

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(μ -3-Acetyl-5-carboxylato-4-methyl-pyrazolido-1:2 $\kappa^4 N^2$, O^3 : N^1 , O^5)- μ -chlorido-tetrapyridine-1 $\kappa^2 N$,2 $\kappa^2 N$ chlorido-1*kCl*-dicopper(II) propan-2-ol solvate

Sergey Malinkin,^a* Larisa Penkova,^a Vadim A. Pavlenko,^a Matti Haukka^b and Igor O. Fritsky^a

^aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, and ^bDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland Correspondence e-mail: malinachem@mail.ru

Received 7 September 2009; accepted 21 September 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.086; data-to-parameter ratio = 21.7.

The title compound, $[Cu_2(C_7H_6N_2O_3)Cl_2(C_5H_5N)_4]\cdot C_3H_8O$, is a binuclear pyrazolate complex, in which the two Cu^{II} atoms have different coordination numbers and are connected by a bridging Cl atom. One Cu^{II} atom has a distorted squarepyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other Cu^{II} atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O-H···O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

Related literature

For other 3,5-substituted-1*H*-pyrazolate complexes, see: Driessen et al. (2003); Eisenwiener et al. (2007); King et al. (2004); Li (2005); Penkova et al. (2008); Tretyakov et al. (2008).

8719 independent reflections

 $R_{\rm int} = 0.058$

6355 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Cu_2(C_7H_6N_2O_3)Cl_2-$	$\beta = 107.2145 \ (12)^{\circ}$
$(C_5H_5N)_4]\cdot C_3H_8O$	$V = 3283.12 (12) \text{ Å}^3$
$M_r = 740.61$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 16.4130 (4) Å	$\mu = 1.50 \text{ mm}^{-1}$
b = 12.6351 (2) Å	T = 100 K
c = 16.5739 (4) Å	$0.24 \times 0.16 \times 0.13 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	45344 measured reflections

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.718, T_{\max} = 0.832$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	402 parameters
$vR(F^2) = 0.086$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
3719 reflections	$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Cu1-N1	1.9814 (18)	Cu2-N2	1.9549 (18)
Cu1-N3	2.0609 (18)	Cu2-N5	2.0097 (18)
Cu1-N4	2.0371 (18)	Cu2-N6	2.1987 (18)
Cu1-O1	2.5878 (17)	Cu2-O2	2.0340 (16)
Cu1-Cl1	2.2634 (6)	Cu2-Cl2	2.3036 (6)
Cu1-Cl2	2.8621 (6)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O4−H3 <i>O</i> ···O3	0.95	1.82	2.734 (3)	160

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241-2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2229).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Driessen, W. L., Chang, L., Finnazo, C., Gorter, S., Rehorst, D., Reedijk, J., Lutz, M. & Spek, A. L. (2003). Inorg. Chim. Acta, 350, 25-31.
- Eisenwiener, A., Neuburger, M. & Kaden, T. A. (2007). Dalton Trans. pp. 218-

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). *Dalton Trans.* pp. 852–861.
- Li, X.-H. (2005). Acta Cryst. E61, m2405-m2407.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428–2436.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tretyakov, E. V., Tolstikov, S. E., Gorelik, E. V., Fedin, M. V., Romanenko, G. V., Bogomyakov, A. S. & Ovcharenko, V. I. (2008). *Polyhedron*, 27, 739– 749.

supporting information

Acta Cryst. (2009). E65, m1247-m1248 [doi:10.1107/S1600536809038276]

$(\mu$ -3-Acetyl-5-carboxylato-4-methylpyrazolido-1: $2\kappa^4 N^2$, O^3 : N^1 , O^5)- μ -chlorido-tetrapyridine-1 $\kappa^2 N$, $2\kappa^2 N$ -chlorido-1 κCl -dicopper(II) propan-2-ol solvate

Sergey Malinkin, Larisa Penkova, Vadim A. Pavlenko, Matti Haukka and Igor O. Fritsky

S1. Comment

Pyrazole-based chelating ligands form a variety of coordination complexes providing various coordination geometries and nuclearities (Eisenwiener *et al.*, 2007). In the synthesis of supramolecular inorganic architectures by design, the assembly of molecular units in predefined arrangements is a key goal (Tretyakov *et al.*, 2008). Linear bi- and trinuclear copper(II) complexes are of interest as models for the active sites of multicopper proteins, like ascorbate oxidase, ceruloplasmin and laccase (Driessen *et al.*, 2003), and are also of interest for a better understanding of the magnetic properties of multicopper compounds (Penkova *et al.*, 2008). The preparation and crystal structure of the title compound, a novel binuclear pyrazolate complex based on 5-acetyl-4-methyl-1H-pyrazol-3-carboxylic acid incorporating two Cu centres in different coordination environments, are reported herein. The complex was obtained as a product of the hydrolytic cleavage of L (see Scheme 2) in the presence of Cu ions.

In the molecular structure, the Cu^{II} atoms adopt different types of coordination geometries (Fig. 1). The geometry around Cu2 is distorted square-pyramidal. The Cu2—N2 bond distance is 1.9549 (18) Å (Table 1), close to those observed in the pyrazolato-bridged, linear trinuclear Cu^{II} complex reported by Driessen *et al.* (2003) [average Cu—N = 1.965 (5) Å]. The carboxylate group is in the basal plane with Cu2—O2 distance similar to that observed in the structure reported by Li (2005) [Cu—O = 2.016 (3) Å]. The N atom of a pyridine molecule occupies the apical position with Cu2—N6 distance of 2.1987 (18) Å. The Cu1 atom is situated in a slightly distorted octahedral environment formed by two N atoms belonging to the pyridine molecules occupying the axial positions, two Cl atoms (one of which is bridging) and N and O atoms of the pyrazolate ligand providing an N,O-chelating coordination mode with Cu—N = 1.9814 (18) Å.

The pyrazolate ring and one Cl atom bridge two Cu^{II} ions. The intermetallic separation Cu1—Cu2 is 3.9067 (4) Å, which is similar to that seen in the structure reported by King *et al.* (2004) (3.962 Å).

The crystal packing is presented in Fig. 2. An O—H···O hydrogen bond connects the complex molecule and propan-2-ol solvent molecule in pair. These units are stacked along the crystallographic *b* axis, forming a column-like structure. The two pyridine molecules interact through an intramolecular π -stacking interaction with a distance of 3.869 (1) Å between the centroids of the pyridine rings in the complex.

S2. Experimental

Copper(II) chloride dihydrate (0.05 g, 0.29 mmol) was dissolved in DMF (4 ml), and mixed with solution of L (0.078 g, 0.29 mmol) in DMF (3 ml). Then to the reaction mixture pyridine was added within 24 h . Blue block-shaped crystals of the title compound were obtained upon slow diffusion of propan-2-ol vapour into dark-green solution during two weeks (the solution turns blue over time). Analysis calculated for $C_{30}H_{34}Cl_2Cu_2N_6O_4$: C 48.61, H 4.59, N 11.34%; found: C 48.45, H 4.70, N 11.43%.

S3. Refinement

H atom attached to O atom was located from the difference Fourier map, and refined with $U_{iso} = 1.5 U_{eq}$ (O). The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95–1.00 Å and with $U_{iso} = 1.2(1.5 \text{ for methyl})U_{eq}$ (C).

Figure 1

A view of the title compound. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted for clarity.

Figure 2

Crystal packing of the title compound.

Figure 3

The structural formula of L.

 $(\mu$ -3-Acetyl-5-carboxylato-4-methylpyrazolido- $(\mu$ -3-Acetyl-5-carboxylato-4-methylpyrazolido-1: $2\kappa^4 N^2, O^3$: N^1, O^5)- μ -chlorido-tetrapyridine- $1\kappa^2 N$, $2\kappa^2 N$ -chlorido- $1\kappa Cl$ -dicopper(II) propan-2-ol solvate

Crystal data

 $[Cu_{2}(C_{7}H_{6}N_{2}O_{3})Cl_{2}(C_{5}H_{5}N)_{4}] \cdot C_{3}H_{8}O$ $M_{r} = 740.61$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 16.4130 (4) Å b = 12.6351 (2) Å c = 16.5739 (4) Å $\beta = 107.2145$ (12)° V = 3283.12 (12) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer	$T_{\min} = 0.718, T_{\max} = 0.832$ 45344 measured reflections
Radiation source: fine-focus sealed tube	8719 independent reflections
Horizontally mounted graphite crystal	6355 reflections with $I > 2\sigma(I)$
monochromator	$R_{ m int} = 0.058$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 29.0^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
φ and ω scans with κ offset	$h = -22 \rightarrow 22$
Absorption correction: multi-scan	$k = -17 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$l = -21 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference
Least-squares matrix: full	map

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.086$ S = 1.038719 reflections 402 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1520 $D_x = 1.498 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14278 reflections $\theta = 1.0-30.0^{\circ}$ $\mu = 1.50 \text{ mm}^{-1}$ T = 100 KBlock, green-blue $0.24 \times 0.16 \times 0.13 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0362P)^2 + 1.5874P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.59$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.152430 (17)	-0.09197 (2)	0.372827 (16)	0.01651 (7)	
Cu2	0.227801 (17)	0.202366 (19)	0.406284 (16)	0.01633 (7)	
C11	0.03110 (3)	-0.17696 (4)	0.37302 (3)	0.02075 (12)	
C12	0.09566 (3)	0.12326 (4)	0.35994 (3)	0.01988 (12)	
01	0.25807 (11)	-0.24098 (12)	0.36521 (10)	0.0256 (4)	
O2	0.34674 (10)	0.26096 (12)	0.42092 (9)	0.0216 (3)	
03	0.47931 (11)	0.21282 (13)	0.42382 (11)	0.0305 (4)	
H3O	0.5189	0.2845	0.3481	0.046*	
O4	0.55635 (13)	0.32508 (17)	0.32569 (13)	0.0460 (5)	
N1	0.26482 (11)	-0.02909 (13)	0.37947 (11)	0.0167 (4)	
N2	0.28640 (12)	0.07195 (13)	0.39256 (11)	0.0165 (4)	
N3	0.12367 (12)	-0.10132 (14)	0.24327 (11)	0.0181 (4)	

N4	0.18472 (12)	-0.08623 (13)	0.50126 (11)	0.0186 (4)
N5	0.18432 (12)	0.35174 (14)	0.38697 (11)	0.0191 (4)
N6	0.24312 (12)	0.20815 (14)	0.54257 (11)	0.0207 (4)
C1	0.33529 (14)	-0.08399 (17)	0.37618 (13)	0.0179 (4)
C2	0.32611 (15)	-0.19962(17)	0.36623 (14)	0.0208 (5)
C3	0.40018 (16)	-0.26389(19)	0.36067 (16)	0.0293 (6)
H3A	0.3827	-0.3380	0.3498	0.044*
H3B	0.4462	-0.2588	0.4140	0.044*
H3C	0.4204	-0.2372	0.3145	0.044*
C4	0.40414 (14)	-0.01443 (18)	0.38640 (13)	0.0202 (5)
C5	0.49426 (15)	-0.0362(2)	0.38719(15)	0.0266 (5)
H5A	0.5251	0.0308	0.3904	0.040*
H5B	0.4941	-0.0738	0.3354	0.040*
H5C	0.5225	-0.0800	0.4363	0.040*
C6	0.36967 (14)	0.08353 (17)	0.39700 (13)	0.0180 (5)
C7	0.40334(15)	0.19301 (18)	0.41462 (13)	0.0210 (5)
C8	0.09276 (14)	-0.19093(17)	0.20156 (14)	0.0205(5)
H8	0.0852	-0.2509	0.2332	0.025*
C9	0.07149 (15)	-0.19954(18)	0.11467 (15)	0.0240 (5)
H9	0.0503	-0.2644	0.0874	0.029*
C10	0.08148 (16)	-0.1127(2)	0.06806 (15)	0.0275 (5)
H10	0.0667	-0.1163	0.0082	0.033*
C11	0.11359 (16)	-0.02000(19)	0.11047 (15)	0.0290 (6)
H11	0.1212	0.0411	0.0801	0.035*
C12	0.13440 (15)	-0.01797 (18)	0.19762 (15)	0.0236 (5)
H12	0.1573	0.0454	0.2264	0.028*
C13	0.13414 (15)	-0.03639(17)	0.53964 (14)	0.0220 (5)
H13	0.0846	-0.0015	0.5056	0.026*
C14	0.15093 (16)	-0.03359 (19)	0.62622 (15)	0.0276 (6)
H14	0.1138	0.0029	0.6511	0.033*
C15	0.22260 (18)	-0.0847(2)	0.67623 (16)	0.0328 (6)
H15	0.2354	-0.0844	0.7360	0.039*
C16	0.27560 (17)	-0.1365 (2)	0.63733 (16)	0.0335 (6)
H16	0.3254	-0.1721	0.6701	0.040*
C17	0.25461 (16)	-0.13519 (19)	0.55032 (15)	0.0264 (5)
H17	0.2911	-0.1704	0.5240	0.032*
C18	0.23103 (16)	0.42893 (18)	0.43517 (14)	0.0247 (5)
H18	0.2827	0.4103	0.4767	0.030*
C19	0.20695 (16)	0.53372 (17)	0.42661 (15)	0.0261 (5)
H19	0.2411	0.5861	0.4621	0.031*
C20	0.13255 (16)	0.56161 (18)	0.36572 (14)	0.0241 (5)
H20	0.1146	0.6334	0.3588	0.029*
C21	0.08464 (14)	0.48361 (17)	0.31503 (14)	0.0202 (5)
H21	0.0335	0.5009	0.2722	0.024*
C22	0.11246 (14)	0.37959 (17)	0.32779 (13)	0.0183 (5)
H22	0.0792	0.3259	0.2931	0.022*
C23	0.31973 (18)	0.1915 (2)	0.59788 (16)	0.0394 (7)
H23	0.3664	0.1773	0.5767	0.047*

C24	0.33449 (19)	0.1939 (3)	0.68440 (16)	0.0445 (8)
H24	0.3899	0.1810	0.7217	0.053*
C25	0.26752 (18)	0.2153 (2)	0.71528 (16)	0.0342 (6)
H25	0.2755	0.2164	0.7744	0.041*
C26	0.18849 (16)	0.23518 (19)	0.65927 (15)	0.0273 (5)
H26	0.1414	0.2526	0.6791	0.033*
C27	0.17882 (15)	0.22930 (17)	0.57336 (14)	0.0214 (5)
H27	0.1238	0.2409	0.5349	0.026*
C28	0.6574 (2)	0.4623 (3)	0.3462 (2)	0.0615 (10)
H28A	0.7052	0.4127	0.3547	0.092*
H28B	0.6775	0.5276	0.3776	0.092*
H28C	0.6342	0.4785	0.2859	0.092*
C29	0.58876 (19)	0.4128 (2)	0.37756 (18)	0.0424 (7)
H29	0.6153	0.3871	0.4366	0.051*
C30	0.5193 (3)	0.4877 (3)	0.3776 (3)	0.0765 (12)
H30A	0.4981	0.5210	0.3219	0.115*
H30B	0.5411	0.5422	0.4206	0.115*
H30C	0.4727	0.4492	0.3903	0.115*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01760 (15)	0.01758 (14)	0.01463 (14)	-0.00056 (10)	0.00519 (11)	-0.00005 (10)
Cu2	0.01967 (15)	0.01512 (13)	0.01380 (14)	0.00081 (10)	0.00435 (11)	-0.00014 (10)
Cl1	0.0200 (3)	0.0225 (3)	0.0202 (3)	-0.0027 (2)	0.0066 (2)	0.0001 (2)
Cl2	0.0195 (3)	0.0164 (2)	0.0236 (3)	0.0010 (2)	0.0061 (2)	0.0000 (2)
O1	0.0276 (10)	0.0197 (8)	0.0289 (9)	0.0014 (7)	0.0077 (8)	-0.0007 (7)
O2	0.0233 (9)	0.0209 (8)	0.0198 (8)	-0.0023 (7)	0.0049 (7)	-0.0015 (6)
O3	0.0215 (9)	0.0342 (9)	0.0352 (10)	-0.0071 (7)	0.0076 (8)	-0.0003 (8)
O4	0.0422 (12)	0.0577 (13)	0.0413 (12)	-0.0113 (10)	0.0171 (10)	-0.0037 (10)
N1	0.0183 (10)	0.0164 (9)	0.0145 (9)	0.0024 (7)	0.0036 (8)	0.0000 (7)
N2	0.0176 (10)	0.0176 (9)	0.0139 (9)	-0.0010 (7)	0.0039 (7)	0.0000 (7)
N3	0.0175 (10)	0.0202 (9)	0.0170 (9)	0.0015 (7)	0.0055 (8)	0.0003 (7)
N4	0.0209 (10)	0.0178 (9)	0.0172 (9)	-0.0029 (7)	0.0057 (8)	0.0006 (7)
N5	0.0263 (11)	0.0173 (9)	0.0134 (9)	0.0013 (8)	0.0053 (8)	0.0004 (7)
N6	0.0218 (10)	0.0239 (10)	0.0162 (9)	0.0068 (8)	0.0052 (8)	0.0009 (7)
C1	0.0181 (11)	0.0231 (11)	0.0119 (10)	0.0032 (9)	0.0037 (9)	-0.0011 (8)
C2	0.0244 (13)	0.0216 (11)	0.0148 (11)	0.0051 (10)	0.0034 (9)	-0.0008 (9)
C3	0.0271 (14)	0.0269 (12)	0.0322 (14)	0.0080 (10)	0.0061 (11)	-0.0076 (10)
C4	0.0195 (12)	0.0276 (12)	0.0132 (11)	0.0024 (9)	0.0044 (9)	0.0003 (9)
C5	0.0177 (12)	0.0361 (14)	0.0256 (13)	0.0032 (10)	0.0061 (10)	-0.0036 (10)
C6	0.0196 (12)	0.0230 (11)	0.0112 (10)	0.0000 (9)	0.0042 (9)	0.0001 (8)
C7	0.0218 (13)	0.0269 (12)	0.0128 (11)	-0.0027 (10)	0.0029 (9)	0.0034 (9)
C8	0.0229 (12)	0.0190 (11)	0.0204 (11)	0.0013 (9)	0.0077 (10)	0.0005 (9)
C9	0.0236 (13)	0.0240 (12)	0.0252 (12)	-0.0005 (10)	0.0085 (10)	-0.0066 (10)
C10	0.0279 (14)	0.0381 (14)	0.0177 (12)	-0.0016 (11)	0.0085 (10)	-0.0013 (10)
C11	0.0365 (15)	0.0288 (13)	0.0214 (12)	-0.0064 (11)	0.0083 (11)	0.0038 (10)
C12	0.0256 (13)	0.0231 (12)	0.0232 (12)	-0.0044 (10)	0.0087 (10)	0.0002 (9)

C13	0.0265 (13)	0.0188 (11)	0.0218 (12)	0.0001 (9)	0.0088 (10)	0.0011 (9)
C14	0.0382 (16)	0.0264 (12)	0.0223 (12)	-0.0020 (11)	0.0151 (12)	-0.0036 (10)
C15	0.0403 (16)	0.0418 (15)	0.0165 (12)	-0.0052 (12)	0.0084 (11)	-0.0013 (11)
C16	0.0316 (15)	0.0447 (16)	0.0214 (13)	0.0066 (12)	0.0035 (11)	0.0069 (11)
C17	0.0242 (13)	0.0336 (13)	0.0209 (12)	0.0032 (10)	0.0060 (10)	-0.0003 (10)
C18	0.0301 (14)	0.0225 (12)	0.0172 (11)	-0.0003 (10)	0.0002 (10)	-0.0012 (9)
C19	0.0363 (15)	0.0171 (11)	0.0219 (12)	-0.0024 (10)	0.0040 (11)	-0.0043 (9)
C20	0.0356 (14)	0.0169 (11)	0.0236 (12)	0.0017 (10)	0.0146 (11)	0.0046 (9)
C21	0.0192 (12)	0.0238 (11)	0.0189 (11)	0.0024 (9)	0.0076 (9)	0.0055 (9)
C22	0.0194 (12)	0.0206 (11)	0.0157 (11)	-0.0024 (9)	0.0064 (9)	-0.0002 (8)
C23	0.0300 (15)	0.072 (2)	0.0174 (13)	0.0209 (14)	0.0083 (11)	0.0048 (13)
C24	0.0322 (16)	0.080 (2)	0.0190 (13)	0.0164 (15)	0.0046 (12)	0.0038 (14)
C25	0.0401 (16)	0.0475 (16)	0.0159 (12)	-0.0050 (13)	0.0095 (12)	-0.0070 (11)
C26	0.0268 (14)	0.0343 (13)	0.0254 (13)	-0.0073 (11)	0.0147 (11)	-0.0083 (10)
C27	0.0211 (12)	0.0210 (11)	0.0220 (12)	-0.0021 (9)	0.0064 (10)	-0.0022 (9)
C28	0.063 (2)	0.090 (3)	0.0310 (17)	-0.040 (2)	0.0120 (16)	-0.0058 (17)
C29	0.0398 (17)	0.0536 (18)	0.0330 (16)	-0.0096 (14)	0.0097 (13)	-0.0041 (13)
C30	0.082 (3)	0.056 (2)	0.095 (3)	0.008 (2)	0.030 (2)	-0.010 (2)

Geometric parameters (Å, °)

Cu1—N1	1.9814 (18)	С9—Н9	0.9500
Cu1—N3	2.0609 (18)	C10—C11	1.387 (3)
Cu1—N4	2.0371 (18)	C10—H10	0.9500
Cu1—O1	2.5878 (17)	C11—C12	1.383 (3)
Cu1—Cl1	2.2634 (6)	C11—H11	0.9500
Cu1—Cl2	2.8621 (6)	C12—H12	0.9500
Cu2—N2	1.9549 (18)	C13—C14	1.379 (3)
Cu2—N5	2.0097 (18)	С13—Н13	0.9500
Cu2—N6	2.1987 (18)	C14—C15	1.382 (4)
Cu2—O2	2.0340 (16)	C14—H14	0.9500
Cu2—Cl2	2.3036 (6)	C15—C16	1.390 (4)
O1—C2	1.229 (3)	C15—H15	0.9500
O2—C7	1.292 (3)	C16—C17	1.380 (3)
O3—C7	1.236 (3)	C16—H16	0.9500
O4—C29	1.407 (3)	C17—H17	0.9500
O4—H3O	0.9550	C18—C19	1.377 (3)
N1—N2	1.325 (2)	C18—H18	0.9500
N1-C1	1.364 (3)	C19—C20	1.380 (3)
N2—C6	1.355 (3)	C19—H19	0.9500
N3—C12	1.338 (3)	C20—C21	1.380 (3)
N3—C8	1.345 (3)	C20—H20	0.9500
N4—C13	1.343 (3)	C21—C22	1.387 (3)
N4—C17	1.344 (3)	C21—H21	0.9500
N5—C22	1.339 (3)	C22—H22	0.9500
N5—C18	1.347 (3)	C23—C24	1.382 (4)
N6—C27	1.328 (3)	С23—Н23	0.9500
N6—C23	1.335 (3)	C24—C25	1.370 (4)

C1—C4	1.402 (3)	C24—H24	0.9500
C1—C2	1.473 (3)	C25—C26	1.376 (4)
C2—C3	1.487 (3)	С25—Н25	0.9500
С3—НЗА	0.9800	C26—C27	1.387 (3)
С3—Н3В	0.9800	С26—Н26	0.9500
С3—НЗС	0.9800	С27—Н27	0.9500
C4—C6	1.393 (3)	C28—C29	1.509 (4)
C4—C5	1.501 (3)	C28—H28A	0.9800
C5—H5A	0.9800	C28—H28B	0.9800
C5—H5B	0.9800	C28—H28C	0.9800
C5—H5C	0.9800	C_{29} C_{30}	1 482 (5)
C6-C7	1 486 (3)	C29—H29	1.0000
C8 - C9	1 382 (3)	C30—H30A	0.9800
C8—H8	0.9500	C30—H30B	0.9800
C_{9}	1 379 (3)	C30_H30C	0.9800
09-010	1.579 (5)	C30—1150C	0.9800
N1—Cu1—N4	88.72 (7)	C10—C9—C8	119.1 (2)
N1—Cu1—N3	90.19 (7)	С10—С9—Н9	120.5
N4—Cu1—N3	177.86 (7)	С8—С9—Н9	120.5
N1—Cu1—Cl1	174.40 (5)	C9—C10—C11	118.6 (2)
N4—Cu1—Cl1	88.41 (5)	C9—C10—H10	120.7
N3—Cu1—Cl1	92.52 (5)	C11—C10—H10	120.7
N1—Cu1—O1	70.62 (7)	C12—C11—C10	119.0 (2)
N3—Cu1—O1	81.82 (6)	C12—C11—H11	120.5
N4—Cu1—O1	96.09 (6)	C10—C11—H11	120.5
Cl1—Cu1—O1	104.91 (4)	N3—C12—C11	122.9 (2)
Cl_2 — Cu_1 — Ol_1	153 60 (4)	N3-C12-H12	118.6
N1-Cu1-Cl2	84 28 (5)	$C_{11} - C_{12} - H_{12}$	118.6
N_3 — Cu_1 — Cl_2	90 44 (5)	N4-C13-C14	122.9(2)
N4— $Cu1$ — $Cl2$	91 29 (5)	N4—C13—H13	118 5
C_{11} C_{11} C_{12}	100.59(2)	C14-C13-H13	118.5
$N_2 - C_{11} - N_5$	159 53 (7)	C_{13} C_{14} C_{15}	119.0(2)
$N_2 - C_{112} - O_2$	80 38 (7)	C_{13} C_{14} H_{14}	120.5
$N_{2} = C_{12} = 02$	87 72 (7)	C_{15} C_{14} H_{14}	120.5
$N_2 = C_{11} 2 = N_6$	$103\ 71\ (7)$	C_{14} C_{15} C_{16}	120.3 118.7(2)
$N_2 - Cu_2 - N_6$	93 42 (7)	C14 - C15 - H15	120.7
$\Omega^2 - \Omega^2 - N6$	92.95 (7)	C_{16} C_{15} H_{15}	120.7
$N_2 = C_{12} = N_0$	92.95(7)	$C_{10} = C_{15} = M_{15}$	120.7 118.8(2)
$N_2 - C_{12} - C_{12}$	92.44 (5)	C17 = C16 = C15	110.6 (2)
$\Omega_2 = C_{12} = C_{12}$	95.71 (0) 166 73 (5)	$C_{17} = C_{10} = H_{10}$	120.0
$V_2 = C_1 Z_2 = C_1 Z_2$	100.73(3)	N4 C17 C16	120.0
R_{0}	99.02(3)	N4 - C17 - H17	122.0 (2)
$C_{1} = 02 = C_{12}$	113.07 (14)	N4 - C1 - H17	118.0
N2 N1 C1	110.0 107.02(18)	10 - 17 - 117	110.0
$\frac{1}{1}$	107.93(10) 126.49(14)	N5 C10 U19	122.0 (2)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	120.40(14)	$1NJ = C10 = \Pi10$	110./
$V_1 = V_1 = V_1$	123.49 (14)	C19 - C10 - C10	110./
N1 - N2 - C 2	109.22(17)	$C_{10} = C_{10} = U_{10}$	119.1 (2) 120.5
INI - IN2 - CU2	133.37 (13)	U10-U19-H19	120.5

C12—N3—C8 117.68 (19) C21—C20—C19 C12—N3—C31 C31 C31 C32 H20	120.5
$C_{12} = N_2 = C_{21} = 121.06(15) = C_{21} = C_{20} = H_{20}$	119.0 (2)
$C12-N_3-Cu_1$ $I21.00(I_3)$ $C21-C_20-H_20$	120.5
C8—N3—Cu1 121.26 (15) C19—C20—H20	120.5
C13—N4—C17 117.8 (2) C20—C21—C22	118.8 (2)
C13—N4—Cu1 120.37 (15) C20—C21—H21	120.6
C17—N4—Cu1 121.81 (15) C22—C21—H21	120.6
C22—N5—C18 117.88 (19) N5—C22—C21	122.7 (2)
C22-N5-Cu2 123.91 (15) N5-C22-H22	118.7
$C_{18} - N_{5} - C_{42}$ $118.20 (15)$ $C_{21} - C_{22} - H_{22}$	118.7
C27—N6—C23 117.5 (2) N6—C23—C24	123.3 (2)
C27-N6-Cu2 122.62 (15) N6-C23-H23	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.3
N1-C1-C4 109 83 (19) $C25-C24-C23$	118.6(3)
N1-C1-C2 $1167(2)$ $C25-C24-H24$	120.7
C4 - C1 - C2 $133 4 (2)$ $C23 - C24 - H24$	120.7
$01_{-}C2_{-}C1$ $119_{-}1(2)$ $C24_{-}C25_{-}C26$	120.7 1190(2)
01-02-01 $119.1(2)$ $024-025-020$	119.0 (2)
$C_1 = C_2 = C_3$ $C_2 = C_2 $	120.5
$C_1 = C_2 = C_3$ (19.5) (2) $(20 = C_2 = C_2 = 1123$	120.3
$C_2 = C_3 = H_3 A$ 109.5 $C_{23} = C_{20} = C_{27} A$	110.0 (2)
$C_2 = C_3 = H_3 B$ 109.5 $C_{23} = C_{20} = H_{20}$	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0
$U_2 = U_3 = H_3 U_1 = 109.5$ No $U_2 = U_2 U_2 = U_2 U_3 = 109.5$ No $U_2 = U_2 U_2 = U_2 U_3 = U_3 $	122.9 (2)
$H_{3A} = C_{3} = H_{3C}$ 109.5 $N_{0} = C_{2} = H_{2}$	118.6
$H_{3B} = C_{3} = H_{3C}$ 109.5 $C_{2b} = C_{27} = H_{27}$	118.6
C6-C4-C1 103.25 (19) $C29-C28-H28A$	109.5
C6-C4-C5 126.7 (2) C29-C28-H28B	109.5
C1C4C5 130.0 (2) H28AC28H28B	109.5
C4—C5—H5A 109.5 C29—C28—H28C	109.5
C4—C5—H5B 109.5 H28A—C28—H28C	109.5
H5A—C5—H5B 109.5 H28B—C28—H28C	109.5
C4—C5—H5C 109.5 O4—C29—C30	110.6 (3)
H5A—C5—H5C 109.5 O4—C29—C28	107.5 (2)
H5B—C5—H5C 109.5 C30—C29—C28	112.9 (3)
N2—C6—C4 109.76 (19) O4—C29—H29	108.6
N2—C6—C7 114.94 (19) C30—C29—H29	108.6
C4—C6—C7 135.3 (2) C28—C29—H29	108.6
O3—C7—O2 125.4 (2) C29—C30—H30A	109.5
O3—C7—C6 121.0 (2) C29—C30—H30B	109.5
O2—C7—C6 113.6 (2) H30A—C30—H30B	109.5
N3—C8—C9 122.8 (2) C29—C30—H30C	109.5
N3—C8—H8 118.6 H30A—C30—H30C	109.5
	109.5
С9—С8—Н8 118.6 Н30В—С30—Н30С	
C9—C8—H8 118.6 H30B—C30—H30C N2—Cu2—O2—C7 0.53 (15) C4—C1—C2—C3	-3.8 (4)
C9—C8—H8 118.6 H30B—C30—H30C N2—Cu2—O2—C7 0.53 (15) C4—C1—C2—C3 N5—Cu2—O2—C7 -162.76 (15) N1—C1—C4—C6	-3.8 (4) 0.8 (2)
C9—C8—H8 118.6 H30B—C30—H30C N2—Cu2—O2—C7 0.53 (15) C4—C1—C2—C3 N5—Cu2—O2—C7 -162.76 (15) N1—C1—C4—C6 N6—Cu2—O2—C7 103.94 (15) C2—C1—C4—C6	-3.8 (4) 0.8 (2) -176.6 (2)

N4—Cu1—N1—N2	-78.06 (17)	C2—C1—C4—C5	2.8 (4)
N3—Cu1—N1—N2	103.78 (17)	N1—N2—C6—C4	-0.1 (2)
N4—Cu1—N1—C1	97.87 (17)	Cu2—N2—C6—C4	179.96 (14)
N3—Cu1—N1—C1	-80.29 (17)	N1—N2—C6—C7	-177.94 (17)
C1—N1—N2—C6	0.6 (2)	Cu2—N2—C6—C7	2.1 (2)
Cu1—N1—N2—C6	177.10 (14)	C1-C4-C6-N2	-0.5 (2)
C1—N1—N2—Cu2	-179.44 (15)	C5-C4-C6-N2	-179.9 (2)
Cu1—N1—N2—Cu2	-2.9 (3)	C1—C4—C6—C7	176.8 (2)
N5—Cu2—N2—N1	-126.1 (2)	C5—C4—C6—C7	-2.6 (4)
O2—Cu2—N2—N1	178.6 (2)	Cu2—O2—C7—O3	-177.94 (17)
N6—Cu2—N2—N1	87.9 (2)	Cu2—O2—C7—C6	0.4 (2)
Cl2—Cu2—N2—N1	-12.64 (19)	N2—C6—C7—O3	176.8 (2)
N5—Cu2—N2—C6	53.8 (3)	C4—C6—C7—O3	-0.3 (4)
O2—Cu2—N2—C6	-1.45 (14)	N2—C6—C7—O2	-1.6 (3)
N6—Cu2—N2—C6	-92.15 (15)	C4—C6—C7—O2	-178.8 (2)
Cl2—Cu2—N2—C6	167.33 (14)	C12—N3—C8—C9	-0.5 (3)
N1—Cu1—N3—C12	-49.00 (18)	Cu1—N3—C8—C9	178.93 (17)
Cl1—Cu1—N3—C12	135.90 (17)	N3—C8—C9—C10	-0.6 (4)
N1—Cu1—N3—C8	131.61 (17)	C8—C9—C10—C11	0.8 (4)
Cl1—Cu1—N3—C8	-43.49 (17)	C9—C10—C11—C12	0.0 (4)
N1—Cu1—N4—C13	124.85 (17)	C8—N3—C12—C11	1.3 (3)
Cl1—Cu1—N4—C13	-59.96 (16)	Cu1—N3—C12—C11	-178.08 (18)
N1—Cu1—N4—C17	-57.93 (18)	C10—C11—C12—N3	-1.1 (4)
Cl1—Cu1—N4—C17	117.26 (17)	C17—N4—C13—C14	0.0 (3)
N2—Cu2—N5—C22	84.2 (3)	Cu1—N4—C13—C14	177.31 (17)
O2—Cu2—N5—C22	138.41 (18)	N4—C13—C14—C15	-0.4 (4)
N6—Cu2—N5—C22	-128.77 (18)	C13—C14—C15—C16	0.5 (4)
Cl2—Cu2—N5—C22	-28.74 (17)	C14—C15—C16—C17	-0.1 (4)
N2—Cu2—N5—C18	-94.3 (3)	C13—N4—C17—C16	0.4 (3)
O2—Cu2—N5—C18	-40.15 (17)	Cu1—N4—C17—C16	-176.94 (19)
N6—Cu2—N5—C18	52.67 (18)	C15—C16—C17—N4	-0.3 (4)
Cl2—Cu2—N5—C18	152.70 (16)	C22—N5—C18—C19	1.1 (3)
N2—Cu2—N6—C27	-133.26 (17)	Cu2—N5—C18—C19	179.71 (19)
N5—Cu2—N6—C27	58.05 (18)	N5—C18—C19—C20	-0.7 (4)
O2—Cu2—N6—C27	145.94 (17)	C18—C19—C20—C21	-0.2 (4)
Cl2—Cu2—N6—C27	-38.34 (17)	C19—C20—C21—C22	0.8 (3)
N2—Cu2—N6—C23	47.7 (2)	C18—N5—C22—C21	-0.4 (3)
N5—Cu2—N6—C23	-121.0 (2)	Cu2—N5—C22—C21	-179.01 (16)
O2—Cu2—N6—C23	-33.1(2)	C20—C21—C22—N5	-0.5(3)
Cl2—Cu2—N6—C23	142.7 (2)	C27—N6—C23—C24	0.9 (4)
N2—N1—C1—C4	-0.9 (2)	Cu2—N6—C23—C24	179.9 (2)
Cul-Nl-Cl-C4	-17/.46(14)	N6-C23-C24-C25	-0.6(5)
$N_2 - N_1 - C_1 - C_2$	1//.02 (1/)	$C_{23} - C_{24} - C_{25} - C_{26}$	-1.0(4)
Cui - Ni - Ci - C2	0.5(3)	$C_{24} = C_{25} = C_{26} = C_{27}$	2.1 (4)
N1-C1-C2-O1	-3.2(3)	C_{23} —N6— C_{27} — C_{26}	0.4 (3)
C4-C1-C2-O1	174.1 (2)	Cu2 - N6 - C27 - C26	-178.65 (17)
N1—C1—C2—C3	178.91 (19)	C25—C26—C2/—N6	-1.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H3 <i>O</i> ···O3	0.95	1.82	2.734 (3)	160