (1983),} \\ \mbox{Friedel pairs merged} \\ \mbox{Flack parameter: } 0.07 \mbox{ (6)} \end{array}$

Table 1 Hydrogen-bond geome

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots O5$	0.88	2.20	3.004 (10)	152
$N2-H2C \cdot \cdot \cdot N6^{i}$	0.88	2.17	3.053 (11)	178
$N5-H5A\cdots N3^{ii}$	0.88	2.20	3.078 (11)	178
$N5-H5B\cdotsO1^{ii}$	0.88	2.33	3.042 (13)	138
$N8 - H8B \cdot \cdot \cdot O4$	0.88	2.36	3.026 (12)	133
N8−H8C· · ·N12 ⁱⁱⁱ	0.88	2.20	3.073 (11)	175
$N11 - H11A \cdot \cdot \cdot N9^{iv}$	0.88	2.15	3.029 (10)	176
$N11-H11B\cdots O2^{iv}$	0.88	2.16	2.965 (11)	151

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, z$; (ii) $-x + 1, y + \frac{1}{2}, z$; (iii) $-x, y - \frac{1}{2}, z$; (iv) $-x, y + \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The author thanks the Natural Science Foundation of Heilongjiang Province for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2100).

References

- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Greenwood, N. N. & Earnshaw, A. (1997). In *Chemistry of the Elements*, 2nd ed. Oxford: Pergamon Press.
- Munakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev. 198, 171– 203.
- Seward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2933–2936.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.

supporting information

Acta Cryst. (2009). E65, m1177 [doi:10.1107/S1600536809035181]

(2-Amino-4,6-dimethylpyrimidine- κN^1)(2-amino-4-methylpyrimidine- κN^1)silver(I) nitrate

Hua Yang

S1. Comment

The nitrogen-containing bidentates, heterocyclic pyrimidine compounds are of great interests with capabilities to form stable hydrogen bonding network between aminos and nitrogen atoms of hetero rings. The crystal structure of the title compound (I) comprised of balanced NO_3^- anions and [Ag(2-amino-4-methylpyrimidine)(2-amino-4,6-dimethyl-pyrimidine)]⁺ cations. The central silver ion, coordinated to two nitrogen atoms from the pyrimidine rings of those two different ligands, giving linear N—Ag—N coordination geometries (Greenwood *et al.*, 1997). The whole crystal structure was stabilized by multiple intermolecular N–H–N hydrogen bonding network and pi-pi stacking with the interplane distance of 3.65 Å (Munakata *et al.*, 2000).

S2. Experimental

A solution of 108 mg (1 mmol) 2-amino-4-methylpyrimidine and 123 mg (1 mmol) of 2-amino-4,6-dimethylpyrimidine in water- CH_3OH (1:1 V/V,10 ml) was added to an aqueous solution of AgNO₃ 170 mg (1 mmol) in 3 ml water with stirring at 333 K. A small amount of white precipitate was removed from the resulting solution. Prism shaped colorless crystals were obtained by slow evaporation of the solvent at room temperature over a period of 3 days.

S3. Refinement

All H atoms were placed in calculated positions and refined as riding, with C–H = 0.96–0.98 Å, and N–H = 0.88 Å, and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N)$.

Figure 1

The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

The packing diagram of molecules, viewed down the *b* axis, with the weak interactions shown as dashed lines.

(2-Amino-4,6-dimethylpyrimidine- κN^1)(2-amino-4-methylpyrimidine- κN^1)silver(I) nitrate

Crystal data	
$[Ag(C_5H_7N_3)(C_6H_9N_3)]NO_3$	F(000) = 1616
$M_r = 402.18$	$D_{\rm x} = 1.826 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, <i>Pbc</i> 2 ₁	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2b	Cell parameters from 3244 reflections
a = 7.5689 (4) Å	$\theta = 2.9 - 27.0^{\circ}$
b = 19.1582 (7) Å	$\mu = 1.40 \text{ mm}^{-1}$
c = 20.1826 (10) Å	T = 120 K
V = 2926.6 (2) Å ³	Prism, colourless
Z = 8	$0.50 \times 0.40 \times 0.35 \text{ mm}$
$V = 2926.6 (2) Å^3$ Z = 8	Prism, colourless $0.50 \times 0.40 \times 0.35 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.512, T_{\max} = 0.616$	11376 measured reflections 3244 independent reflections 2647 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 9$ $k = -24 \rightarrow 23$ $l = -17 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.129$ S = 1.10 3244 reflections 403 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0822P)^2 + 2.1516P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.010$ $\Delta\rho_{max} = 0.95$ e Å ⁻³ $\Delta\rho_{min} = -0.63$ e Å ⁻³ Absolute structure: Flack (1983), 0 Friedel pairs Absolute structure parameter: 0.07 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.71751 (9)	0.60684 (3)	0.47181 (3)	0.0436 (2)	
Ag2	0.21246 (9)	0.64903 (3)	0.49169 (4)	0.0463 (2)	
C1	0.7635 (13)	0.5144 (5)	0.3524 (6)	0.045 (2)	
H1A	0.8144	0.5561	0.3356	0.054*	
C2	0.7561 (14)	0.4570 (5)	0.3120 (6)	0.046 (2)	
H2A	0.7993	0.4585	0.2678	0.055*	
C3	0.6815 (11)	0.3954 (5)	0.3386 (5)	0.040 (2)	
C4	0.6715 (17)	0.3304 (6)	0.2971 (6)	0.058 (3)	
H4A	0.6587	0.2896	0.3261	0.087*	
H4B	0.7798	0.3258	0.2709	0.087*	
H4C	0.5694	0.3333	0.2674	0.087*	
C5	0.6273 (11)	0.4538 (4)	0.4376 (5)	0.0337 (19)	
C6	0.6599 (11)	0.8125 (4)	0.6122 (5)	0.0352 (17)	
C7	0.6426 (15)	0.8776 (5)	0.6539 (6)	0.053 (2)	
H7A	0.5347	0.9026	0.6415	0.080*	

H7B	0.7453	0.9078	0.6466	0.080*
H7C	0.6366	0.8646	0.7008	0.080*
C8	0.7394 (12)	0.7544 (5)	0.6393 (5)	0.0381 (19)
H8A	0.7776	0.7534	0.6841	0.046*
C9	0.7610 (12)	0.6963 (5)	0.5967 (5)	0.0373 (19)
C10	0.8413 (15)	0.6312 (6)	0.6203 (7)	0.058 (3)
H10A	0.9142	0.6110	0.5850	0.087*
H10B	0.7481	0.5981	0.6325	0.087*
H10C	0.9153	0.6409	0.6590	0.087*
C11	0.6221 (11)	0.7588 (4)	0.5118 (4)	0.0349 (18)
C12	0.2777 (12)	0.5562 (5)	0.3701 (5)	0.0367 (19)
C13	0.3473 (17)	0.6232 (6)	0.3442 (7)	0.061 (3)
H13A	0.4342	0.6422	0.3754	0.091*
H13B	0.2500	0.6565	0.3390	0.091*
H13C	0.4039	0.6153	0.3012	0.091*
C14	0.2742 (12)	0.4978 (6)	0.3302 (5)	0.041 (2)
H14A	0.3211	0.4978	0.2866	0.050*
C15	0.1979 (10)	0.4393 (5)	0.3581 (5)	0.0377 (19)
C16	0.1861 (17)	0.3734 (6)	0.3177 (6)	0.060 (3)
H16A	0.2005	0.3328	0.3469	0.090*
H16B	0.2797	0.3733	0.2841	0.090*
H16C	0.0706	0.3711	0.2959	0.090*
C17	0.1461 (11)	0.4950 (4)	0.4551 (4)	0.0317 (17)
C18	0.1404 (11)	0.8570 (4)	0.6286 (4)	0.0330 (16)
C19	0.1264 (14)	0.9230 (5)	0.6686 (6)	0.055 (3)
H19A	0.0081	0.9430	0.6631	0.082*
H19B	0.2150	0.9566	0.6531	0.082*
H19C	0.1468	0.9125	0 7154	0.082*
C20	0.2179 (12)	0.7976 (5)	0.6557 (5)	0.042(2)
H20A	0.2582	0.7960	0.7002	0.050*
C21	0.2322(12)	0 7409 (5)	0.6130 (6)	0.039(2)
H21A	0.2862	0.6996	0.6294	0.046*
C22	0.0990(11)	0.8014 (5)	0 5295 (4)	0.0325(18)
N1	0 7026 (8)	0 5141 (4)	0.5239(1) 0.4139(4)	0.0329(15)
N2	0.7620(0)	0.3111(1) 0.4498(4)	0.4978(4)	0.0329(13) 0.0439(18)
H2B	0.5637	0.4865	0.5241	0.053*
H2C	0.5133	0.4105	0.5117	0.053*
N3	0.6194 (9)	0.3939 (3)	0.3996(4)	0.035
N4	0.0194(9) 0.7038(9)	0.5959(3) 0.6994(3)	0.5340(4)	0.0372(10) 0.0303(15)
N5	0.7038(0)	0.0994(3) 0.7605(4)	0.3540(4) 0.4515(4)	0.0303(19) 0.0441(19)
Н5	0.5064	0.7003 (4)	0.4369	0.053*
H5R	0.5722	0.7982	0.4255	0.053*
N6	0.5722	0.7240 0.8151 (3)	0.4233 0.5505 (4)	0.033
N7	0.0023(9)	0.8131(3) 0.5570(4)	0.3303(4)	0.0333(13) 0.0378(18)
N8	0.2130(9) 0.0846(11)	0.3370(+) 0.4047(4)	0.5176 (4)	0.0370(10)
	0.0040 (11)	0.5221	0.5170 (4)	0.0440(19)
	0.0000	0.3331	0.5410	0.054*
NO	0.0402 0.1222 (10)	0.4362 (2)	0.3343	0.034°
119	0.1322 (10)	0.4302 (3)	0.4170 (4)	0.0551 (15)

N10	0.1754 (9)	0.7407 (3)	0.5510 (4)	0.0351 (16)	
N11	0.0341 (10)	0.8033 (3)	0.4697 (4)	0.0407 (16)	
H11A	-0.0189	0.8413	0.4553	0.049*	
H11B	0.0434	0.7666	0.4437	0.049*	
N12	0.0822 (9)	0.8582 (3)	0.5674 (4)	0.0349 (15)	
N13	0.1299 (12)	0.1949 (4)	0.3307 (4)	0.0475 (19)	
N14	0.3858 (11)	0.5590 (4)	0.6325 (4)	0.0424 (17)	
01	0.2935 (10)	0.1966 (5)	0.3249 (6)	0.076 (3)	
O2	0.0732 (12)	0.1825 (4)	0.3870 (4)	0.067 (2)	
03	0.0361 (15)	0.2039 (8)	0.2829 (6)	0.114 (4)	
O4	0.2254 (10)	0.5607 (5)	0.6432 (4)	0.059 (2)	
05	0.4378 (11)	0.5740 (4)	0.5762 (4)	0.0595 (19)	
O6	0.4910 (11)	0.5443 (5)	0.6767 (6)	0.076 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Agl	0.0552 (4)	0.0293 (3)	0.0463 (4)	0.0003 (2)	0.0008 (5)	-0.0078 (3)
Ag2	0.0636 (4)	0.0301 (3)	0.0451 (4)	0.0007 (3)	0.0003 (5)	-0.0077 (3)
C1	0.053 (5)	0.033 (5)	0.048 (6)	0.001 (4)	0.014 (5)	0.006 (5)
C2	0.059 (6)	0.039 (5)	0.041 (6)	0.005 (4)	0.006 (4)	-0.003 (4)
C3	0.036 (4)	0.038 (4)	0.047 (5)	0.006 (3)	0.000 (4)	-0.004 (4)
C4	0.073 (7)	0.046 (5)	0.055 (7)	-0.001 (5)	0.004 (5)	-0.018 (5)
C5	0.032 (4)	0.028 (4)	0.041 (5)	0.007 (3)	-0.006 (4)	-0.014 (4)
C6	0.037 (4)	0.038 (4)	0.030 (4)	-0.002 (4)	0.004 (3)	-0.009 (3)
C7	0.056 (5)	0.051 (5)	0.053 (6)	-0.001 (5)	-0.008(5)	-0.022 (5)
C8	0.044 (4)	0.032 (4)	0.038 (5)	0.003 (4)	-0.002 (4)	-0.002 (4)
C9	0.040 (4)	0.036 (5)	0.036 (5)	-0.005 (4)	0.011 (4)	0.001 (4)
C10	0.058 (6)	0.064 (6)	0.053 (7)	-0.001 (5)	0.003 (5)	-0.007 (6)
C11	0.047 (5)	0.028 (4)	0.029 (4)	-0.011 (3)	0.010 (4)	-0.006 (3)
C12	0.047 (5)	0.038 (5)	0.025 (4)	0.000 (4)	0.001 (4)	0.003 (4)
C13	0.070 (7)	0.054 (6)	0.058 (8)	-0.011 (6)	-0.001 (6)	0.018 (6)
C14	0.041 (4)	0.055 (6)	0.028 (5)	0.012 (4)	-0.013 (4)	-0.005 (4)
C15	0.037 (4)	0.038 (4)	0.038 (5)	0.007 (3)	-0.003 (4)	-0.008 (4)
C16	0.082 (8)	0.047 (5)	0.052 (7)	0.003 (5)	-0.004 (6)	-0.014 (5)
C17	0.037 (4)	0.033 (4)	0.025 (4)	-0.002 (3)	-0.010 (3)	0.001 (3)
C18	0.041 (4)	0.026 (4)	0.032 (4)	-0.004 (3)	0.002 (3)	-0.008 (3)
C19	0.060 (6)	0.043 (5)	0.060 (7)	0.002 (4)	-0.017 (5)	-0.015 (5)
C20	0.056 (5)	0.041 (5)	0.029 (4)	-0.011 (4)	-0.003 (4)	-0.004 (4)
C21	0.048 (5)	0.035 (4)	0.033 (5)	-0.001 (4)	0.003 (4)	0.002 (4)
C22	0.033 (4)	0.033 (4)	0.031 (5)	-0.011 (3)	0.010 (3)	0.002 (3)
N1	0.030 (3)	0.026 (3)	0.043 (4)	0.007 (2)	-0.001 (3)	0.002 (3)
N2	0.056 (4)	0.036 (3)	0.040 (4)	-0.004 (3)	0.004 (4)	-0.013 (4)
N3	0.042 (4)	0.027 (3)	0.042 (4)	0.002 (3)	-0.002 (3)	-0.012 (3)
N4	0.041 (4)	0.018 (3)	0.031 (4)	-0.002 (2)	0.005 (3)	-0.005 (3)
N5	0.065 (5)	0.037 (4)	0.031 (4)	0.008 (4)	0.000 (4)	-0.006 (3)
N6	0.039 (3)	0.027 (3)	0.040 (4)	0.004 (3)	0.001 (3)	-0.006 (3)
N7	0.034 (3)	0.040 (4)	0.040 (5)	0.004 (3)	-0.006 (3)	0.015 (3)

N8	0.062 (5)	0.035 (4)	0.036 (4)	-0.008 (3)	0.008 (4)	-0.007 (3)
N9	0.051 (4)	0.027 (3)	0.027 (4)	0.008 (3)	-0.008(3)	-0.003 (3)
N10	0.042 (4)	0.021 (3)	0.043 (4)	-0.001 (3)	0.001 (3)	0.001 (3)
N11	0.056 (4)	0.030 (3)	0.036 (4)	0.008 (3)	-0.004 (4)	-0.001 (3)
N12	0.031 (3)	0.031 (3)	0.043 (4)	-0.002 (3)	-0.002 (3)	-0.001 (3)
N13	0.064 (5)	0.046 (4)	0.033 (4)	-0.001 (4)	-0.008(4)	-0.004 (3)
N14	0.057 (5)	0.042 (4)	0.028 (4)	0.002 (3)	-0.001 (3)	-0.006 (3)
01	0.056 (5)	0.078 (6)	0.092 (8)	0.006 (4)	-0.004(5)	-0.023 (6)
O2	0.081 (5)	0.061 (5)	0.058 (5)	0.012 (4)	-0.002 (4)	-0.007(4)
O3	0.089 (6)	0.190 (12)	0.061 (7)	-0.021 (8)	-0.027 (6)	0.035 (8)
O4	0.057 (4)	0.082 (6)	0.037 (4)	0.009 (4)	-0.005 (3)	-0.014 (4)
05	0.080 (5)	0.056 (4)	0.042 (4)	-0.003 (4)	0.014 (4)	-0.002 (3)
O6	0.064 (5)	0.088 (6)	0.074 (7)	0.010 (4)	-0.007 (5)	0.018 (5)

Geometric parameters (Å, °)

Ag1—N1 Ag1—N4	2.130 (8) 2.176 (6) 2.145 (7)	C13—H13C C14—C15	0.9800
Ag1—N4	2.176 (6)	C14—C15	1 380 (15)
	2145(7)		1.300 (13)
Ag2—N10	2.143 (7)	C14—H14A	0.9500
Ag2—N7	2.129 (9)	C15—N9	1.302 (12)
C1—N1	1.324 (14)	C15—C16	1.506 (14)
C1—C2	1.371 (16)	C16—H16A	0.9800
C1—H1A	0.9500	C16—H16B	0.9800
C2—C3	1.415 (14)	C16—H16C	0.9800
C2—H2A	0.9500	C17—N8	1.345 (11)
C3—N3	1.316 (13)	C17—N7	1.368 (11)
C3—C4	1.503 (14)	C17—N9	1.361 (11)
C4—H4A	0.9800	C18—N12	1.313 (11)
C4—H4B	0.9800	C18—C20	1.391 (13)
C4—H4C	0.9800	C18—C19	1.503 (12)
C5—N2	1.317 (13)	C19—H19A	0.9800
C5—N1	1.374 (12)	C19—H19B	0.9800
C5—N3	1.382 (11)	C19—H19C	0.9800
C6—N6	1.320 (12)	C20—C21	1.391 (14)
C6—C8	1.378 (13)	C20—H20A	0.9500
C6—C7	1.511 (13)	C21—N10	1.322 (14)
С7—Н7А	0.9800	C21—H21A	0.9500
С7—Н7В	0.9800	C22—N11	1.304 (12)
С7—Н7С	0.9800	C22—N12	1.336 (11)
C8—C9	1.416 (14)	C22—N10	1.369 (11)
C8—H8A	0.9500	N2—H2B	0.8800
C9—N4	1.338 (14)	N2—H2C	0.8800
C9—C10	1.467 (15)	N5—H5A	0.8800
C10—H10A	0.9800	N5—H5B	0.8800
C10—H10B	0.9800	N8—H8B	0.8800
C10—H10C	0.9800	N8—H8C	0.8800
C11—N5	1.304 (11)	N11—H11A	0.8800
C11—N6	1.340 (11)	N11—H11B	0.8800

C11—N4	1.370 (11)	N13—O3	1.210 (13)
C12—N7	1.353 (13)	N13—O1	1.244 (12)
C12—C14	1.379 (14)	N13—O2	1.238 (12)
C12—C13	1.482 (13)	N14—O5	1.237 (11)
C13—H13A	0.9800	N14—O4	1.233 (11)
C13—H13B	0.9800	N14—O6	1.229 (12)
N1—Ag1—N4	173.9 (2)	C15—C16—H16B	109.5
N10—Ag2—N7	172.6 (3)	H16A—C16—H16B	109.5
N1—C1—C2	122.7 (10)	C15—C16—H16C	109.5
N1—C1—H1A	118.6	H16A—C16—H16C	109.5
C2—C1—H1A	118.6	H16B—C16—H16C	109.5
C1—C2—C3	117.3 (10)	N8—C17—N7	116.4 (8)
C1—C2—H2A	121.4	N8—C17—N9	119.4 (8)
C3—C2—H2A	121.4	N7—C17—N9	124.2 (8)
N3—C3—C2	121.1 (9)	N12-C18-C20	121.7 (8)
N3—C3—C4	119.0 (9)	N12-C18-C19	117.8 (8)
C2—C3—C4	119.9 (10)	C20—C18—C19	120.5 (8)
C3—C4—H4A	109.5	C18—C19—H19A	109.5
C3—C4—H4B	109.5	C18—C19—H19B	109.5
H4A—C4—H4B	109.5	H19A—C19—H19B	109.5
C3—C4—H4C	109.5	C18—C19—H19C	109.5
H4A—C4—H4C	109.5	H19A—C19—H19C	109.5
H4B—C4—H4C	109.5	H19B—C19—H19C	109.5
N2C5N1	121.9 (8)	C21—C20—C18	115.4 (9)
N2—C5—N3	116.6 (8)	C21—C20—H20A	122.3
N1—C5—N3	121.5 (8)	C18—C20—H20A	122.3
N6—C6—C8	123.3 (9)	C20-C21-N10	124.2 (9)
N6—C6—C7	117.8 (8)	C20—C21—H21A	117.9
C8—C6—C7	118.9 (9)	N10-C21-H21A	117.9
С6—С7—Н7А	109.5	N11—C22—N12	118.1 (8)
С6—С7—Н7В	109.5	N11—C22—N10	118.5 (8)
H7A—C7—H7B	109.5	N12-C22-N10	123.4 (8)
С6—С7—Н7С	109.5	C1—N1—C5	118.3 (8)
Н7А—С7—Н7С	109.5	C1—N1—Ag1	119.5 (7)
H7B—C7—H7C	109.5	C5—N1—Ag1	122.2 (6)
C6—C8—C9	116.4 (9)	C5—N2—H2B	120.0
С6—С8—Н8А	121.8	C5—N2—H2C	120.0
С9—С8—Н8А	121.8	H2B—N2—H2C	120.0
N4—C9—C8	120.0 (9)	C3—N3—C5	119.0 (8)
N4—C9—C10	118.6 (9)	C9—N4—C11	119.6 (7)
C8—C9—C10	121.3 (10)	C9—N4—Ag1	119.5 (6)
C9—C10—H10A	109.5	C11—N4—Ag1	120.6 (6)
C9—C10—H10B	109.5	C11—N5—H5A	120.0
H10A—C10—H10B	109.5	C11—N5—H5B	120.0
C9—C10—H10C	109.5	H5A—N5—H5B	120.0
H10A—C10—H10C	109.5	C6—N6—C11	118.9 (8)
H10B-C10-H10C	109.5	C12—N7—C17	115.8 (8)

N5-C11-N6	118.9 (9)	C12—N7—Ag2	122.1 (6)
N5—C11—N4	119.3 (8)	C17—N7—Ag2	122.1 (6)
N6-C11-N4	121.8 (8)	C17—N8—H8B	120.0
N7—C12—C14	123.0 (9)	C17—N8—H8C	120.0
N7—C12—C13	116.6 (9)	H8B—N8—H8C	120.0
C14—C12—C13	120.3 (10)	C15—N9—C17	116.5 (8)
C12—C13—H13A	109.5	C21—N10—C22	115.8 (8)
C12—C13—H13B	109.5	C21—N10—Ag2	119.2 (6)
H13A—C13—H13B	109.5	C_{22} N10 Ag2	125.0 (6)
C12—C13—H13C	109.5	C_{22} N11—H11A	120.0
H13A—C13—H13C	109 5	C22—N11—H11B	120.0
H13B-C13-H13C	109.5	H11A—N11—H11B	120.0
C_{15} C_{14} C_{12}	115 5 (9)	C_{22} N12 C_{18}	120.0 119.5(7)
C15 - C14 - H14A	122.3	03—N13—01	119.3(7) 1204(11)
C_{12} C_{14} H_{14A}	122.3	03 - N13 - 02	123.8(10)
N9-C15-C14	122.5	01 - N13 - 02	125.0(10) 115.8(10)
$N_{0} = C_{15} = C_{16}$	124.9(9) 1160(9)	05 N14 04	117.0 (8)
$C_{14} = C_{15} = C_{16}$	110.0(9) 110.1(0)	05 - N14 - 04	117.9(0) 120.0(0)
$C_{14} = C_{15} = C_{16}$	119.1 (9)	04 N14 06	120.9(9)
C13—C10—H10A	109.5	04-1114-00	121.1 (9)
N1 C1 C2 C3	-0.8(16)	N6 C11 N4 Ag1	175 8 (6)
N1 - C1 - C2 - C3	1.0(15)	$N_1 = A_2 = N_4 = A_2 = A_2$	175.8(0)
$C_1 = C_2 = C_3 = C_4$	1.0(13) 170.2(10)	N1 = Ag1 = N4 = C9	93 (3) 70 (2)
$C_1 = C_2 = C_3 = C_4$	-1/9.2(10)	NI - AgI - N4 - CII	-79(3)
$N_0 - C_0 - C_8 - C_9$	1.4(15)	$C_{0} = C_{0} = N_{0} = C_{11}$	-0.4(13)
C/-Cb-Cs-C9	-1/6.5(8)	C = C = N = C = C = C = C = C = C = C =	1/.0(8)
C6-C8-C9-N4	-0.7(13)	$N_{2} = C_{11} = N_{6} = C_{6}$	1//.8 (8)
C6-C8-C9-C10	-1/9.0(9)	N4-C11-N6-C6	-1.4(12)
N = C12 = C14 = C15	0.6 (13)	C14 - C12 - N7 - C17	1.5 (12)
C13 - C12 - C14 - C15	-1/6.6 (9)	C13 - C12 - N7 - C17	178.8 (9)
C12—C14—C15—N9	-0.2 (13)	C14—C12—N7—Ag2	-1//.9 (/)
C12—C14—C15—C16	179.2 (8)	C13—C12—N7—Ag2	-0.6 (11)
N12—C18—C20—C21	1.3 (13)	N8—C17—N7—C12	178.7 (8)
C19—C18—C20—C21	-176.7 (9)	N9—C17—N7—C12	-4.2 (12)
C18—C20—C21—N10	-1.1 (14)	N8—C17—N7—Ag2	-2.0(10)
C2-C1-N1-C5	-0.7 (14)	N9—C17—N7—Ag2	175.2 (6)
C2—C1—N1—Ag1	-179.1 (8)	N10—Ag2—N7—C12	117 (2)
N2	-178.7 (9)	N10—Ag2—N7—C17	-63 (3)
N3—C5—N1—C1	2.0 (12)	C14—C15—N9—C17	-2.2 (12)
N2—C5—N1—Ag1	-0.4 (11)	C16—C15—N9—C17	178.4 (8)
N3—C5—N1—Ag1	-179.7 (6)	N8—C17—N9—C15	-178.4 (8)
N4—Ag1—N1—C1	134 (3)	N7—C17—N9—C15	4.5 (12)
N4—Ag1—N1—C5	-44 (3)	C20—C21—N10—C22	0.2 (13)
C2—C3—N3—C5	0.2 (13)	C20—C21—N10—Ag2	178.9 (7)
C4—C3—N3—C5	-179.5 (9)	N11—C22—N10—C21	-177.3 (8)
N2—C5—N3—C3	178.9 (8)	N12-C22-N10-C21	0.5 (12)
N1—C5—N3—C3	-1.8 (12)	N11—C22—N10—Ag2	4.1 (10)
C8—C9—N4—C11	-0.9 (12)	N12—C22—N10—Ag2	-178.2 (5)
C10-C9-N4-C11	177.5 (8)	N7—Ag2—N10—C21	115 (2)

supporting information

C8—C9—N4—Ag1	-174.8 (6)	N7—Ag2—N10—C22	-66 (3)
C10-C9-N4-Ag1	3.6 (11)	N11—C22—N12—C18	177.5 (8)
N5-C11-N4-C9	-177.2 (8)	N10-C22-N12-C18	-0.2 (12)
N6-C11-N4-C9	2.0 (12)	C20-C18-N12-C22	-0.7 (12)
N5-C11-N4-Ag1	-3.4 (11)	C19—C18—N12—C22	177.3 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	D··· A	D—H···A
N2—H2 <i>B</i> ···O5	0.88	2.20	3.004 (10)	152
$N2$ — $H2C$ ··· $N6^{i}$	0.88	2.17	3.053 (11)	178
N5—H5A···N3 ⁱⁱ	0.88	2.20	3.078 (11)	178
N5—H5 <i>B</i> ···O1 ⁱⁱ	0.88	2.33	3.042 (13)	138
N8—H8 <i>B</i> ···O4	0.88	2.36	3.026 (12)	133
N8—H8C···N12 ⁱⁱⁱ	0.88	2.20	3.073 (11)	175
N11—H11A····N9 ^{iv}	0.88	2.15	3.029 (10)	176
N11—H11 <i>B</i> ····O2 ^{iv}	0.88	2.16	2.965 (11)	151

Symmetry codes: (i) -*x*+1, *y*-1/2, *z*; (ii) -*x*+1, *y*+1/2, *z*; (iii) -*x*, *y*-1/2, *z*; (iv) -*x*, *y*+1/2, *z*.